How to show that $4sum_{j=1}^ny_{2j-1}+2sum_{j=1}^{n-1}y_{2j}$ equal to...












1












$begingroup$


$$4sum_{j=1}^ny_{2j-1}+2sum_{j=1}^{n-1}y_{2j}=4sum_{j=1}^{2n-1}y_{j}-2sum_{j=1}^{n-1}y_{2j}$$



How can one algebraically show show that they are equal by starting at the left side? How would one do it without expanding the sum but instead by manipulating the sums directly?



Background: This summation is part of some calculations surrounding Simpson's Rule.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    $$4sum_{j=1}^ny_{2j-1}+2sum_{j=1}^{n-1}y_{2j}=4sum_{j=1}^{2n-1}y_{j}-2sum_{j=1}^{n-1}y_{2j}$$



    How can one algebraically show show that they are equal by starting at the left side? How would one do it without expanding the sum but instead by manipulating the sums directly?



    Background: This summation is part of some calculations surrounding Simpson's Rule.










    share|cite|improve this question











    $endgroup$















      1












      1








      1


      0



      $begingroup$


      $$4sum_{j=1}^ny_{2j-1}+2sum_{j=1}^{n-1}y_{2j}=4sum_{j=1}^{2n-1}y_{j}-2sum_{j=1}^{n-1}y_{2j}$$



      How can one algebraically show show that they are equal by starting at the left side? How would one do it without expanding the sum but instead by manipulating the sums directly?



      Background: This summation is part of some calculations surrounding Simpson's Rule.










      share|cite|improve this question











      $endgroup$




      $$4sum_{j=1}^ny_{2j-1}+2sum_{j=1}^{n-1}y_{2j}=4sum_{j=1}^{2n-1}y_{j}-2sum_{j=1}^{n-1}y_{2j}$$



      How can one algebraically show show that they are equal by starting at the left side? How would one do it without expanding the sum but instead by manipulating the sums directly?



      Background: This summation is part of some calculations surrounding Simpson's Rule.







      algebra-precalculus summation






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 21 at 0:08







      GambitSquared

















      asked Jan 20 at 15:51









      GambitSquaredGambitSquared

      1,1901138




      1,1901138






















          4 Answers
          4






          active

          oldest

          votes


















          1












          $begingroup$

          Maybe the multiple use of $j$ as index of summation is a bit confusing. Just note that
          $$sum_{k=1}^{2n-1} y_k = underbrace{sum_{stackrel{k=1}{k: odd}}^{2n-1} y_k}_{=sum_{j=1}^{n} y_{2j-1} } + underbrace{sum_{stackrel{k=1}{k: even}}^{2n-1} y_k}_{=sum_{j=1}^{n-1} y_{2j}}$$



          Now, you get immediately
          $$4sum_{k=1}^{2n-1} y_k = 4 sum_{j=1}^{n} y_{2j-1} + underbrace{4}_{=2+2}sum_{j=1}^{n-1} y_{2j}Leftrightarrow$$
          $$4sum_{k=1}^{2n-1} y_k - 2sum_{j=1}^{n-1} y_{2j} = 4 sum_{j=1}^{n} y_{2j-1} + 2sum_{j=1}^{n-1} y_{2j}$$
          If you like you may now replace index $k$ by $j$ in the left-most sum.






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            (NB - this is for illustration only)



            $$4sum_{j=1}^ny_{2j-1}+2sum_{j=1}^{n-1}y_{2j}=4sum_{j=1}^{2n-1}y_{j}-2sum_{j=1}^{n-1}y_{2j}$$



            As an illustration, take $n=4$.



            LHS = $$begin{align}
            4big(&y_1&&+y_3&&+y_5&&+y_7big)\
            +2big(&&y_2&&+y_4&&+y_6&;;;;;;big)\
            =;;;&4y_1&+2y_2&+4y_3&+2y_4&+4y_5&+2y_6&+4y_7end{align}$$

            RHS=
            $$begin{align}
            4big(&y_1&+y_2&+y_3&+y_4&+y_5&y_6&+y_7big)\
            -2big(&&y_2&&+y_4&&+y_6&;;;;;;big)\
            =;;;&4y_1&+2y_2&+4y_3&+2y_4&+4y_5&+2y_6&+4y_7end{align}$$

            Hence LHS=RHS.





