Evaluate the path integral of $f(x, y) = y$ over the graph of the semicircle $y = sqrt{1-x^2}, -1 leq x leq...
$begingroup$
Evaluate the path integral of $f(x, y) = y$ over the graph of the semicircle $y = sqrt{1-x^2}, -1 leq x leq 1$
Solution attempt:
$f(x, y) = y$, along $y = sqrt{1-x^2}, -1 leq x leq 1$
$vec{r}(t) = (t, sqrt{1-t^2}), -1 leq t leq 1$
$vec{r}'(t) = (1, frac{-2t}{2sqrt{1-t^2}}) = (1, frac{-t}{sqrt{1-t^2}})$
$||vec{r}'(t)|| = sqrt{1+frac{t^2}{1-t^2}} = frac{1}{sqrt{1-t^2}}$
Show $int f(x, y) dt = int_{-1}^{1} sqrt{1-t^2}||vec{r}'(t)|| dt = int_{-1}^{1} sqrt{1-t^2}frac{1}{sqrt{1-t^2}} dt = 1+1 = 2$
therefore the value of the required path integral is 2
is this correct?
multivariable-calculus
$endgroup$
add a comment |
$begingroup$
Evaluate the path integral of $f(x, y) = y$ over the graph of the semicircle $y = sqrt{1-x^2}, -1 leq x leq 1$
Solution attempt:
$f(x, y) = y$, along $y = sqrt{1-x^2}, -1 leq x leq 1$
$vec{r}(t) = (t, sqrt{1-t^2}), -1 leq t leq 1$
$vec{r}'(t) = (1, frac{-2t}{2sqrt{1-t^2}}) = (1, frac{-t}{sqrt{1-t^2}})$
$||vec{r}'(t)|| = sqrt{1+frac{t^2}{1-t^2}} = frac{1}{sqrt{1-t^2}}$
Show $int f(x, y) dt = int_{-1}^{1} sqrt{1-t^2}||vec{r}'(t)|| dt = int_{-1}^{1} sqrt{1-t^2}frac{1}{sqrt{1-t^2}} dt = 1+1 = 2$
therefore the value of the required path integral is 2
is this correct?
multivariable-calculus
$endgroup$
add a comment |
$begingroup$
Evaluate the path integral of $f(x, y) = y$ over the graph of the semicircle $y = sqrt{1-x^2}, -1 leq x leq 1$
Solution attempt:
$f(x, y) = y$, along $y = sqrt{1-x^2}, -1 leq x leq 1$
$vec{r}(t) = (t, sqrt{1-t^2}), -1 leq t leq 1$
$vec{r}'(t) = (1, frac{-2t}{2sqrt{1-t^2}}) = (1, frac{-t}{sqrt{1-t^2}})$
$||vec{r}'(t)|| = sqrt{1+frac{t^2}{1-t^2}} = frac{1}{sqrt{1-t^2}}$
Show $int f(x, y) dt = int_{-1}^{1} sqrt{1-t^2}||vec{r}'(t)|| dt = int_{-1}^{1} sqrt{1-t^2}frac{1}{sqrt{1-t^2}} dt = 1+1 = 2$
therefore the value of the required path integral is 2
is this correct?
multivariable-calculus
$endgroup$
Evaluate the path integral of $f(x, y) = y$ over the graph of the semicircle $y = sqrt{1-x^2}, -1 leq x leq 1$
Solution attempt:
$f(x, y) = y$, along $y = sqrt{1-x^2}, -1 leq x leq 1$
$vec{r}(t) = (t, sqrt{1-t^2}), -1 leq t leq 1$
$vec{r}'(t) = (1, frac{-2t}{2sqrt{1-t^2}}) = (1, frac{-t}{sqrt{1-t^2}})$
$||vec{r}'(t)|| = sqrt{1+frac{t^2}{1-t^2}} = frac{1}{sqrt{1-t^2}}$
Show $int f(x, y) dt = int_{-1}^{1} sqrt{1-t^2}||vec{r}'(t)|| dt = int_{-1}^{1} sqrt{1-t^2}frac{1}{sqrt{1-t^2}} dt = 1+1 = 2$
therefore the value of the required path integral is 2
is this correct?
multivariable-calculus
multivariable-calculus
asked Jan 28 at 5:06


bobsag bobbobsag bob
104
104
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You can also parameterise the curve $x=cost$, $y=sint$
$$r'(t) = <-sint,cost>$$
$$||r'(t)|| = 1$$
$$F = sin t$$
$$I = int_{0}^{pi} sint dt = -cost|_{0}^{pi} = 2$$
$endgroup$
$begingroup$
(+1) for typing faster than I
$endgroup$
– Mark Viola
Jan 28 at 5:48
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090502%2fevaluate-the-path-integral-of-fx-y-y-over-the-graph-of-the-semicircle-y%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You can also parameterise the curve $x=cost$, $y=sint$
$$r'(t) = <-sint,cost>$$
$$||r'(t)|| = 1$$
$$F = sin t$$
$$I = int_{0}^{pi} sint dt = -cost|_{0}^{pi} = 2$$
$endgroup$
$begingroup$
(+1) for typing faster than I
$endgroup$
– Mark Viola
Jan 28 at 5:48
add a comment |
$begingroup$
You can also parameterise the curve $x=cost$, $y=sint$
$$r'(t) = <-sint,cost>$$
$$||r'(t)|| = 1$$
$$F = sin t$$
$$I = int_{0}^{pi} sint dt = -cost|_{0}^{pi} = 2$$
$endgroup$
$begingroup$
(+1) for typing faster than I
$endgroup$
– Mark Viola
Jan 28 at 5:48
add a comment |
$begingroup$
You can also parameterise the curve $x=cost$, $y=sint$
$$r'(t) = <-sint,cost>$$
$$||r'(t)|| = 1$$
$$F = sin t$$
$$I = int_{0}^{pi} sint dt = -cost|_{0}^{pi} = 2$$
$endgroup$
You can also parameterise the curve $x=cost$, $y=sint$
$$r'(t) = <-sint,cost>$$
$$||r'(t)|| = 1$$
$$F = sin t$$
$$I = int_{0}^{pi} sint dt = -cost|_{0}^{pi} = 2$$
answered Jan 28 at 5:48
Satish RamanathanSatish Ramanathan
10k31323
10k31323
$begingroup$
(+1) for typing faster than I
$endgroup$
– Mark Viola
Jan 28 at 5:48
add a comment |
$begingroup$
(+1) for typing faster than I
$endgroup$
– Mark Viola
Jan 28 at 5:48
$begingroup$
(+1) for typing faster than I
$endgroup$
– Mark Viola
Jan 28 at 5:48
$begingroup$
(+1) for typing faster than I
$endgroup$
– Mark Viola
Jan 28 at 5:48
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090502%2fevaluate-the-path-integral-of-fx-y-y-over-the-graph-of-the-semicircle-y%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown