Rewrite $ int_{mathcal{S}}dP_X=1 $ as conditions on boxes in $mathbb{R}^d$
$begingroup$
Take $rin mathbb{N}$ and let $dequiv r+binom{r}{2}$.
Consider a d-dimensional random vector $Xequiv (X_1,...,X_d)$. Let $P_X$ be the probability distribution of $X$. Assume that
$$
int_{mathcal{S}}dP_X=1
$$
where
$$
begin{aligned}
mathcal{S}equiv {(b_1,b_2,..., b_d)in mathbb{R}^{d}: text{ } & b_{r+1}=b_1-b_2, b_{r+2}=b_1-b_3, ...,b_{2r-1}=b_1-b_r, \
&b_{2r}=b_2-b_3, ..., b_{3r-3}=b_2-b_r,\
&...,\
& b_d=b_{r-1}-b_r}
end{aligned}
$$
For example, when $r=2$ ($d=3$) we have the surface
$$
begin{aligned}
mathcal{S}equiv {(b_1,b_2,b_3)in mathbb{R}^{3}: text{ } & b_3=b_1-b_2}={(b_1,b_2,b_3)in mathbb{R}^{3}: text{ } & b_1=b_2+b_3}
end{aligned}
$$
When $r=3$ ($d=6$) we have
$$
begin{aligned}
mathcal{S}equiv {(b_1,..., b_6)in mathbb{R}^{6}: text{ } & b_4=b_1-b_2, b_5=b_1-b_3, b_6=b_2-b_3}
end{aligned}
$$
My final goal: I'm interested in rewriting the condition $int_{mathcal{S}}dP_X=1$ as a collection of zero probability measure conditions on d-dimensional "boxes" in $mathbb{R}^d$. The idea is that any box in $mathbb{R}^d$ not intersecting $mathcal{S}$ should have probability measure equal to zero. Therefore, if we consider enough of these boxes, we should be able to equivalently rewrite $int_{mathcal{S}}dP_X=1$.
When $r=2$ ($d=3$), my goal is achieved by the following claim
Claim: For any two real numbers $(b,c)in mathbb{R}^2$, define the boxes $$B(b,c)equiv {(x,y,z)text{ s.t. } x> b+c, yleq b, zleq c}$$ and $$Q(b,c)equiv {(x,y,z)text{ s.t. } xleq b+c, y>b, z>c}$$
If $P_{X}(B(b,c))=0$ and $P_{X}(Q(b,c))=0$ $forall(b,c)in mathbb{Q}^2$, then $int_{mathcal{S}}dP_{X}=1$.
The proof of the claim is provided here
I would like your help to generalise the claim (and possibly the proof) to any $r$. What I find challenging is defining the relevant boxes for any $r>2$. I really can't see how to generalise the box definitions from $r=2$ to any $r$.
probability geometry probability-theory measure-theory lebesgue-measure
$endgroup$
add a comment |
$begingroup$
Take $rin mathbb{N}$ and let $dequiv r+binom{r}{2}$.
Consider a d-dimensional random vector $Xequiv (X_1,...,X_d)$. Let $P_X$ be the probability distribution of $X$. Assume that
$$
int_{mathcal{S}}dP_X=1
$$
where
$$
begin{aligned}
mathcal{S}equiv {(b_1,b_2,..., b_d)in mathbb{R}^{d}: text{ } & b_{r+1}=b_1-b_2, b_{r+2}=b_1-b_3, ...,b_{2r-1}=b_1-b_r, \
&b_{2r}=b_2-b_3, ..., b_{3r-3}=b_2-b_r,\
&...,\
& b_d=b_{r-1}-b_r}
end{aligned}
$$
For example, when $r=2$ ($d=3$) we have the surface
$$
begin{aligned}
mathcal{S}equiv {(b_1,b_2,b_3)in mathbb{R}^{3}: text{ } & b_3=b_1-b_2}={(b_1,b_2,b_3)in mathbb{R}^{3}: text{ } & b_1=b_2+b_3}
end{aligned}
$$
When $r=3$ ($d=6$) we have
$$
begin{aligned}
mathcal{S}equiv {(b_1,..., b_6)in mathbb{R}^{6}: text{ } & b_4=b_1-b_2, b_5=b_1-b_3, b_6=b_2-b_3}
end{aligned}
$$
My final goal: I'm interested in rewriting the condition $int_{mathcal{S}}dP_X=1$ as a collection of zero probability measure conditions on d-dimensional "boxes" in $mathbb{R}^d$. The idea is that any box in $mathbb{R}^d$ not intersecting $mathcal{S}$ should have probability measure equal to zero. Therefore, if we consider enough of these boxes, we should be able to equivalently rewrite $int_{mathcal{S}}dP_X=1$.
