How to prove the limit $lim_{krightarrowinfty}lambda^{k-j}binom{k}{k-j}=0,; k>j,$ and $kgt j$
$begingroup$
I find difficulty proving the following limit:
Suppose $|lambda|<1$,then
$$
lim_{krightarrowinfty}lambda^{k-j}binom{k}{k-j}=0,quad k>j.
$$
When I try to prove that the $k$th Jordan matrix converges to $0$ ... (Please see this earlier question.)
linear-algebra limits
$endgroup$
|
show 2 more comments
$begingroup$
I find difficulty proving the following limit:
Suppose $|lambda|<1$,then
$$
lim_{krightarrowinfty}lambda^{k-j}binom{k}{k-j}=0,quad k>j.
$$
When I try to prove that the $k$th Jordan matrix converges to $0$ ... (Please see this earlier question.)
linear-algebra limits
$endgroup$
1
$begingroup$
Hont. For each fixed $j$, the binomial coefficient $binom{k}{k-j}$ is a polynomial of $k$.
$endgroup$
– Sangchul Lee
Jan 20 at 19:41
2
$begingroup$
Hant. Stirling's formula may be of use, see en.wikipedia.org/wiki/Stirling%27s_approximation
$endgroup$
– P. Quinton
Jan 20 at 19:48
$begingroup$
@SangchulLee I see it. Thank you very much.
$endgroup$
– whereamI
Jan 20 at 19:49
$begingroup$
@P.Quinton That's formula is quite useful. Thanks a lot!.
$endgroup$
– whereamI
Jan 20 at 19:53
$begingroup$
What happens when you try to prove that the kth Jordan matrix converges to $0$?
$endgroup$
– jordan_glen
Jan 20 at 19:53
|
show 2 more comments
$begingroup$
I find difficulty proving the following limit:
Suppose $|lambda|<1$,then
$$
lim_{krightarrowinfty}lambda^{k-j}binom{k}{k-j}=0,quad k>j.
$$
When I try to prove that the $k$th Jordan matrix converges to $0$ ... (Please see this earlier question.)
linear-algebra limits
$endgroup$
I find difficulty proving the following limit:
Suppose $|lambda|<1$,then
$$
lim_{krightarrowinfty}lambda^{k-j}binom{k}{k-j}=0,quad k>j.
$$
When I try to prove that the $k$th Jordan matrix converges to $0$ ... (Please see this earlier question.)
linear-algebra limits
linear-algebra limits
edited Jan 20 at 20:01
jordan_glen
1
1
asked Jan 20 at 19:37
whereamIwhereamI
327115
327115
1
$begingroup$
Hont. For each fixed $j$, the binomial coefficient $binom{k}{k-j}$ is a polynomial of $k$.
$endgroup$
– Sangchul Lee
Jan 20 at 19:41
2
$begingroup$
Hant. Stirling's formula may be of use, see en.wikipedia.org/wiki/Stirling%27s_approximation
$endgroup$
– P. Quinton
Jan 20 at 19:48
$begingroup$
@SangchulLee I see it. Thank you very much.
$endgroup$
– whereamI
Jan 20 at 19:49
$begingroup$
@P.Quinton That's formula is quite useful. Thanks a lot!.
$endgroup$
– whereamI
Jan 20 at 19:53
$begingroup$
What happens when you try to prove that the kth Jordan matrix converges to $0$?
$endgroup$
– jordan_glen
Jan 20 at 19:53
|
show 2 more comments
1
$begingroup$
Hont. For each fixed $j$, the binomial coefficient $binom{k}{k-j}$ is a polynomial of $k$.
$endgroup$
– Sangchul Lee
Jan 20 at 19:41
2
$begingroup$
Hant. Stirling's formula may be of use, see en.wikipedia.org/wiki/Stirling%27s_approximation
$endgroup$
– P. Quinton
Jan 20 at 19:48
$begingroup$
@SangchulLee I see it. Thank you very much.
$endgroup$
– whereamI
Jan 20 at 19:49
$begingroup$
@P.Quinton That's formula is quite useful. Thanks a lot!.
$endgroup$
– whereamI
Jan 20 at 19:53
$begingroup$
What happens when you try to prove that the kth Jordan matrix converges to $0$?
$endgroup$
– jordan_glen
Jan 20 at 19:53
1
1
$begingroup$
Hont. For each fixed $j$, the binomial coefficient $binom{k}{k-j}$ is a polynomial of $k$.
$endgroup$
– Sangchul Lee
Jan 20 at 19:41
$begingroup$
Hont. For each fixed $j$, the binomial coefficient $binom{k}{k-j}$ is a polynomial of $k$.
$endgroup$
– Sangchul Lee
Jan 20 at 19:41
2
2
$begingroup$
Hant. Stirling's formula may be of use, see en.wikipedia.org/wiki/Stirling%27s_approximation
$endgroup$
– P. Quinton
Jan 20 at 19:48
$begingroup$
Hant. Stirling's formula may be of use, see en.wikipedia.org/wiki/Stirling%27s_approximation
$endgroup$
– P. Quinton
Jan 20 at 19:48
$begingroup$
@SangchulLee I see it. Thank you very much.
$endgroup$
– whereamI
Jan 20 at 19:49
$begingroup$
@SangchulLee I see it. Thank you very much.
$endgroup$
– whereamI
Jan 20 at 19:49
$begingroup$
@P.Quinton That's formula is quite useful. Thanks a lot!.
$endgroup$
– whereamI
Jan 20 at 19:53
$begingroup$
@P.Quinton That's formula is quite useful. Thanks a lot!.
$endgroup$
– whereamI
Jan 20 at 19:53
$begingroup$
What happens when you try to prove that the kth Jordan matrix converges to $0$?
$endgroup$
– jordan_glen
Jan 20 at 19:53
$begingroup$
What happens when you try to prove that the kth Jordan matrix converges to $0$?
$endgroup$
– jordan_glen
Jan 20 at 19:53
|
show 2 more comments
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081049%2fhow-to-prove-the-limit-lim-k-rightarrow-infty-lambdak-j-binomkk-j-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3081049%2fhow-to-prove-the-limit-lim-k-rightarrow-infty-lambdak-j-binomkk-j-0%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Hont. For each fixed $j$, the binomial coefficient $binom{k}{k-j}$ is a polynomial of $k$.
$endgroup$
– Sangchul Lee
Jan 20 at 19:41
2
$begingroup$
Hant. Stirling's formula may be of use, see en.wikipedia.org/wiki/Stirling%27s_approximation
$endgroup$
– P. Quinton
Jan 20 at 19:48
$begingroup$
@SangchulLee I see it. Thank you very much.
$endgroup$
– whereamI
Jan 20 at 19:49
$begingroup$
@P.Quinton That's formula is quite useful. Thanks a lot!.
$endgroup$
– whereamI
Jan 20 at 19:53
$begingroup$
What happens when you try to prove that the kth Jordan matrix converges to $0$?
$endgroup$
– jordan_glen
Jan 20 at 19:53