            Formal Proof



            $$begin{align}
            text{LHS}&=4sum_{j=1}^ny_{2j-1}+2sum_{j=1}^{n-1}y_{2j}\
            &=underbrace{4sum_{j=1}^ny_{2j-1}color{red}{+4sum_{j=1}^{n-1} y_{2j}}}+
            underbrace{2sum_{j=1}^{n-1}y_{2j}color{red}{-4sum_{j=1}^{n-1} y_{2j}}}\
            &=;;;;;;;;4sum_{j=1}^{2n-1}y_j
            ;;;;;;;;;;;;;;;;-2sum_{j=1}^{n-1}y_{2j}
            ;;;;;;=text{RHS}
            end{align}$$






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              How do you add the first two sums in the second sentence of your formal proof?
              $endgroup$
              – GambitSquared
              Jan 21 at 13:29












            • $begingroup$
              The first is the sum of $y_{1,3,5,7,cdots,2n-1}$, and the second is the sum of $y_{2,4,6,cdots 2n-2}$. Adding them gives the sum of $y_{1,2,3,4,cdots,2n-1}$. All multiplied by $4$.
              $endgroup$
              – hypergeometric
              Jan 21 at 13:37



















            1












            $begingroup$


            We obtain
            begin{align*}
            color{blue}{4sum_{j=1}^n}&color{blue}{y_{2j-1}+2sum_{j=1}^{n-1}y_{2j}}\
            &=4left(sum_{j=1}^{2n-1}y_j-sum_{j=1}^{n-1}y_{2j}right)+2sum_{j=1}^{n-1}y_{2j}\
            &,,color{blue}{=4sum_{j=1}^{2n-1}y_{j}-2sum_{j=1}^{n-1}y_{2j}}\
            end{align*}

            and the claim follows.







            share|cite|improve this answer









            $endgroup$





















              0












              $begingroup$

              Note that
              begin{align*}
              4sum_{j=1}^ny_{2j-1}+2sum_{j=1}^{n-1}y_{2j}
              &= 4(y_1+y_3+cdots+y_{2n-1})+2sum_{j=1}^{n-1}y_{2j} \
              &= 4(y_1+y_2+cdots + y_{2n-2}+y_{2n-1}) - 4(y_2+y_4+cdots + y_{2n-2})+2sum_{j=1}^{n-1}y_{2j}\
              &= 4sum_{j=1}^{2n-1}y_j - 4sum_{j=1}^{n-1} y_{2j}+2sum_{j=1}^{n-1}y_{2j}\
              &= 4sum_{j=1}^{2n-1}y_j - 2sum_{j=1}^{n-1}y_{2j}.
              end{align*}






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                Is it possible to manipulate the sums directly to show that the equality is true without expanding the sum?
                $endgroup$
                – GambitSquared
                Jan 21 at 0:08










              • $begingroup$
                Sure. I just expanded the sums to make it clear what was going on. You could equally well write it out by using sigma notation for the sums that I expanded in the answer.
                $endgroup$
                – rogerl
                Jan 21 at 14:07











              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080749%2fhow-to-show-that-4-sum-j-1ny-2j-12-sum-j-1n-1y-2j-equal-to-4-sum%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              4 Answers
              4






              active

              oldest

              votes








              4 Answers
              4






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              Maybe the multiple use of $j$ as index of summation is a bit confusing. Just note that
              $$sum_{k=1}^{2n-1} y_k = underbrace{sum_{stackrel{k=1}{k: odd}}^{2n-1} y_k}_{=sum_{j=1}^{n} y_{2j-1} } + underbrace{sum_{stackrel{k=1}{k: even}}^{2n-1} y_k}_{=sum_{j=1}^{n-1} y_{2j}}$$



              Now, you get immediately
              $$4sum_{k=1}^{2n-1} y_k = 4 sum_{j=1}^{n} y_{2j-1} + underbrace{4}_{=2+2}sum_{j=1}^{n-1} y_{2j}Leftrightarrow$$
              $$4sum_{k=1}^{2n-1} y_k - 2sum_{j=1}^{n-1} y_{2j} = 4 sum_{j=1}^{n} y_{2j-1} + 2sum_{j=1}^{n-1} y_{2j}$$
              If you like you may now replace index $k$ by $j$ in the left-most sum.






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Maybe the multiple use of $j$ as index of summation is a bit confusing. Just note that
                $$sum_{k=1}^{2n-1} y_k = underbrace{sum_{stackrel{k=1}{k: odd}}^{2n-1} y_k}_{=sum_{j=1}^{n} y_{2j-1} } + underbrace{sum_{stackrel{k=1}{k: even}}^{2n-1} y_k}_{=sum_{j=1}^{n-1} y_{2j}}$$



                Now, you get immediately
                $$4sum_{k=1}^{2n-1} y_k = 4 sum_{j=1}^{n} y_{2j-1} + underbrace{4}_{=2+2}sum_{j=1}^{n-1} y_{2j}Leftrightarrow$$
                $$4sum_{k=1}^{2n-1} y_k - 2sum_{j=1}^{n-1} y_{2j} = 4 sum_{j=1}^{n} y_{2j-1} + 2sum_{j=1}^{n-1} y_{2j}$$
                If you like you may now replace index $k$ by $j$ in the left-most sum.






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Maybe the multiple use of $j$ as index of summation is a bit confusing. Just note that
                  $$sum_{k=1}^{2n-1} y_k = underbrace{sum_{stackrel{k=1}{k: odd}}^{2n-1} y_k}_{=sum_{j=1}^{n} y_{2j-1} } + underbrace{sum_{stackrel{k=1}{k: even}}^{2n-1} y_k}_{=sum_{j=1}^{n-1} y_{2j}}$$



                  Now, you get immediately
                  $$4sum_{k=1}^{2n-1} y_k = 4 sum_{j=1}^{n} y_{2j-1} + underbrace{4}_{=2+2}sum_{j=1}^{n-1} y_{2j}Leftrightarrow$$
                  $$4sum_{k=1}^{2n-1} y_k - 2sum_{j=1}^{n-1} y_{2j} = 4 sum_{j=1}^{n} y_{2j-1} + 2sum_{j=1}^{n-1} y_{2j}$$
                  If you like you may now replace index $k$ by $j$ in the left-most sum.






                  share|cite|improve this answer









                  $endgroup$



                  Maybe the multiple use of $j$ as index of summation is a bit confusing. Just note that
                  $$sum_{k=1}^{2n-1} y_k = underbrace{sum_{stackrel{k=1}{k: odd}}^{2n-1} y_k}_{=sum_{j=1}^{n} y_{2j-1} } + underbrace{sum_{stackrel{k=1}{k: even}}^{2n-1} y_k}_{=sum_{j=1}^{n-1} y_{2j}}$$



                  Now, you get immediately
                  $$4sum_{k=1}^{2n-1} y_k = 4 sum_{j=1}^{n} y_{2j-1} + underbrace{4}_{=2+2}sum_{j=1}^{n-1} y_{2j}Leftrightarrow$$
                  $$4sum_{k=1}^{2n-1} y_k - 2sum_{j=1}^{n-1} y_{2j} = 4 sum_{j=1}^{n} y_{2j-1} + 2sum_{j=1}^{n-1} y_{2j}$$
                  If you like you may now replace index $k$ by $j$ in the left-most sum.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 21 at 11:50









                  trancelocationtrancelocation

                  12.6k1826




                  12.6k1826























                      1












                      $begingroup$

                      (NB - this is for illustration only)



                      $$4sum_{j=1}^ny_{2j-1}+2sum_{j=1}^{n-1}y_{2j}=4sum_{j=1}^{2n-1}y_{j}-2sum_{j=1}^{n-1}y_{2j}$$



                      As an illustration, take $n=4$.



                      LHS = $$begin{align}
                      4big(&y_1&&+y_3&&+y_5&&+y_7big)\
                      +2big(&&y_2&&+y_4&&+y_6&;;;;;;big)\
                      =;;;&4y_1&+2y_2&+4y_3&+2y_4&+4y_5&+2y_6&+4y_7end{align}$$

                      RHS=
                      $$begin{align}
                      4big(&y_1&+y_2&+y_3&+y_4&+y_5&y_6&+y_7big)\
                      -2big(&&y_2&&+y_4&&+y_6&;;;;;;big)\
                      =;;;&4y_1&+2y_2&+4y_3&+2y_4&+4y_5&+2y_6&+4y_7end{align}$$

                      Hence LHS=RHS.





                      Formal Proof



                      $$begin{align}
                      text{LHS}&=4sum_{j=1}^ny_{2j-1}+2sum_{j=1}^{n-1}y_{2j}\
                      &=underbrace{4sum_{j=1}^ny_{2j-1}color{red}{+4sum_{j=1}^{n-1} y_{2j}}}+
                      underbrace{2sum_{j=1}^{n-1}y_{2j}color{red}{-4sum_{j=1}^{n-1} y_{2j}}}\
                      &=;;;;;;;;4sum_{j=1}^{2n-1}y_j
                      ;;;;;;;;;;;;;;;;-2sum_{j=1}^{n-1}y_{2j}
                      ;;;;;;=text{RHS}
                      end{align}$$






                      share|cite|improve this answer











                      $endgroup$













                      • $begingroup$
                        How do you add the first two sums in the second sentence of your formal proof?
                        $endgroup$
                        – GambitSquared
                        Jan 21 at 13:29












                      • $begingroup$
                        The first is the sum of $y_{1,3,5,7,cdots,2n-1}$, and the second is the sum of $y_{2,4,6,cdots 2n-2}$. Adding them gives the sum of $y_{1,2,3,4,cdots,2n-1}$. All multiplied by $4$.
                        $endgroup$
                        – hypergeometric
                        Jan 21 at 13:37
















                      1












                      $begingroup$

                      (NB - this is for illustration only)



                      $$4sum_{j=1}^ny_{2j-1}+2sum_{j=1}^{n-1}y_{2j}=4sum_{j=1}^{2n-1}y_{j}-2sum_{j=1}^{n-1}y_{2j}$$



                      As an illustration, take $n=4$.



                      LHS = $$begin{align}
                      4big(&y_1&&+y_3&&+y_5&&+y_7big)\
                      +2big(&&y_2&&+y_4&&+y_6&;;;;;;big)\
                      =;;;&4y_1&+2y_2&+4y_3&+2y_4&+4y_5&+2y_6&+4y_7end{align}$$

                      RHS=
                      $$begin{align}
                      4big(&y_1&+y_2&+y_3&+y_4&+y_5&y_6&+y_7big)\
                      -2big(&&y_2&&+y_4&&+y_6&;;;;;;big)\
                      =;;;&4y_1&+2y_2&+4y_3&+2y_4&+4y_5&+2y_6&+4y_7end{align}$$

                      Hence LHS=RHS.





                      Formal Proof



                      $$begin{align}
                      text{LHS}&=4sum_{j=1}^ny_{2j-1}+2sum_{j=1}^{n-1}y_{2j}\
                      &=underbrace{4sum_{j=1}^ny_{2j-1}color{red}{+4sum_{j=1}^{n-1} y_{2j}}}+
                      underbrace{2sum_{j=1}^{n-1}y_{2j}color{red}{-4sum_{j=1}^{n-1} y_{2j}}}\
                      &=;;;;;;;;4sum_{j=1}^{2n-1}y_j
                      ;;;;;;;;;;;;;;;;-2sum_{j=1}^{n-1}y_{2j}
                      ;;;;;;=text{RHS}
                      end{align}$$






                      share|cite|improve this answer











                      $endgroup$













                      • $begingroup$
                        How do you add the first two sums in the second sentence of your formal proof?
                        $endgroup$
                        – GambitSquared
                        Jan 21 at 13:29












                      • $begingroup$
                        The first is the sum of $y_{1,3,5,7,cdots,2n-1}$, and the second is the sum of $y_{2,4,6,cdots 2n-2}$. Adding them gives the sum of $y_{1,2,3,4,cdots,2n-1}$. All multiplied by $4$.
                        $endgroup$
                        – hypergeometric
                        Jan 21 at 13:37














                      1












                      1








                      1





                      $begingroup$

                      (NB - this is for illustration only)



                      $$4sum_{j=1}^ny_{2j-1}+2sum_{j=1}^{n-1}y_{2j}=4sum_{j=1}^{2n-1}y_{j}-2sum_{j=1}^{n-1}y_{2j}$$



                      As an illustration, take $n=4$.



                      LHS = $$begin{align}
                      4big(&y_1&&+y_3&&+y_5&&+y_7big)\
                      +2big(&&y_2&&+y_4&&+y_6&;;;;;;big)\
                      =;;;&4y_1&+2y_2&+4y_3&+2y_4&+4y_5&+2y_6&+4y_7end{align}$$

                      RHS=
                      $$begin{align}
                      4big(&y_1&+y_2&+y_3&+y_4&+y_5&y_6&+y_7big)\
                      -2big(&&y_2&&+y_4&&+y_6&;;;;;;big)\
                      =;;;&4y_1&+2y_2&+4y_3&+2y_4&+4y_5&+2y_6&+4y_7end{align}$$

                      Hence LHS=RHS.





                      Formal Proof



                      $$begin{align}
                      text{LHS}&=4sum_{j=1}^ny_{2j-1}+2sum_{j=1}^{n-1}y_{2j}\
                      &=underbrace{4sum_{j=1}^ny_{2j-1}color{red}{+4sum_{j=1}^{n-1} y_{2j}}}+
                      underbrace{2sum_{j=1}^{n-1}y_{2j}color{red}{-4sum_{j=1}^{n-1} y_{2j}}}\
                      &=;;;;;;;;4sum_{j=1}^{2n-1}y_j
                      ;;;;;;;;;;;;;;;;-2sum_{j=1}^{n-1}y_{2j}
                      ;;;;;;=text{RHS}
                      end{align}$$






                      share|cite|improve this answer











                      $endgroup$



                      (NB - this is for illustration only)



                      $$4sum_{j=1}^ny_{2j-1}+2sum_{j=1}^{n-1}y_{2j}=4sum_{j=1}^{2n-1}y_{j}-2sum_{j=1}^{n-1}y_{2j}$$



                      As an illustration, take $n=4$.



                      LHS = $$begin{align}
                      4big(&y_1&&+y_3&&+y_5&&+y_7big)\
                      +2big(&&y_2&&+y_4&&+y_6&;;;;;;big)\
                      =;;;&4y_1&+2y_2&+4y_3&+2y_4&+4y_5&+2y_6&+4y_7end{align}$$

                      RHS=
                      $$begin{align}
                      4big(&y_1&+y_2&+y_3&+y_4&+y_5&y_6&+y_7big)\
                      -2big(&&y_2&&+y_4&&+y_6&;;;;;;big)\
                      =;;;&4y_1&+2y_2&+4y_3&+2y_4&+4y_5&+2y_6&+4y_7end{align}$$

                      Hence LHS=RHS.





                      Formal Proof



                      $$begin{align}
                      text{LHS}&=4sum_{j=1}^ny_{2j-1}+2sum_{j=1}^{n-1}y_{2j}\
                      &=underbrace{4sum_{j=1}^ny_{2j-1}color{red}{+4sum_{j=1}^{n-1} y_{2j}}}+
                      underbrace{2sum_{j=1}^{n-1}y_{2j}color{red}{-4sum_{j=1}^{n-1} y_{2j}}}\
                      &=;;;;;;;;4sum_{j=1}^{2n-1}y_j
                      ;;;;;;;;;;;;;;;;-2sum_{j=1}^{n-1}y_{2j}
                      ;;;;;;=text{RHS}
                      end{align}$$







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Jan 21 at 13:27

























                      answered Jan 21 at 13:15









                      hypergeometrichypergeometric

                      17.7k1761




                      17.7k1761












                      • $begingroup$
                        How do you add the first two sums in the second sentence of your formal proof?
                        $endgroup$
                        – GambitSquared
                        Jan 21 at 13:29












                      • $begingroup$
                        The first is the sum of $y_{1,3,5,7,cdots,2n-1}$, and the second is the sum of $y_{2,4,6,cdots 2n-2}$. Adding them gives the sum of $y_{1,2,3,4,cdots,2n-1}$. All multiplied by $4$.
                        $endgroup$
                        – hypergeometric
                        Jan 21 at 13:37


















                      • $begingroup$
                        How do you add the first two sums in the second sentence of your formal proof?
                        $endgroup$
                        – GambitSquared
                        Jan 21 at 13:29












                      • $begingroup$
                        The first is the sum of $y_{1,3,5,7,cdots,2n-1}$, and the second is the sum of $y_{2,4,6,cdots 2n-2}$. Adding them gives the sum of $y_{1,2,3,4,cdots,2n-1}$. All multiplied by $4$.
                        $endgroup$
                        – hypergeometric
                        Jan 21 at 13:37
















                      $begingroup$
                      How do you add the first two sums in the second sentence of your formal proof?
                      $endgroup$
                      – GambitSquared
                      Jan 21 at 13:29






                      $begingroup$
                      How do you add the first two sums in the second sentence of your formal proof?
                      $endgroup$
                      – GambitSquared
                      Jan 21 at 13:29














                      $begingroup$
                      The first is the sum of $y_{1,3,5,7,cdots,2n-1}$, and the second is the sum of $y_{2,4,6,cdots 2n-2}$. Adding them gives the sum of $y_{1,2,3,4,cdots,2n-1}$. All multiplied by $4$.
                      $endgroup$
                      – hypergeometric
                      Jan 21 at 13:37




                      $begingroup$
                      The first is the sum of $y_{1,3,5,7,cdots,2n-1}$, and the second is the sum of $y_{2,4,6,cdots 2n-2}$. Adding them gives the sum of $y_{1,2,3,4,cdots,2n-1}$. All multiplied by $4$.
                      $endgroup$
                      – hypergeometric
                      Jan 21 at 13:37











                      1












                      $begingroup$


                      We obtain
                      begin{align*}
                      color{blue}{4sum_{j=1}^n}&color{blue}{y_{2j-1}+2sum_{j=1}^{n-1}y_{2j}}\
                      &=4left(sum_{j=1}^{2n-1}y_j-sum_{j=1}^{n-1}y_{2j}right)+2sum_{j=1}^{n-1}y_{2j}\
                      &,,color{blue}{=4sum_{j=1}^{2n-1}y_{j}-2sum_{j=1}^{n-1}y_{2j}}\
                      end{align*}

                      and the claim follows.







                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$


                        We obtain
                        begin{align*}
                        color{blue}{4sum_{j=1}^n}&color{blue}{y_{2j-1}+2sum_{j=1}^{n-1}y_{2j}}\
                        &=4left(sum_{j=1}^{2n-1}y_j-sum_{j=1}^{n-1}y_{2j}right)+2sum_{j=1}^{n-1}y_{2j}\
                        &,,color{blue}{=4sum_{j=1}^{2n-1}y_{j}-2sum_{j=1}^{n-1}y_{2j}}\
                        end{align*}

                        and the claim follows.







                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$


                          We obtain
                          begin{align*}
                          color{blue}{4sum_{j=1}^n}&color{blue}{y_{2j-1}+2sum_{j=1}^{n-1}y_{2j}}\
                          &=4left(sum_{j=1}^{2n-1}y_j-sum_{j=1}^{n-1}y_{2j}right)+2sum_{j=1}^{n-1}y_{2j}\
                          &,,color{blue}{=4sum_{j=1}^{2n-1}y_{j}-2sum_{j=1}^{n-1}y_{2j}}\
                          end{align*}

                          and the claim follows.







                          share|cite|improve this answer









                          $endgroup$




                          We obtain
                          begin{align*}
                          color{blue}{4sum_{j=1}^n}&color{blue}{y_{2j-1}+2sum_{j=1}^{n-1}y_{2j}}\
                          &=4left(sum_{j=1}^{2n-1}y_j-sum_{j=1}^{n-1}y_{2j}right)+2sum_{j=1}^{n-1}y_{2j}\
                          &,,color{blue}{=4sum_{j=1}^{2n-1}y_{j}-2sum_{j=1}^{n-1}y_{2j}}\
                          end{align*}

                          and the claim follows.








                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Jan 22 at 20:38









                          Markus ScheuerMarkus Scheuer

                          62.2k459149




                          62.2k459149























                              0












                              $begingroup$

                              Note that
                              begin{align*}
                              4sum_{j=1}^ny_{2j-1}+2sum_{j=1}^{n-1}y_{2j}
                              &= 4(y_1+y_3+cdots+y_{2n-1})+2sum_{j=1}^{n-1}y_{2j} \
                              &= 4(y_1+y_2+cdots + y_{2n-2}+y_{2n-1}) - 4(y_2+y_4+cdots + y_{2n-2})+2sum_{j=1}^{n-1}y_{2j}\
                              &= 4sum_{j=1}^{2n-1}y_j - 4sum_{j=1}^{n-1} y_{2j}+2sum_{j=1}^{n-1}y_{2j}\
                              &= 4sum_{j=1}^{2n-1}y_j - 2sum_{j=1}^{n-1}y_{2j}.
                              end{align*}






                              share|cite|improve this answer











                              $endgroup$













                              • $begingroup$
                                Is it possible to manipulate the sums directly to show that the equality is true without expanding the sum?
                                $endgroup$
                                – GambitSquared
                                Jan 21 at 0:08










                              • $begingroup$
                                Sure. I just expanded the sums to make it clear what was going on. You could equally well write it out by using sigma notation for the sums that I expanded in the answer.
                                $endgroup$
                                – rogerl
                                Jan 21 at 14:07
















                              0












                              $begingroup$

                              Note that
                              begin{align*}
                              4sum_{j=1}^ny_{2j-1}+2sum_{j=1}^{n-1}y_{2j}
                              &= 4(y_1+y_3+cdots+y_{2n-1})+2sum_{j=1}^{n-1}y_{2j} \
                              &= 4(y_1+y_2+cdots + y_{2n-2}+y_{2n-1}) - 4(y_2+y_4+cdots + y_{2n-2})+2sum_{j=1}^{n-1}y_{2j}\
                              &= 4sum_{j=1}^{2n-1}y_j - 4sum_{j=1}^{n-1} y_{2j}+2sum_{j=1}^{n-1}y_{2j}\
                              &= 4sum_{j=1}^{2n-1}y_j - 2sum_{j=1}^{n-1}y_{2j}.
                              end{align*}






                              share|cite|improve this answer











                              $endgroup$













                              • $begingroup$
                                Is it possible to manipulate the sums directly to show that the equality is true without expanding the sum?
                                $endgroup$
                                – GambitSquared
                                Jan 21 at 0:08










                              • $begingroup$
                                Sure. I just expanded the sums to make it clear what was going on. You could equally well write it out by using sigma notation for the sums that I expanded in the answer.
                                $endgroup$
                                – rogerl
                                Jan 21 at 14:07














                              0












                              0








                              0





                              $begingroup$

                              Note that
                              begin{align*}
                              4sum_{j=1}^ny_{2j-1}+2sum_{j=1}^{n-1}y_{2j}
                              &= 4(y_1+y_3+cdots+y_{2n-1})+2sum_{j=1}^{n-1}y_{2j} \
                              &= 4(y_1+y_2+cdots + y_{2n-2}+y_{2n-1}) - 4(y_2+y_4+cdots + y_{2n-2})+2sum_{j=1}^{n-1}y_{2j}\
                              &= 4sum_{j=1}^{2n-1}y_j - 4sum_{j=1}^{n-1} y_{2j}+2sum_{j=1}^{n-1}y_{2j}\
                              &= 4sum_{j=1}^{2n-1}y_j - 2sum_{j=1}^{n-1}y_{2j}.
                              end{align*}






                              share|cite|improve this answer











                              $endgroup$



                              Note that
                              begin{align*}
                              4sum_{j=1}^ny_{2j-1}+2sum_{j=1}^{n-1}y_{2j}
                              &= 4(y_1+y_3+cdots+y_{2n-1})+2sum_{j=1}^{n-1}y_{2j} \
                              &= 4(y_1+y_2+cdots + y_{2n-2}+y_{2n-1}) - 4(y_2+y_4+cdots + y_{2n-2})+2sum_{j=1}^{n-1}y_{2j}\
                              &= 4sum_{j=1}^{2n-1}y_j - 4sum_{j=1}^{n-1} y_{2j}+2sum_{j=1}^{n-1}y_{2j}\
                              &= 4sum_{j=1}^{2n-1}y_j - 2sum_{j=1}^{n-1}y_{2j}.
                              end{align*}







                              share|cite|improve this answer














                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited Jan 20 at 20:42

























                              answered Jan 20 at 16:01









                              rogerlrogerl

                              18k22747




                              18k22747












                              • $begingroup$
                                Is it possible to manipulate the sums directly to show that the equality is true without expanding the sum?
                                $endgroup$
                                – GambitSquared
                                Jan 21 at 0:08










                              • $begingroup$
                                Sure. I just expanded the sums to make it clear what was going on. You could equally well write it out by using sigma notation for the sums that I expanded in the answer.
                                $endgroup$
                                – rogerl
                                Jan 21 at 14:07


















                              • $begingroup$
                                Is it possible to manipulate the sums directly to show that the equality is true without expanding the sum?
                                $endgroup$
                                – GambitSquared
                                Jan 21 at 0:08










                              • $begingroup$
                                Sure. I just expanded the sums to make it clear what was going on. You could equally well write it out by using sigma notation for the sums that I expanded in the answer.
                                $endgroup$
                                – rogerl
                                Jan 21 at 14:07
















                              $begingroup$
                              Is it possible to manipulate the sums directly to show that the equality is true without expanding the sum?
                              $endgroup$
                              – GambitSquared
                              Jan 21 at 0:08




                              $begingroup$
                              Is it possible to manipulate the sums directly to show that the equality is true without expanding the sum?
                              $endgroup$
                              – GambitSquared
                              Jan 21 at 0:08












                              $begingroup$
                              Sure. I just expanded the sums to make it clear what was going on. You could equally well write it out by using sigma notation for the sums that I expanded in the answer.
                              $endgroup$
                              – rogerl
                              Jan 21 at 14:07




                              $begingroup$
                              Sure. I just expanded the sums to make it clear what was going on. You could equally well write it out by using sigma notation for the sums that I expanded in the answer.
                              $endgroup$
                              – rogerl
                              Jan 21 at 14:07


















                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080749%2fhow-to-show-that-4-sum-j-1ny-2j-12-sum-j-1n-1y-2j-equal-to-4-sum%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                              Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                              A Topological Invariant for $pi_3(U(n))$