Rewrite $ int_{mathcal{S}}dP_X=1 $ as conditions on boxes in $mathbb{R}^d$












5












$begingroup$


Take $rin mathbb{N}$ and let $dequiv r+binom{r}{2}$.



Consider a d-dimensional random vector $Xequiv (X_1,...,X_d)$. Let $P_X$ be the probability distribution of $X$. Assume that
$$
int_{mathcal{S}}dP_X=1
$$

where
$$
begin{aligned}
mathcal{S}equiv {(b_1,b_2,..., b_d)in mathbb{R}^{d}: text{ } & b_{r+1}=b_1-b_2, b_{r+2}=b_1-b_3, ...,b_{2r-1}=b_1-b_r, \
&b_{2r}=b_2-b_3, ..., b_{3r-3}=b_2-b_r,\
&...,\
& b_d=b_{r-1}-b_r}
end{aligned}
$$

For example, when $r=2$ ($d=3$) we have the surface
$$
begin{aligned}
mathcal{S}equiv {(b_1,b_2,b_3)in mathbb{R}^{3}: text{ } & b_3=b_1-b_2}={(b_1,b_2,b_3)in mathbb{R}^{3}: text{ } & b_1=b_2+b_3}
end{aligned}
$$

When $r=3$ ($d=6$) we have
$$
begin{aligned}
mathcal{S}equiv {(b_1,..., b_6)in mathbb{R}^{6}: text{ } & b_4=b_1-b_2, b_5=b_1-b_3, b_6=b_2-b_3}
end{aligned}
$$



My final goal: I'm interested in rewriting the condition $int_{mathcal{S}}dP_X=1$ as a collection of zero probability measure conditions on d-dimensional "boxes" in $mathbb{R}^d$. The idea is that any box in $mathbb{R}^d$ not intersecting $mathcal{S}$ should have probability measure equal to zero. Therefore, if we consider enough of these boxes, we should be able to equivalently rewrite $int_{mathcal{S}}dP_X=1$.





When $r=2$ ($d=3$), my goal is achieved by the following claim



Claim: For any two real numbers $(b,c)in mathbb{R}^2$, define the boxes $$B(b,c)equiv {(x,y,z)text{ s.t. } x> b+c, yleq b, zleq c}$$ and $$Q(b,c)equiv {(x,y,z)text{ s.t. } xleq b+c, y>b, z>c}$$



If $P_{X}(B(b,c))=0$ and $P_{X}(Q(b,c))=0$ $forall(b,c)in mathbb{Q}^2$, then $int_{mathcal{S}}dP_{X}=1$.



The proof of the claim is provided here





I would like your help to generalise the claim (and possibly the proof) to any $r$. What I find challenging is defining the relevant boxes for any $r>2$. I really can't see how to generalise the box definitions from $r=2$ to any $r$.










share|cite|improve this question











$endgroup$

















    5












    $begingroup$


    Take $rin mathbb{N}$ and let $dequiv r+binom{r}{2}$.



    Consider a d-dimensional random vector $Xequiv (X_1,...,X_d)$. Let $P_X$ be the probability distribution of $X$. Assume that
    $$
    int_{mathcal{S}}dP_X=1
    $$

    where
    $$
    begin{aligned}
    mathcal{S}equiv {(b_1,b_2,..., b_d)in mathbb{R}^{d}: text{ } & b_{r+1}=b_1-b_2, b_{r+2}=b_1-b_3, ...,b_{2r-1}=b_1-b_r, \
    &b_{2r}=b_2-b_3, ..., b_{3r-3}=b_2-b_r,\
    &...,\
    & b_d=b_{r-1}-b_r}
    end{aligned}
    $$

    For example, when $r=2$ ($d=3$) we have the surface
    $$
    begin{aligned}
    mathcal{S}equiv {(b_1,b_2,b_3)in mathbb{R}^{3}: text{ } & b_3=b_1-b_2}={(b_1,b_2,b_3)in mathbb{R}^{3}: text{ } & b_1=b_2+b_3}
    end{aligned}
    $$

    When $r=3$ ($d=6$) we have
    $$
    begin{aligned}
    mathcal{S}equiv {(b_1,..., b_6)in mathbb{R}^{6}: text{ } & b_4=b_1-b_2, b_5=b_1-b_3, b_6=b_2-b_3}
    end{aligned}
    $$



    My final goal: I'm interested in rewriting the condition $int_{mathcal{S}}dP_X=1$ as a collection of zero probability measure conditions on d-dimensional "boxes" in $mathbb{R}^d$. The idea is that any box in $mathbb{R}^d$ not intersecting $mathcal{S}$ should have probability measure equal to zero. Therefore, if we consider enough of these boxes, we should be able to equivalently rewrite $int_{mathcal{S}}dP_X=1$.





    When $r=2$ ($d=3$), my goal is achieved by the following claim



    Claim: For any two real numbers $(b,c)in mathbb{R}^2$, define the boxes $$B(b,c)equiv {(x,y,z)text{ s.t. } x> b+c, yleq b, zleq c}$$ and $$Q(b,c)equiv {(x,y,z)text{ s.t. } xleq b+c, y>b, z>c}$$



    If $P_{X}(B(b,c))=0$ and $P_{X}(Q(b,c))=0$ $forall(b,c)in mathbb{Q}^2$, then $int_{mathcal{S}}dP_{X}=1$.



    The proof of the claim is provided here





    I would like your help to generalise the claim (and possibly the proof) to any $r$. What I find challenging is defining the relevant boxes for any $r>2$. I really can't see how to generalise the box definitions from $r=2$ to any $r$.










    share|cite|improve this question











    $endgroup$















      5












      5








      5


      1



      $begingroup$


      Take $rin mathbb{N}$ and let $dequiv r+binom{r}{2}$.



      Consider a d-dimensional random vector $Xequiv (X_1,...,X_d)$. Let $P_X$ be the probability distribution of $X$. Assume that
      $$
      int_{mathcal{S}}dP_X=1
      $$

      where
      $$
      begin{aligned}
      mathcal{S}equiv {(b_1,b_2,..., b_d)in mathbb{R}^{d}: text{ } & b_{r+1}=b_1-b_2, b_{r+2}=b_1-b_3, ...,b_{2r-1}=b_1-b_r, \
      &b_{2r}=b_2-b_3, ..., b_{3r-3}=b_2-b_r,\
      &...,\
      & b_d=b_{r-1}-b_r}
      end{aligned}
      $$

      For example, when $r=2$ ($d=3$) we have the surface
      $$
      begin{aligned}
      mathcal{S}equiv {(b_1,b_2,b_3)in mathbb{R}^{3}: text{ } & b_3=b_1-b_2}={(b_1,b_2,b_3)in mathbb{R}^{3}: text{ } & b_1=b_2+b_3}
      end{aligned}
      $$

      When $r=3$ ($d=6$) we have
      $$
      begin{aligned}
      mathcal{S}equiv {(b_1,..., b_6)in mathbb{R}^{6}: text{ } & b_4=b_1-b_2, b_5=b_1-b_3, b_6=b_2-b_3}
      end{aligned}
      $$



      My final goal: I'm interested in rewriting the condition $int_{mathcal{S}}dP_X=1$ as a collection of zero probability measure conditions on d-dimensional "boxes" in $mathbb{R}^d$. The idea is that any box in $mathbb{R}^d$ not intersecting $mathcal{S}$ should have probability measure equal to zero. Therefore, if we consider enough of these boxes, we should be able to equivalently rewrite $int_{mathcal{S}}dP_X=1$.





      When $r=2$ ($d=3$), my goal is achieved by the following claim



      Claim: For any two real numbers $(b,c)in mathbb{R}^2$, define the boxes $$B(b,c)equiv {(x,y,z)text{ s.t. } x> b+c, yleq b, zleq c}$$ and $$Q(b,c)equiv {(x,y,z)text{ s.t. } xleq b+c, y>b, z>c}$$



      If $P_{X}(B(b,c))=0$ and $P_{X}(Q(b,c))=0$ $forall(b,c)in mathbb{Q}^2$, then $int_{mathcal{S}}dP_{X}=1$.



      The proof of the claim is provided here





      I would like your help to generalise the claim (and possibly the proof) to any $r$. What I find challenging is defining the relevant boxes for any $r>2$. I really can't see how to generalise the box definitions from $r=2$ to any $r$.










      share|cite|improve this question











      $endgroup$




      Take $rin mathbb{N}$ and let $dequiv r+binom{r}{2}$.



      Consider a d-dimensional random vector $Xequiv (X_1,...,X_d)$. Let $P_X$ be the probability distribution of $X$. Assume that
      $$
      int_{mathcal{S}}dP_X=1
      $$

      where
      $$
      begin{aligned}
      mathcal{S}equiv {(b_1,b_2,..., b_d)in mathbb{R}^{d}: text{ } & b_{r+1}=b_1-b_2, b_{r+2}=b_1-b_3, ...,b_{2r-1}=b_1-b_r, \
      &b_{2r}=b_2-b_3, ..., b_{3r-3}=b_2-b_r,\
      &...,\
      & b_d=b_{r-1}-b_r}
      end{aligned}
      $$

      For example, when $r=2$ ($d=3$) we have the surface
      $$
      begin{aligned}
      mathcal{S}equiv {(b_1,b_2,b_3)in mathbb{R}^{3}: text{ } & b_3=b_1-b_2}={(b_1,b_2,b_3)in mathbb{R}^{3}: text{ } & b_1=b_2+b_3}
      end{aligned}
      $$

      When $r=3$ ($d=6$) we have
      $$
      begin{aligned}
      mathcal{S}equiv {(b_1,..., b_6)in mathbb{R}^{6}: text{ } & b_4=b_1-b_2, b_5=b_1-b_3, b_6=b_2-b_3}
      end{aligned}
      $$



      My final goal: I'm interested in rewriting the condition $int_{mathcal{S}}dP_X=1$ as a collection of zero probability measure conditions on d-dimensional "boxes" in $mathbb{R}^d$. The idea is that any box in $mathbb{R}^d$ not intersecting $mathcal{S}$ should have probability measure equal to zero. Therefore, if we consider enough of these boxes, we should be able to equivalently rewrite $int_{mathcal{S}}dP_X=1$.





      When $r=2$ ($d=3$), my goal is achieved by the following claim



      Claim: For any two real numbers $(b,c)in mathbb{R}^2$, define the boxes $$B(b,c)equiv {(x,y,z)text{ s.t. } x> b+c, yleq b, zleq c}$$ and $$Q(b,c)equiv {(x,y,z)text{ s.t. } xleq b+c, y>b, z>c}$$



      If $P_{X}(B(b,c))=0$ and $P_{X}(Q(b,c))=0$ $forall(b,c)in mathbb{Q}^2$, then $int_{mathcal{S}}dP_{X}=1$.



      The proof of the claim is provided here





      I would like your help to generalise the claim (and possibly the proof) to any $r$. What I find challenging is defining the relevant boxes for any $r>2$. I really can't see how to generalise the box definitions from $r=2$ to any $r$.







      probability geometry probability-theory measure-theory lebesgue-measure






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 28 at 14:11







      STF

















      asked Jan 20 at 21:20









      STFSTF

      431422




      431422






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          I try to post an answer. It is just an attempt, aiming to encourage comments from your side. The attempt mimics for any $r$ the claim and the proof provided here for the case $r=2$ ($d=3$).





          Claim



          For any $(bar{b}, tilde{b})in mathbb{R}^2$, consider the $d$-dimensional boxes in $mathbb{R}^d$
          $$
          B_{t,p,q}(bar{b}, tilde{b})equiv {(z_1,...,z_d)in mathbb{R}^d text{: } z_p leq bar{b}, text{ } z_qleq tilde{b}, text{ } z_t>bar{b}+tilde{b} }
          $$

          and
          $$
          Q_{t,p,q}(bar{b}, tilde{b})equiv {(z_1,...,z_d)in mathbb{R}^d text{: } z_p >bar{b}, text{ } z_q> tilde{b}, text{ } z_tleq bar{b}+tilde{b} }
          $$

          $forall t in {1,...,r-1}$ and $forall (p,q)in {(t+1,r), (t+2, r+1),...,(r, d)}$.
          Let $mathbb{Q}$ denote the set of rational numbers.
          If
          begin{equation}
          label{integral}
          begin{aligned}
          P_{X}(B_{t,p,q}(bar{b}, tilde{b}))=& P_{X}(Q_{t,p,q}(bar{b}, tilde{b}))=0 \
          & text{$forall t in {1,...,r-1}$, $forall (p,q)in {(t+1,r), (t+2, r+1),...,(r, d)}$}
          end{aligned}
          end{equation}

          $forall (b, tilde{b})in mathbb{Q}^{2}$, then $P_{X}(mathcal{S})=1$.





          Proof



          Step 1: Using the fact that $mathbb{Q}$ is dense in $mathbb{R}$, we can show that



          $$
          mathcal{S}^c= overbrace{bigcup_{(bar{b}, tilde{b})in mathbb{Q}^2} Big{bigcup_{substack{text{$tin{1,...,r_1}$} \ text{$(p,q)in {(t+1,r),...,(r,d)}$}}}{B_{t,q,p}(bar{b}, tilde{b}) cup Q_{t,q,p}(bar{b}, tilde{b})}Big}}^{equiv A}
          $$

          where $mathcal{S}^c$ denotes the complement of $mathcal{S}$.



          Step 2: Therefore
          $$
          mathbb{P}(A)=0 Leftrightarrow mathbb{P}(mathcal{S})=1
          $$

          from which the conclusion of the claim follows.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081147%2frewrite-int-mathcalsdp-x-1-as-conditions-on-boxes-in-mathbbrd%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            I try to post an answer. It is just an attempt, aiming to encourage comments from your side. The attempt mimics for any $r$ the claim and the proof provided here for the case $r=2$ ($d=3$).





            Claim



            For any $(bar{b}, tilde{b})in mathbb{R}^2$, consider the $d$-dimensional boxes in $mathbb{R}^d$
            $$
            B_{t,p,q}(bar{b}, tilde{b})equiv {(z_1,...,z_d)in mathbb{R}^d text{: } z_p leq bar{b}, text{ } z_qleq tilde{b}, text{ } z_t>bar{b}+tilde{b} }
            $$

            and
            $$
            Q_{t,p,q}(bar{b}, tilde{b})equiv {(z_1,...,z_d)in mathbb{R}^d text{: } z_p >bar{b}, text{ } z_q> tilde{b}, text{ } z_tleq bar{b}+tilde{b} }
            $$

            $forall t in {1,...,r-1}$ and $forall (p,q)in {(t+1,r), (t+2, r+1),...,(r, d)}$.
            Let $mathbb{Q}$ denote the set of rational numbers.
            If
            begin{equation}
            label{integral}
            begin{aligned}
            P_{X}(B_{t,p,q}(bar{b}, tilde{b}))=& P_{X}(Q_{t,p,q}(bar{b}, tilde{b}))=0 \
            & text{$forall t in {1,...,r-1}$, $forall (p,q)in {(t+1,r), (t+2, r+1),...,(r, d)}$}
            end{aligned}
            end{equation}

            $forall (b, tilde{b})in mathbb{Q}^{2}$, then $P_{X}(mathcal{S})=1$.





            Proof



            Step 1: Using the fact that $mathbb{Q}$ is dense in $mathbb{R}$, we can show that



            $$
            mathcal{S}^c= overbrace{bigcup_{(bar{b}, tilde{b})in mathbb{Q}^2} Big{bigcup_{substack{text{$tin{1,...,r_1}$} \ text{$(p,q)in {(t+1,r),...,(r,d)}$}}}{B_{t,q,p}(bar{b}, tilde{b}) cup Q_{t,q,p}(bar{b}, tilde{b})}Big}}^{equiv A}
            $$

            where $mathcal{S}^c$ denotes the complement of $mathcal{S}$.



            Step 2: Therefore
            $$
            mathbb{P}(A)=0 Leftrightarrow mathbb{P}(mathcal{S})=1
            $$

            from which the conclusion of the claim follows.






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              I try to post an answer. It is just an attempt, aiming to encourage comments from your side. The attempt mimics for any $r$ the claim and the proof provided here for the case $r=2$ ($d=3$).





              Claim



              For any $(bar{b}, tilde{b})in mathbb{R}^2$, consider the $d$-dimensional boxes in $mathbb{R}^d$
              $$
              B_{t,p,q}(bar{b}, tilde{b})equiv {(z_1,...,z_d)in mathbb{R}^d text{: } z_p leq bar{b}, text{ } z_qleq tilde{b}, text{ } z_t>bar{b}+tilde{b} }
              $$

              and
              $$
              Q_{t,p,q}(bar{b}, tilde{b})equiv {(z_1,...,z_d)in mathbb{R}^d text{: } z_p >bar{b}, text{ } z_q> tilde{b}, text{ } z_tleq bar{b}+tilde{b} }
              $$

              $forall t in {1,...,r-1}$ and $forall (p,q)in {(t+1,r), (t+2, r+1),...,(r, d)}$.
              Let $mathbb{Q}$ denote the set of rational numbers.
              If
              begin{equation}
              label{integral}
              begin{aligned}
              P_{X}(B_{t,p,q}(bar{b}, tilde{b}))=& P_{X}(Q_{t,p,q}(bar{b}, tilde{b}))=0 \
              & text{$forall t in {1,...,r-1}$, $forall (p,q)in {(t+1,r), (t+2, r+1),...,(r, d)}$}
              end{aligned}
              end{equation}

              $forall (b, tilde{b})in mathbb{Q}^{2}$, then $P_{X}(mathcal{S})=1$.





              Proof



              Step 1: Using the fact that $mathbb{Q}$ is dense in $mathbb{R}$, we can show that



              $$
              mathcal{S}^c= overbrace{bigcup_{(bar{b}, tilde{b})in mathbb{Q}^2} Big{bigcup_{substack{text{$tin{1,...,r_1}$} \ text{$(p,q)in {(t+1,r),...,(r,d)}$}}}{B_{t,q,p}(bar{b}, tilde{b}) cup Q_{t,q,p}(bar{b}, tilde{b})}Big}}^{equiv A}
              $$

              where $mathcal{S}^c$ denotes the complement of $mathcal{S}$.



              Step 2: Therefore
              $$
              mathbb{P}(A)=0 Leftrightarrow mathbb{P}(mathcal{S})=1
              $$

              from which the conclusion of the claim follows.






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                I try to post an answer. It is just an attempt, aiming to encourage comments from your side. The attempt mimics for any $r$ the claim and the proof provided here for the case $r=2$ ($d=3$).





                Claim



                For any $(bar{b}, tilde{b})in mathbb{R}^2$, consider the $d$-dimensional boxes in $mathbb{R}^d$
                $$
                B_{t,p,q}(bar{b}, tilde{b})equiv {(z_1,...,z_d)in mathbb{R}^d text{: } z_p leq bar{b}, text{ } z_qleq tilde{b}, text{ } z_t>bar{b}+tilde{b} }
                $$

                and
                $$
                Q_{t,p,q}(bar{b}, tilde{b})equiv {(z_1,...,z_d)in mathbb{R}^d text{: } z_p >bar{b}, text{ } z_q> tilde{b}, text{ } z_tleq bar{b}+tilde{b} }
                $$

                $forall t in {1,...,r-1}$ and $forall (p,q)in {(t+1,r), (t+2, r+1),...,(r, d)}$.
                Let $mathbb{Q}$ denote the set of rational numbers.
                If
                begin{equation}
                label{integral}
                begin{aligned}
                P_{X}(B_{t,p,q}(bar{b}, tilde{b}))=& P_{X}(Q_{t,p,q}(bar{b}, tilde{b}))=0 \
                & text{$forall t in {1,...,r-1}$, $forall (p,q)in {(t+1,r), (t+2, r+1),...,(r, d)}$}
                end{aligned}
                end{equation}

                $forall (b, tilde{b})in mathbb{Q}^{2}$, then $P_{X}(mathcal{S})=1$.





                Proof



                Step 1: Using the fact that $mathbb{Q}$ is dense in $mathbb{R}$, we can show that



                $$
                mathcal{S}^c= overbrace{bigcup_{(bar{b}, tilde{b})in mathbb{Q}^2} Big{bigcup_{substack{text{$tin{1,...,r_1}$} \ text{$(p,q)in {(t+1,r),...,(r,d)}$}}}{B_{t,q,p}(bar{b}, tilde{b}) cup Q_{t,q,p}(bar{b}, tilde{b})}Big}}^{equiv A}
                $$

                where $mathcal{S}^c$ denotes the complement of $mathcal{S}$.



                Step 2: Therefore
                $$
                mathbb{P}(A)=0 Leftrightarrow mathbb{P}(mathcal{S})=1
                $$

                from which the conclusion of the claim follows.






                share|cite|improve this answer











                $endgroup$



                I try to post an answer. It is just an attempt, aiming to encourage comments from your side. The attempt mimics for any $r$ the claim and the proof provided here for the case $r=2$ ($d=3$).





                Claim



                For any $(bar{b}, tilde{b})in mathbb{R}^2$, consider the $d$-dimensional boxes in $mathbb{R}^d$
                $$
                B_{t,p,q}(bar{b}, tilde{b})equiv {(z_1,...,z_d)in mathbb{R}^d text{: } z_p leq bar{b}, text{ } z_qleq tilde{b}, text{ } z_t>bar{b}+tilde{b} }
                $$

                and
                $$
                Q_{t,p,q}(bar{b}, tilde{b})equiv {(z_1,...,z_d)in mathbb{R}^d text{: } z_p >bar{b}, text{ } z_q> tilde{b}, text{ } z_tleq bar{b}+tilde{b} }
                $$

                $forall t in {1,...,r-1}$ and $forall (p,q)in {(t+1,r), (t+2, r+1),...,(r, d)}$.
                Let $mathbb{Q}$ denote the set of rational numbers.
                If
                begin{equation}
                label{integral}
                begin{aligned}
                P_{X}(B_{t,p,q}(bar{b}, tilde{b}))=& P_{X}(Q_{t,p,q}(bar{b}, tilde{b}))=0 \
                & text{$forall t in {1,...,r-1}$, $forall (p,q)in {(t+1,r), (t+2, r+1),...,(r, d)}$}
                end{aligned}
                end{equation}

                $forall (b, tilde{b})in mathbb{Q}^{2}$, then $P_{X}(mathcal{S})=1$.





                Proof



                Step 1: Using the fact that $mathbb{Q}$ is dense in $mathbb{R}$, we can show that



                $$
                mathcal{S}^c= overbrace{bigcup_{(bar{b}, tilde{b})in mathbb{Q}^2} Big{bigcup_{substack{text{$tin{1,...,r_1}$} \ text{$(p,q)in {(t+1,r),...,(r,d)}$}}}{B_{t,q,p}(bar{b}, tilde{b}) cup Q_{t,q,p}(bar{b}, tilde{b})}Big}}^{equiv A}
                $$

                where $mathcal{S}^c$ denotes the complement of $mathcal{S}$.



                Step 2: Therefore
                $$
                mathbb{P}(A)=0 Leftrightarrow mathbb{P}(mathcal{S})=1
                $$

                from which the conclusion of the claim follows.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 28 at 15:44

























                answered Jan 28 at 14:35









                STFSTF

                431422




                431422






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081147%2frewrite-int-mathcalsdp-x-1-as-conditions-on-boxes-in-mathbbrd%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    'app-layout' is not a known element: how to share Component with different Modules

                    android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                    WPF add header to Image with URL pettitions [duplicate]