When $r=2$ ($d=3$), my goal is achieved by the following claim
Claim: For any two real numbers $(b,c)in mathbb{R}^2$, define the boxes $$B(b,c)equiv {(x,y,z)text{ s.t. } x> b+c, yleq b, zleq c}$$ and $$Q(b,c)equiv {(x,y,z)text{ s.t. } xleq b+c, y>b, z>c}$$
If $P_{X}(B(b,c))=0$ and $P_{X}(Q(b,c))=0$ $forall(b,c)in mathbb{Q}^2$, then $int_{mathcal{S}}dP_{X}=1$.
The proof of the claim is provided here
I would like your help to generalise the claim (and possibly the proof) to any $r$. What I find challenging is defining the relevant boxes for any $r>2$. I really can't see how to generalise the box definitions from $r=2$ to any $r$.
probability geometry probability-theory measure-theory lebesgue-measure
$endgroup$
add a comment |
$begingroup$
Take $rin mathbb{N}$ and let $dequiv r+binom{r}{2}$.
Consider a d-dimensional random vector $Xequiv (X_1,...,X_d)$. Let $P_X$ be the probability distribution of $X$. Assume that
$$
int_{mathcal{S}}dP_X=1
$$
where
$$
begin{aligned}
mathcal{S}equiv {(b_1,b_2,..., b_d)in mathbb{R}^{d}: text{ } & b_{r+1}=b_1-b_2, b_{r+2}=b_1-b_3, ...,b_{2r-1}=b_1-b_r, \
&b_{2r}=b_2-b_3, ..., b_{3r-3}=b_2-b_r,\
&...,\
& b_d=b_{r-1}-b_r}
end{aligned}
$$
For example, when $r=2$ ($d=3$) we have the surface
$$
begin{aligned}
mathcal{S}equiv {(b_1,b_2,b_3)in mathbb{R}^{3}: text{ } & b_3=b_1-b_2}={(b_1,b_2,b_3)in mathbb{R}^{3}: text{ } & b_1=b_2+b_3}
end{aligned}
$$
When $r=3$ ($d=6$) we have
$$
begin{aligned}
mathcal{S}equiv {(b_1,..., b_6)in mathbb{R}^{6}: text{ } & b_4=b_1-b_2, b_5=b_1-b_3, b_6=b_2-b_3}
end{aligned}
$$
My final goal: I'm interested in rewriting the condition $int_{mathcal{S}}dP_X=1$ as a collection of zero probability measure conditions on d-dimensional "boxes" in $mathbb{R}^d$. The idea is that any box in $mathbb{R}^d$ not intersecting $mathcal{S}$ should have probability measure equal to zero. Therefore, if we consider enough of these boxes, we should be able to equivalently rewrite $int_{mathcal{S}}dP_X=1$.
When $r=2$ ($d=3$), my goal is achieved by the following claim
Claim: For any two real numbers $(b,c)in mathbb{R}^2$, define the boxes $$B(b,c)equiv {(x,y,z)text{ s.t. } x> b+c, yleq b, zleq c}$$ and $$Q(b,c)equiv {(x,y,z)text{ s.t. } xleq b+c, y>b, z>c}$$
If $P_{X}(B(b,c))=0$ and $P_{X}(Q(b,c))=0$ $forall(b,c)in mathbb{Q}^2$, then $int_{mathcal{S}}dP_{X}=1$.
The proof of the claim is provided here
I would like your help to generalise the claim (and possibly the proof) to any $r$. What I find challenging is defining the relevant boxes for any $r>2$. I really can't see how to generalise the box definitions from $r=2$ to any $r$.
probability geometry probability-theory measure-theory lebesgue-measure
$endgroup$
Take $rin mathbb{N}$ and let $dequiv r+binom{r}{2}$.
Consider a d-dimensional random vector $Xequiv (X_1,...,X_d)$. Let $P_X$ be the probability distribution of $X$. Assume that
$$
int_{mathcal{S}}dP_X=1
$$
where
$$
begin{aligned}
mathcal{S}equiv {(b_1,b_2,..., b_d)in mathbb{R}^{d}: text{ } & b_{r+1}=b_1-b_2, b_{r+2}=b_1-b_3, ...,b_{2r-1}=b_1-b_r, \
&b_{2r}=b_2-b_3, ..., b_{3r-3}=b_2-b_r,\
&...,\
& b_d=b_{r-1}-b_r}
end{aligned}
$$
For example, when $r=2$ ($d=3$) we have the surface
$$
begin{aligned}
mathcal{S}equiv {(b_1,b_2,b_3)in mathbb{R}^{3}: text{ } & b_3=b_1-b_2}={(b_1,b_2,b_3)in mathbb{R}^{3}: text{ } & b_1=b_2+b_3}
end{aligned}
$$
When $r=3$ ($d=6$) we have
$$
begin{aligned}
mathcal{S}equiv {(b_1,..., b_6)in mathbb{R}^{6}: text{ } & b_4=b_1-b_2, b_5=b_1-b_3, b_6=b_2-b_3}
end{aligned}
$$
My final goal: I'm interested in rewriting the condition $int_{mathcal{S}}dP_X=1$ as a collection of zero probability measure conditions on d-dimensional "boxes" in $mathbb{R}^d$. The idea is that any box in $mathbb{R}^d$ not intersecting $mathcal{S}$ should have probability measure equal to zero. Therefore, if we consider enough of these boxes, we should be able to equivalently rewrite $int_{mathcal{S}}dP_X=1$.
When $r=2$ ($d=3$), my goal is achieved by the following claim
Claim: For any two real numbers $(b,c)in mathbb{R}^2$, define the boxes $$B(b,c)equiv {(x,y,z)text{ s.t. } x> b+c, yleq b, zleq c}$$ and $$Q(b,c)equiv {(x,y,z)text{ s.t. } xleq b+c, y>b, z>c}$$
If $P_{X}(B(b,c))=0$ and $P_{X}(Q(b,c))=0$ $forall(b,c)in mathbb{Q}^2$, then $int_{mathcal{S}}dP_{X}=1$.
The proof of the claim is provided here
I would like your help to generalise the claim (and possibly the proof) to any $r$. What I find challenging is defining the relevant boxes for any $r>2$. I really can't see how to generalise the box definitions from $r=2$ to any $r$.
probability geometry probability-theory measure-theory lebesgue-measure
probability geometry probability-theory measure-theory lebesgue-measure
edited Jan 28 at 14:11
STF
asked Jan 20 at 21:20
STFSTF
431422
431422
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I try to post an answer. It is just an attempt, aiming to encourage comments from your side. The attempt mimics for any $r$ the claim and the proof provided here for the case $r=2$ ($d=3$).
Claim
For any $(bar{b}, tilde{b})in mathbb{R}^2$, consider the $d$-dimensional boxes in $mathbb{R}^d$
$$
B_{t,p,q}(bar{b}, tilde{b})equiv {(z_1,...,z_d)in mathbb{R}^d text{: } z_p leq bar{b}, text{ } z_qleq tilde{b}, text{ } z_t>bar{b}+tilde{b} }
$$
and
$$
Q_{t,p,q}(bar{b}, tilde{b})equiv {(z_1,...,z_d)in mathbb{R}^d text{: } z_p >bar{b}, text{ } z_q> tilde{b}, text{ } z_tleq bar{b}+tilde{b} }
$$
$forall t in {1,...,r-1}$ and $forall (p,q)in {(t+1,r), (t+2, r+1),...,(r, d)}$.
Let $mathbb{Q}$ denote the set of rational numbers.
If
begin{equation}
label{integral}
begin{aligned}
P_{X}(B_{t,p,q}(bar{b}, tilde{b}))=& P_{X}(Q_{t,p,q}(bar{b}, tilde{b}))=0 \
& text{$forall t in {1,...,r-1}$, $forall (p,q)in {(t+1,r), (t+2, r+1),...,(r, d)}$}
end{aligned}
end{equation}
$forall (b, tilde{b})in mathbb{Q}^{2}$, then $P_{X}(mathcal{S})=1$.
Proof
Step 1: Using the fact that $mathbb{Q}$ is dense in $mathbb{R}$, we can show that
$$
mathcal{S}^c= overbrace{bigcup_{(bar{b}, tilde{b})in mathbb{Q}^2} Big{bigcup_{substack{text{$tin{1,...,r_1}$} \ text{$(p,q)in {(t+1,r),...,(r,d)}$}}}{B_{t,q,p}(bar{b}, tilde{b}) cup Q_{t,q,p}(bar{b}, tilde{b})}Big}}^{equiv A}
$$
where $mathcal{S}^c$ denotes the complement of $mathcal{S}$.
Step 2: Therefore
$$
mathbb{P}(A)=0 Leftrightarrow mathbb{P}(mathcal{S})=1
$$
from which the conclusion of the claim follows.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081147%2frewrite-int-mathcalsdp-x-1-as-conditions-on-boxes-in-mathbbrd%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I try to post an answer. It is just an attempt, aiming to encourage comments from your side. The attempt mimics for any $r$ the claim and the proof provided here for the case $r=2$ ($d=3$).
Claim
For any $(bar{b}, tilde{b})in mathbb{R}^2$, consider the $d$-dimensional boxes in $mathbb{R}^d$
$$
B_{t,p,q}(bar{b}, tilde{b})equiv {(z_1,...,z_d)in mathbb{R}^d text{: } z_p leq bar{b}, text{ } z_qleq tilde{b}, text{ } z_t>bar{b}+tilde{b} }
$$
and
$$
Q_{t,p,q}(bar{b}, tilde{b})equiv {(z_1,...,z_d)in mathbb{R}^d text{: } z_p >bar{b}, text{ } z_q> tilde{b}, text{ } z_tleq bar{b}+tilde{b} }
$$
$forall t in {1,...,r-1}$ and $forall (p,q)in {(t+1,r), (t+2, r+1),...,(r, d)}$.
Let $mathbb{Q}$ denote the set of rational numbers.
If
begin{equation}
label{integral}
begin{aligned}
P_{X}(B_{t,p,q}(bar{b}, tilde{b}))=& P_{X}(Q_{t,p,q}(bar{b}, tilde{b}))=0 \
& text{$forall t in {1,...,r-1}$, $forall (p,q)in {(t+1,r), (t+2, r+1),...,(r, d)}$}
end{aligned}
end{equation}
$forall (b, tilde{b})in mathbb{Q}^{2}$, then $P_{X}(mathcal{S})=1$.
Proof
Step 1: Using the fact that $mathbb{Q}$ is dense in $mathbb{R}$, we can show that
$$
mathcal{S}^c= overbrace{bigcup_{(bar{b}, tilde{b})in mathbb{Q}^2} Big{bigcup_{substack{text{$tin{1,...,r_1}$} \ text{$(p,q)in {(t+1,r),...,(r,d)}$}}}{B_{t,q,p}(bar{b}, tilde{b}) cup Q_{t,q,p}(bar{b}, tilde{b})}Big}}^{equiv A}
$$
where $mathcal{S}^c$ denotes the complement of $mathcal{S}$.
Step 2: Therefore
$$
mathbb{P}(A)=0 Leftrightarrow mathbb{P}(mathcal{S})=1
$$
from which the conclusion of the claim follows.
$endgroup$
add a comment |
$begingroup$
I try to post an answer. It is just an attempt, aiming to encourage comments from your side. The attempt mimics for any $r$ the claim and the proof provided here for the case $r=2$ ($d=3$).
Claim
For any $(bar{b}, tilde{b})in mathbb{R}^2$, consider the $d$-dimensional boxes in $mathbb{R}^d$
$$
B_{t,p,q}(bar{b}, tilde{b})equiv {(z_1,...,z_d)in mathbb{R}^d text{: } z_p leq bar{b}, text{ } z_qleq tilde{b}, text{ } z_t>bar{b}+tilde{b} }
$$
and
$$
Q_{t,p,q}(bar{b}, tilde{b})equiv {(z_1,...,z_d)in mathbb{R}^d text{: } z_p >bar{b}, text{ } z_q> tilde{b}, text{ } z_tleq bar{b}+tilde{b} }
$$
$forall t in {1,...,r-1}$ and $forall (p,q)in {(t+1,r), (t+2, r+1),...,(r, d)}$.
Let $mathbb{Q}$ denote the set of rational numbers.
If
begin{equation}
label{integral}
begin{aligned}
P_{X}(B_{t,p,q}(bar{b}, tilde{b}))=& P_{X}(Q_{t,p,q}(bar{b}, tilde{b}))=0 \
& text{$forall t in {1,...,r-1}$, $forall (p,q)in {(t+1,r), (t+2, r+1),...,(r, d)}$}
end{aligned}
end{equation}
$forall (b, tilde{b})in mathbb{Q}^{2}$, then $P_{X}(mathcal{S})=1$.
Proof
Step 1: Using the fact that $mathbb{Q}$ is dense in $mathbb{R}$, we can show that
$$
mathcal{S}^c= overbrace{bigcup_{(bar{b}, tilde{b})in mathbb{Q}^2} Big{bigcup_{substack{text{$tin{1,...,r_1}$} \ text{$(p,q)in {(t+1,r),...,(r,d)}$}}}{B_{t,q,p}(bar{b}, tilde{b}) cup Q_{t,q,p}(bar{b}, tilde{b})}Big}}^{equiv A}
$$
where $mathcal{S}^c$ denotes the complement of $mathcal{S}$.
Step 2: Therefore
$$
mathbb{P}(A)=0 Leftrightarrow mathbb{P}(mathcal{S})=1
$$
from which the conclusion of the claim follows.
$endgroup$
add a comment |
$begingroup$
I try to post an answer. It is just an attempt, aiming to encourage comments from your side. The attempt mimics for any $r$ the claim and the proof provided here for the case $r=2$ ($d=3$).
Claim
For any $(bar{b}, tilde{b})in mathbb{R}^2$, consider the $d$-dimensional boxes in $mathbb{R}^d$
$$
B_{t,p,q}(bar{b}, tilde{b})equiv {(z_1,...,z_d)in mathbb{R}^d text{: } z_p leq bar{b}, text{ } z_qleq tilde{b}, text{ } z_t>bar{b}+tilde{b} }
$$
and
$$
Q_{t,p,q}(bar{b}, tilde{b})equiv {(z_1,...,z_d)in mathbb{R}^d text{: } z_p >bar{b}, text{ } z_q> tilde{b}, text{ } z_tleq bar{b}+tilde{b} }
$$
$forall t in {1,...,r-1}$ and $forall (p,q)in {(t+1,r), (t+2, r+1),...,(r, d)}$.
Let $mathbb{Q}$ denote the set of rational numbers.
If
begin{equation}
label{integral}
begin{aligned}
P_{X}(B_{t,p,q}(bar{b}, tilde{b}))=& P_{X}(Q_{t,p,q}(bar{b}, tilde{b}))=0 \
& text{$forall t in {1,...,r-1}$, $forall (p,q)in {(t+1,r), (t+2, r+1),...,(r, d)}$}
end{aligned}
end{equation}
$forall (b, tilde{b})in mathbb{Q}^{2}$, then $P_{X}(mathcal{S})=1$.
Proof
Step 1: Using the fact that $mathbb{Q}$ is dense in $mathbb{R}$, we can show that
$$
mathcal{S}^c= overbrace{bigcup_{(bar{b}, tilde{b})in mathbb{Q}^2} Big{bigcup_{substack{text{$tin{1,...,r_1}$} \ text{$(p,q)in {(t+1,r),...,(r,d)}$}}}{B_{t,q,p}(bar{b}, tilde{b}) cup Q_{t,q,p}(bar{b}, tilde{b})}Big}}^{equiv A}
$$
where $mathcal{S}^c$ denotes the complement of $mathcal{S}$.
Step 2: Therefore
$$
mathbb{P}(A)=0 Leftrightarrow mathbb{P}(mathcal{S})=1
$$
from which the conclusion of the claim follows.
$endgroup$
I try to post an answer. It is just an attempt, aiming to encourage comments from your side. The attempt mimics for any $r$ the claim and the proof provided here for the case $r=2$ ($d=3$).
Claim
For any $(bar{b}, tilde{b})in mathbb{R}^2$, consider the $d$-dimensional boxes in $mathbb{R}^d$
$$
B_{t,p,q}(bar{b}, tilde{b})equiv {(z_1,...,z_d)in mathbb{R}^d text{: } z_p leq bar{b}, text{ } z_qleq tilde{b}, text{ } z_t>bar{b}+tilde{b} }
$$
and
$$
Q_{t,p,q}(bar{b}, tilde{b})equiv {(z_1,...,z_d)in mathbb{R}^d text{: } z_p >bar{b}, text{ } z_q> tilde{b}, text{ } z_tleq bar{b}+tilde{b} }
$$
$forall t in {1,...,r-1}$ and $forall (p,q)in {(t+1,r), (t+2, r+1),...,(r, d)}$.
Let $mathbb{Q}$ denote the set of rational numbers.
If
begin{equation}
label{integral}
begin{aligned}
P_{X}(B_{t,p,q}(bar{b}, tilde{b}))=& P_{X}(Q_{t,p,q}(bar{b}, tilde{b}))=0 \
& text{$forall t in {1,...,r-1}$, $forall (p,q)in {(t+1,r), (t+2, r+1),...,(r, d)}$}
end{aligned}
end{equation}
$forall (b, tilde{b})in mathbb{Q}^{2}$, then $P_{X}(mathcal{S})=1$.
Proof
Step 1: Using the fact that $mathbb{Q}$ is dense in $mathbb{R}$, we can show that
$$
mathcal{S}^c= overbrace{bigcup_{(bar{b}, tilde{b})in mathbb{Q}^2} Big{bigcup_{substack{text{$tin{1,...,r_1}$} \ text{$(p,q)in {(t+1,r),...,(r,d)}$}}}{B_{t,q,p}(bar{b}, tilde{b}) cup Q_{t,q,p}(bar{b}, tilde{b})}Big}}^{equiv A}
$$
where $mathcal{S}^c$ denotes the complement of $mathcal{S}$.
Step 2: Therefore
$$
mathbb{P}(A)=0 Leftrightarrow mathbb{P}(mathcal{S})=1
$$
from which the conclusion of the claim follows.
edited Jan 28 at 15:44
answered Jan 28 at 14:35
STFSTF
431422
431422
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081147%2frewrite-int-mathcalsdp-x-1-as-conditions-on-boxes-in-mathbbrd%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown