Evaluate $sumlimits_{k=1}^{infty}frac{B(k,k)}{k}$ where $B$ denotes the beta function
$begingroup$
How can I evaluate $displaystylesum_{k=1}^{infty}frac{B(k,k)}{k}$ Here B is the beta function
sequences-and-series summation gamma-function beta-function
$endgroup$
add a comment |
$begingroup$
How can I evaluate $displaystylesum_{k=1}^{infty}frac{B(k,k)}{k}$ Here B is the beta function
sequences-and-series summation gamma-function beta-function
$endgroup$
$begingroup$
Nodisplaystyle
in titles please.
$endgroup$
– Did
Jan 27 at 11:26
add a comment |
$begingroup$
How can I evaluate $displaystylesum_{k=1}^{infty}frac{B(k,k)}{k}$ Here B is the beta function
sequences-and-series summation gamma-function beta-function
$endgroup$
How can I evaluate $displaystylesum_{k=1}^{infty}frac{B(k,k)}{k}$ Here B is the beta function
sequences-and-series summation gamma-function beta-function
sequences-and-series summation gamma-function beta-function
edited Jan 27 at 11:26
Did
248k23226466
248k23226466
asked Jan 27 at 11:03


ben tenysonben tenyson
414
414
$begingroup$
Nodisplaystyle
in titles please.
$endgroup$
– Did
Jan 27 at 11:26
add a comment |
$begingroup$
Nodisplaystyle
in titles please.
$endgroup$
– Did
Jan 27 at 11:26
$begingroup$
No
displaystyle
in titles please.$endgroup$
– Did
Jan 27 at 11:26
$begingroup$
No
displaystyle
in titles please.$endgroup$
– Did
Jan 27 at 11:26
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Here is a solution:
begin{align*}
sum_{k=1}^{infty} frac{B(k,k)}{k}
&= sum_{k=1}^{infty} frac{1}{k} int_{0}^{1} x^{k-1}(1-x)^{k-1} , mathrm{d} x \
&= - int_{0}^{1} frac{log(1 - x(1-x))}{x(1-x)} , mathrm{d}x \
&= -2 int_{0}^{1} frac{log(1 - x + x^2)}{x} , mathrm{d}x \
&= 2 int_{0}^{1} frac{log(1 + x) - log(1 + x^3)}{x} , mathrm{d}x \
&= frac{4}{3} int_{0}^{1} frac{log(1 + x)}{x} , mathrm{d}x \
&= frac{4}{3} sum_{n=1}^{infty} frac{(-1)^{n-1}}{n^2} \
&= frac{4}{3} left(1 - frac{2}{2^2}right)zeta(2) \
&= frac{pi^2}{9}.
end{align*}
Here are explanations for some non-trivial steps:
In the third step, we exploited $frac{log(1 - x(1-x))}{x(1-x)} = frac{log(1 - x(1-x))}{x} + frac{log(1 - x(1-x))}{1-x}$. By symmetry, integrals of the two terms in the right-hand side coincide.
$int_{0}^{1} frac{log(1+x^3)}{x} , mathrm{d}x = frac{1}{3} int_{0}^{1} frac{log(1+u)}{u} , mathrm{d}u$ by the substitution $u = x^3$.
$endgroup$
add a comment |
$begingroup$
You can also use the power series of the squared arcsine:
$$ sum limits_{k=1}^infty frac{operatorname{B}(k,k)}{k} = sum limits_{k=1}^infty frac{k!^2}{k^3 (2k-1)!} = 2sum limits_{k=1}^infty frac{1}{k^2 {2k choose k}} = 4 arcsin^2 left(frac{1}{2}right) = frac{pi^2}{9} , .$$
$endgroup$
add a comment |
$begingroup$
The Beta function with two identical arguments is nothing but
$$frac{Gamma(k)Gamma(k)}{Gamma(2k)} = frac{sqrt{pi } 2^{1-2 k} Gamma (k)}{Gamma left(k+frac{1}{2}right)} = frac{sqrt{pi}2^{1-2k}(k-1)!}{frac{(2k)!}{4^kk!}sqrt{pi}} = frac{2^{1-2k}(k-1)!k! 4^k}{(2k)!} = frac{2k!(k-1)!}{(2k)!}$$
And since your sum runs only over the natural numbers, the first terms of the series can be easily computed (let me avoid for the moment the division by $k$):
$$1,frac{1}{6},frac{1}{30},frac{1}{140},frac{1}{630},frac{1}{2772} ldots$$
Now let's divide by $k$ as it is in your sum, to get:
$$frac{1}{k}frac{2k!(k-1)!}{(2k)!} = frac{2(k-1)!^2}{(2k)!}$$
Which we can easily sum to $$frac{pi^2}{9}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089414%2fevaluate-sum-limits-k-1-infty-fracbk-kk-where-b-denotes-the-beta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here is a solution:
begin{align*}
sum_{k=1}^{infty} frac{B(k,k)}{k}
&= sum_{k=1}^{infty} frac{1}{k} int_{0}^{1} x^{k-1}(1-x)^{k-1} , mathrm{d} x \
&= - int_{0}^{1} frac{log(1 - x(1-x))}{x(1-x)} , mathrm{d}x \
&= -2 int_{0}^{1} frac{log(1 - x + x^2)}{x} , mathrm{d}x \
&= 2 int_{0}^{1} frac{log(1 + x) - log(1 + x^3)}{x} , mathrm{d}x \
&= frac{4}{3} int_{0}^{1} frac{log(1 + x)}{x} , mathrm{d}x \
&= frac{4}{3} sum_{n=1}^{infty} frac{(-1)^{n-1}}{n^2} \
&= frac{4}{3} left(1 - frac{2}{2^2}right)zeta(2) \
&= frac{pi^2}{9}.
end{align*}
Here are explanations for some non-trivial steps:
In the third step, we exploited $frac{log(1 - x(1-x))}{x(1-x)} = frac{log(1 - x(1-x))}{x} + frac{log(1 - x(1-x))}{1-x}$. By symmetry, integrals of the two terms in the right-hand side coincide.
$int_{0}^{1} frac{log(1+x^3)}{x} , mathrm{d}x = frac{1}{3} int_{0}^{1} frac{log(1+u)}{u} , mathrm{d}u$ by the substitution $u = x^3$.
$endgroup$
add a comment |
$begingroup$
Here is a solution:
begin{align*}
sum_{k=1}^{infty} frac{B(k,k)}{k}
&= sum_{k=1}^{infty} frac{1}{k} int_{0}^{1} x^{k-1}(1-x)^{k-1} , mathrm{d} x \
&= - int_{0}^{1} frac{log(1 - x(1-x))}{x(1-x)} , mathrm{d}x \
&= -2 int_{0}^{1} frac{log(1 - x + x^2)}{x} , mathrm{d}x \
&= 2 int_{0}^{1} frac{log(1 + x) - log(1 + x^3)}{x} , mathrm{d}x \
&= frac{4}{3} int_{0}^{1} frac{log(1 + x)}{x} , mathrm{d}x \
&= frac{4}{3} sum_{n=1}^{infty} frac{(-1)^{n-1}}{n^2} \
&= frac{4}{3} left(1 - frac{2}{2^2}right)zeta(2) \
&= frac{pi^2}{9}.
end{align*}
Here are explanations for some non-trivial steps:
In the third step, we exploited $frac{log(1 - x(1-x))}{x(1-x)} = frac{log(1 - x(1-x))}{x} + frac{log(1 - x(1-x))}{1-x}$. By symmetry, integrals of the two terms in the right-hand side coincide.
$int_{0}^{1} frac{log(1+x^3)}{x} , mathrm{d}x = frac{1}{3} int_{0}^{1} frac{log(1+u)}{u} , mathrm{d}u$ by the substitution $u = x^3$.
$endgroup$
add a comment |
$begingroup$
Here is a solution:
begin{align*}
sum_{k=1}^{infty} frac{B(k,k)}{k}
&= sum_{k=1}^{infty} frac{1}{k} int_{0}^{1} x^{k-1}(1-x)^{k-1} , mathrm{d} x \
&= - int_{0}^{1} frac{log(1 - x(1-x))}{x(1-x)} , mathrm{d}x \
&= -2 int_{0}^{1} frac{log(1 - x + x^2)}{x} , mathrm{d}x \
&= 2 int_{0}^{1} frac{log(1 + x) - log(1 + x^3)}{x} , mathrm{d}x \
&= frac{4}{3} int_{0}^{1} frac{log(1 + x)}{x} , mathrm{d}x \
&= frac{4}{3} sum_{n=1}^{infty} frac{(-1)^{n-1}}{n^2} \
&= frac{4}{3} left(1 - frac{2}{2^2}right)zeta(2) \
&= frac{pi^2}{9}.
end{align*}
Here are explanations for some non-trivial steps:
In the third step, we exploited $frac{log(1 - x(1-x))}{x(1-x)} = frac{log(1 - x(1-x))}{x} + frac{log(1 - x(1-x))}{1-x}$. By symmetry, integrals of the two terms in the right-hand side coincide.
$int_{0}^{1} frac{log(1+x^3)}{x} , mathrm{d}x = frac{1}{3} int_{0}^{1} frac{log(1+u)}{u} , mathrm{d}u$ by the substitution $u = x^3$.
$endgroup$
Here is a solution:
begin{align*}
sum_{k=1}^{infty} frac{B(k,k)}{k}
&= sum_{k=1}^{infty} frac{1}{k} int_{0}^{1} x^{k-1}(1-x)^{k-1} , mathrm{d} x \
&= - int_{0}^{1} frac{log(1 - x(1-x))}{x(1-x)} , mathrm{d}x \
&= -2 int_{0}^{1} frac{log(1 - x + x^2)}{x} , mathrm{d}x \
&= 2 int_{0}^{1} frac{log(1 + x) - log(1 + x^3)}{x} , mathrm{d}x \
&= frac{4}{3} int_{0}^{1} frac{log(1 + x)}{x} , mathrm{d}x \
&= frac{4}{3} sum_{n=1}^{infty} frac{(-1)^{n-1}}{n^2} \
&= frac{4}{3} left(1 - frac{2}{2^2}right)zeta(2) \
&= frac{pi^2}{9}.
end{align*}
Here are explanations for some non-trivial steps:
In the third step, we exploited $frac{log(1 - x(1-x))}{x(1-x)} = frac{log(1 - x(1-x))}{x} + frac{log(1 - x(1-x))}{1-x}$. By symmetry, integrals of the two terms in the right-hand side coincide.
$int_{0}^{1} frac{log(1+x^3)}{x} , mathrm{d}x = frac{1}{3} int_{0}^{1} frac{log(1+u)}{u} , mathrm{d}u$ by the substitution $u = x^3$.
edited Jan 27 at 11:28
answered Jan 27 at 11:20


Sangchul LeeSangchul Lee
96.2k12171281
96.2k12171281
add a comment |
add a comment |
$begingroup$
You can also use the power series of the squared arcsine:
$$ sum limits_{k=1}^infty frac{operatorname{B}(k,k)}{k} = sum limits_{k=1}^infty frac{k!^2}{k^3 (2k-1)!} = 2sum limits_{k=1}^infty frac{1}{k^2 {2k choose k}} = 4 arcsin^2 left(frac{1}{2}right) = frac{pi^2}{9} , .$$
$endgroup$
add a comment |
$begingroup$
You can also use the power series of the squared arcsine:
$$ sum limits_{k=1}^infty frac{operatorname{B}(k,k)}{k} = sum limits_{k=1}^infty frac{k!^2}{k^3 (2k-1)!} = 2sum limits_{k=1}^infty frac{1}{k^2 {2k choose k}} = 4 arcsin^2 left(frac{1}{2}right) = frac{pi^2}{9} , .$$
$endgroup$
add a comment |
$begingroup$
You can also use the power series of the squared arcsine:
$$ sum limits_{k=1}^infty frac{operatorname{B}(k,k)}{k} = sum limits_{k=1}^infty frac{k!^2}{k^3 (2k-1)!} = 2sum limits_{k=1}^infty frac{1}{k^2 {2k choose k}} = 4 arcsin^2 left(frac{1}{2}right) = frac{pi^2}{9} , .$$
$endgroup$
You can also use the power series of the squared arcsine:
$$ sum limits_{k=1}^infty frac{operatorname{B}(k,k)}{k} = sum limits_{k=1}^infty frac{k!^2}{k^3 (2k-1)!} = 2sum limits_{k=1}^infty frac{1}{k^2 {2k choose k}} = 4 arcsin^2 left(frac{1}{2}right) = frac{pi^2}{9} , .$$
answered Jan 27 at 11:24
ComplexYetTrivialComplexYetTrivial
4,9682631
4,9682631
add a comment |
add a comment |
$begingroup$
The Beta function with two identical arguments is nothing but
$$frac{Gamma(k)Gamma(k)}{Gamma(2k)} = frac{sqrt{pi } 2^{1-2 k} Gamma (k)}{Gamma left(k+frac{1}{2}right)} = frac{sqrt{pi}2^{1-2k}(k-1)!}{frac{(2k)!}{4^kk!}sqrt{pi}} = frac{2^{1-2k}(k-1)!k! 4^k}{(2k)!} = frac{2k!(k-1)!}{(2k)!}$$
And since your sum runs only over the natural numbers, the first terms of the series can be easily computed (let me avoid for the moment the division by $k$):
$$1,frac{1}{6},frac{1}{30},frac{1}{140},frac{1}{630},frac{1}{2772} ldots$$
Now let's divide by $k$ as it is in your sum, to get:
$$frac{1}{k}frac{2k!(k-1)!}{(2k)!} = frac{2(k-1)!^2}{(2k)!}$$
Which we can easily sum to $$frac{pi^2}{9}$$
$endgroup$
add a comment |
$begingroup$
The Beta function with two identical arguments is nothing but
$$frac{Gamma(k)Gamma(k)}{Gamma(2k)} = frac{sqrt{pi } 2^{1-2 k} Gamma (k)}{Gamma left(k+frac{1}{2}right)} = frac{sqrt{pi}2^{1-2k}(k-1)!}{frac{(2k)!}{4^kk!}sqrt{pi}} = frac{2^{1-2k}(k-1)!k! 4^k}{(2k)!} = frac{2k!(k-1)!}{(2k)!}$$
And since your sum runs only over the natural numbers, the first terms of the series can be easily computed (let me avoid for the moment the division by $k$):
$$1,frac{1}{6},frac{1}{30},frac{1}{140},frac{1}{630},frac{1}{2772} ldots$$
Now let's divide by $k$ as it is in your sum, to get:
$$frac{1}{k}frac{2k!(k-1)!}{(2k)!} = frac{2(k-1)!^2}{(2k)!}$$
Which we can easily sum to $$frac{pi^2}{9}$$
$endgroup$
add a comment |
$begingroup$
The Beta function with two identical arguments is nothing but
$$frac{Gamma(k)Gamma(k)}{Gamma(2k)} = frac{sqrt{pi } 2^{1-2 k} Gamma (k)}{Gamma left(k+frac{1}{2}right)} = frac{sqrt{pi}2^{1-2k}(k-1)!}{frac{(2k)!}{4^kk!}sqrt{pi}} = frac{2^{1-2k}(k-1)!k! 4^k}{(2k)!} = frac{2k!(k-1)!}{(2k)!}$$
And since your sum runs only over the natural numbers, the first terms of the series can be easily computed (let me avoid for the moment the division by $k$):
$$1,frac{1}{6},frac{1}{30},frac{1}{140},frac{1}{630},frac{1}{2772} ldots$$
Now let's divide by $k$ as it is in your sum, to get:
$$frac{1}{k}frac{2k!(k-1)!}{(2k)!} = frac{2(k-1)!^2}{(2k)!}$$
Which we can easily sum to $$frac{pi^2}{9}$$
$endgroup$
The Beta function with two identical arguments is nothing but
$$frac{Gamma(k)Gamma(k)}{Gamma(2k)} = frac{sqrt{pi } 2^{1-2 k} Gamma (k)}{Gamma left(k+frac{1}{2}right)} = frac{sqrt{pi}2^{1-2k}(k-1)!}{frac{(2k)!}{4^kk!}sqrt{pi}} = frac{2^{1-2k}(k-1)!k! 4^k}{(2k)!} = frac{2k!(k-1)!}{(2k)!}$$
And since your sum runs only over the natural numbers, the first terms of the series can be easily computed (let me avoid for the moment the division by $k$):
$$1,frac{1}{6},frac{1}{30},frac{1}{140},frac{1}{630},frac{1}{2772} ldots$$
Now let's divide by $k$ as it is in your sum, to get:
$$frac{1}{k}frac{2k!(k-1)!}{(2k)!} = frac{2(k-1)!^2}{(2k)!}$$
Which we can easily sum to $$frac{pi^2}{9}$$
edited Jan 29 at 21:24
answered Jan 27 at 11:21


Von NeumannVon Neumann
16.5k72545
16.5k72545
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089414%2fevaluate-sum-limits-k-1-infty-fracbk-kk-where-b-denotes-the-beta%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
No
displaystyle
in titles please.$endgroup$
– Did
Jan 27 at 11:26