Find convergence interval of $f(x) =sum_{n=1}^∞ left(sinfrac{2}{n^2}right)x^n $
$begingroup$
$$f(x) =sum_{n=1}^∞ left(sinfrac{2}{n^2}right)x^n $$
so looks like what i have to do is use the formal
$$lim_{nto∞}left|frac{a_{n+1}}{a_n}right|=a$$ with $a_n=sinfrac{2}{n^2}$. And then $R=1/a$.
But I having trouble with the lim. Thank you for your help
sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
$$f(x) =sum_{n=1}^∞ left(sinfrac{2}{n^2}right)x^n $$
so looks like what i have to do is use the formal
$$lim_{nto∞}left|frac{a_{n+1}}{a_n}right|=a$$ with $a_n=sinfrac{2}{n^2}$. And then $R=1/a$.
But I having trouble with the lim. Thank you for your help
sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
$$f(x) =sum_{n=1}^∞ left(sinfrac{2}{n^2}right)x^n $$
so looks like what i have to do is use the formal
$$lim_{nto∞}left|frac{a_{n+1}}{a_n}right|=a$$ with $a_n=sinfrac{2}{n^2}$. And then $R=1/a$.
But I having trouble with the lim. Thank you for your help
sequences-and-series convergence
$endgroup$
$$f(x) =sum_{n=1}^∞ left(sinfrac{2}{n^2}right)x^n $$
so looks like what i have to do is use the formal
$$lim_{nto∞}left|frac{a_{n+1}}{a_n}right|=a$$ with $a_n=sinfrac{2}{n^2}$. And then $R=1/a$.
But I having trouble with the lim. Thank you for your help
sequences-and-series convergence
sequences-and-series convergence
edited Jan 25 at 5:25


Chinnapparaj R
5,7432928
5,7432928
asked Jan 25 at 4:41


Vu Thanh PhanVu Thanh Phan
347
347
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
You may recall the fact that $sin' = cos$, which implies the standard limit
$$
lim_{xto 0} frac{sin x}{x} = lim_{xto 0} frac{sin x - sin 0}{x- 0} = sin' 0 = cos 0 = 1 tag{1}
$$
from which we have, as $1/n^2 to 0$ as $ntoinfty$,
$$
lim_{ntoinfty} frac{sin frac{2}{n^2}}{frac{2}{n^2}} = 1 tag{2}
$$
Therefore, we get, for $a_n stackrel{rm def}{=} sin frac{2}{n^2}$ (for all $ngeq 1$),
$$begin{align}
lim_{ntoinfty} frac{a_{n+1}}{a_n} &=
lim_{ntoinfty} frac{sin frac{2}{(n+1)^2}}{sin frac{2}{n^2}}
=
lim_{ntoinfty} frac{sin frac{2}{(n+1)^2}}{frac{2}{(n+1)^2}}cdotfrac{frac{2}{(n+1)^2}}{frac{2}{n^2}}cdot frac{frac{2}{n^2}}{sin frac{2}{n^2}}
\&=
lim_{ntoinfty} frac{sin frac{2}{(n+1)^2}}{frac{2}{(n+1)^2}}cdotlim_{ntoinfty} frac{n^2}{(n+1)^2}cdot lim_{ntoinfty} frac{frac{2}{n^2}}{sin frac{2}{n^2}}
end{align}$$
Now, all three limits in this last expression exist and are equal to $1$ (the first and last because of $(2)$). Therefore,
$$
boxed{lim_{ntoinfty} frac{a_{n+1}}{a_n} =
1}
$$
$endgroup$
add a comment |
$begingroup$
Another approach.
$$a_n=sin left(frac{2}{n^2}right)implies R_n=frac{a_n}{a_{n+1}}=sin left(frac{2}{n^2}right) csc left(frac{2}{(n+1)^2}right)$$ Now, using Taylor series
$$R_n=frac{a_n}{a_{n+1}}=1+frac{2}{n}+Oleft(frac{1}{n^2}right)$$ and since $R=R_infty$, then ...
$endgroup$
add a comment |
$begingroup$
$f(x) =sum_{n=1}^∞ left(sinfrac{2}{n^2}right)x^n
$
Since
$sin(x) approx x$
for small $x$,
$sinfrac{2}{n^2}
approx frac{2}{n^2}
$
so the sum behaves like
$sum_{n=1}^∞ frac{2x^n}{n^2}
$
and this converges for
$-1 lt x lt 1$
by comparison with
$sum x^n$
and converges for
$x = pm 1$
because it becomes
$sum frac{2}{n^2}
$
at $x=1$
and
$sum frac{2(-1)^n}{n^2}
$
at $x=-1$,
both of which converge.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086712%2ffind-convergence-interval-of-fx-sum-n-1%25e2%2588%259e-left-sin-frac2n2-rightx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You may recall the fact that $sin' = cos$, which implies the standard limit
$$
lim_{xto 0} frac{sin x}{x} = lim_{xto 0} frac{sin x - sin 0}{x- 0} = sin' 0 = cos 0 = 1 tag{1}
$$
from which we have, as $1/n^2 to 0$ as $ntoinfty$,
$$
lim_{ntoinfty} frac{sin frac{2}{n^2}}{frac{2}{n^2}} = 1 tag{2}
$$
Therefore, we get, for $a_n stackrel{rm def}{=} sin frac{2}{n^2}$ (for all $ngeq 1$),
$$begin{align}
lim_{ntoinfty} frac{a_{n+1}}{a_n} &=
lim_{ntoinfty} frac{sin frac{2}{(n+1)^2}}{sin frac{2}{n^2}}
=
lim_{ntoinfty} frac{sin frac{2}{(n+1)^2}}{frac{2}{(n+1)^2}}cdotfrac{frac{2}{(n+1)^2}}{frac{2}{n^2}}cdot frac{frac{2}{n^2}}{sin frac{2}{n^2}}
\&=
lim_{ntoinfty} frac{sin frac{2}{(n+1)^2}}{frac{2}{(n+1)^2}}cdotlim_{ntoinfty} frac{n^2}{(n+1)^2}cdot lim_{ntoinfty} frac{frac{2}{n^2}}{sin frac{2}{n^2}}
end{align}$$
Now, all three limits in this last expression exist and are equal to $1$ (the first and last because of $(2)$). Therefore,
$$
boxed{lim_{ntoinfty} frac{a_{n+1}}{a_n} =
1}
$$
$endgroup$
add a comment |
$begingroup$
You may recall the fact that $sin' = cos$, which implies the standard limit
$$
lim_{xto 0} frac{sin x}{x} = lim_{xto 0} frac{sin x - sin 0}{x- 0} = sin' 0 = cos 0 = 1 tag{1}
$$
from which we have, as $1/n^2 to 0$ as $ntoinfty$,
$$
lim_{ntoinfty} frac{sin frac{2}{n^2}}{frac{2}{n^2}} = 1 tag{2}
$$
Therefore, we get, for $a_n stackrel{rm def}{=} sin frac{2}{n^2}$ (for all $ngeq 1$),
$$begin{align}
lim_{ntoinfty} frac{a_{n+1}}{a_n} &=
lim_{ntoinfty} frac{sin frac{2}{(n+1)^2}}{sin frac{2}{n^2}}
=
lim_{ntoinfty} frac{sin frac{2}{(n+1)^2}}{frac{2}{(n+1)^2}}cdotfrac{frac{2}{(n+1)^2}}{frac{2}{n^2}}cdot frac{frac{2}{n^2}}{sin frac{2}{n^2}}
\&=
lim_{ntoinfty} frac{sin frac{2}{(n+1)^2}}{frac{2}{(n+1)^2}}cdotlim_{ntoinfty} frac{n^2}{(n+1)^2}cdot lim_{ntoinfty} frac{frac{2}{n^2}}{sin frac{2}{n^2}}
end{align}$$
Now, all three limits in this last expression exist and are equal to $1$ (the first and last because of $(2)$). Therefore,
$$
boxed{lim_{ntoinfty} frac{a_{n+1}}{a_n} =
1}
$$
$endgroup$
add a comment |
$begingroup$
You may recall the fact that $sin' = cos$, which implies the standard limit
$$
lim_{xto 0} frac{sin x}{x} = lim_{xto 0} frac{sin x - sin 0}{x- 0} = sin' 0 = cos 0 = 1 tag{1}
$$
from which we have, as $1/n^2 to 0$ as $ntoinfty$,
$$
lim_{ntoinfty} frac{sin frac{2}{n^2}}{frac{2}{n^2}} = 1 tag{2}
$$
Therefore, we get, for $a_n stackrel{rm def}{=} sin frac{2}{n^2}$ (for all $ngeq 1$),
$$begin{align}
lim_{ntoinfty} frac{a_{n+1}}{a_n} &=
lim_{ntoinfty} frac{sin frac{2}{(n+1)^2}}{sin frac{2}{n^2}}
=
lim_{ntoinfty} frac{sin frac{2}{(n+1)^2}}{frac{2}{(n+1)^2}}cdotfrac{frac{2}{(n+1)^2}}{frac{2}{n^2}}cdot frac{frac{2}{n^2}}{sin frac{2}{n^2}}
\&=
lim_{ntoinfty} frac{sin frac{2}{(n+1)^2}}{frac{2}{(n+1)^2}}cdotlim_{ntoinfty} frac{n^2}{(n+1)^2}cdot lim_{ntoinfty} frac{frac{2}{n^2}}{sin frac{2}{n^2}}
end{align}$$
Now, all three limits in this last expression exist and are equal to $1$ (the first and last because of $(2)$). Therefore,
$$
boxed{lim_{ntoinfty} frac{a_{n+1}}{a_n} =
1}
$$
$endgroup$
You may recall the fact that $sin' = cos$, which implies the standard limit
$$
lim_{xto 0} frac{sin x}{x} = lim_{xto 0} frac{sin x - sin 0}{x- 0} = sin' 0 = cos 0 = 1 tag{1}
$$
from which we have, as $1/n^2 to 0$ as $ntoinfty$,
$$
lim_{ntoinfty} frac{sin frac{2}{n^2}}{frac{2}{n^2}} = 1 tag{2}
$$
Therefore, we get, for $a_n stackrel{rm def}{=} sin frac{2}{n^2}$ (for all $ngeq 1$),
$$begin{align}
lim_{ntoinfty} frac{a_{n+1}}{a_n} &=
lim_{ntoinfty} frac{sin frac{2}{(n+1)^2}}{sin frac{2}{n^2}}
=
lim_{ntoinfty} frac{sin frac{2}{(n+1)^2}}{frac{2}{(n+1)^2}}cdotfrac{frac{2}{(n+1)^2}}{frac{2}{n^2}}cdot frac{frac{2}{n^2}}{sin frac{2}{n^2}}
\&=
lim_{ntoinfty} frac{sin frac{2}{(n+1)^2}}{frac{2}{(n+1)^2}}cdotlim_{ntoinfty} frac{n^2}{(n+1)^2}cdot lim_{ntoinfty} frac{frac{2}{n^2}}{sin frac{2}{n^2}}
end{align}$$
Now, all three limits in this last expression exist and are equal to $1$ (the first and last because of $(2)$). Therefore,
$$
boxed{lim_{ntoinfty} frac{a_{n+1}}{a_n} =
1}
$$
answered Jan 25 at 4:50


Clement C.Clement C.
50.9k33992
50.9k33992
add a comment |
add a comment |
$begingroup$
Another approach.
$$a_n=sin left(frac{2}{n^2}right)implies R_n=frac{a_n}{a_{n+1}}=sin left(frac{2}{n^2}right) csc left(frac{2}{(n+1)^2}right)$$ Now, using Taylor series
$$R_n=frac{a_n}{a_{n+1}}=1+frac{2}{n}+Oleft(frac{1}{n^2}right)$$ and since $R=R_infty$, then ...
$endgroup$
add a comment |
$begingroup$
Another approach.
$$a_n=sin left(frac{2}{n^2}right)implies R_n=frac{a_n}{a_{n+1}}=sin left(frac{2}{n^2}right) csc left(frac{2}{(n+1)^2}right)$$ Now, using Taylor series
$$R_n=frac{a_n}{a_{n+1}}=1+frac{2}{n}+Oleft(frac{1}{n^2}right)$$ and since $R=R_infty$, then ...
$endgroup$
add a comment |
$begingroup$
Another approach.
$$a_n=sin left(frac{2}{n^2}right)implies R_n=frac{a_n}{a_{n+1}}=sin left(frac{2}{n^2}right) csc left(frac{2}{(n+1)^2}right)$$ Now, using Taylor series
$$R_n=frac{a_n}{a_{n+1}}=1+frac{2}{n}+Oleft(frac{1}{n^2}right)$$ and since $R=R_infty$, then ...
$endgroup$
Another approach.
$$a_n=sin left(frac{2}{n^2}right)implies R_n=frac{a_n}{a_{n+1}}=sin left(frac{2}{n^2}right) csc left(frac{2}{(n+1)^2}right)$$ Now, using Taylor series
$$R_n=frac{a_n}{a_{n+1}}=1+frac{2}{n}+Oleft(frac{1}{n^2}right)$$ and since $R=R_infty$, then ...
answered Jan 25 at 6:02
Claude LeiboviciClaude Leibovici
124k1158135
124k1158135
add a comment |
add a comment |
$begingroup$
$f(x) =sum_{n=1}^∞ left(sinfrac{2}{n^2}right)x^n
$
Since
$sin(x) approx x$
for small $x$,
$sinfrac{2}{n^2}
approx frac{2}{n^2}
$
so the sum behaves like
$sum_{n=1}^∞ frac{2x^n}{n^2}
$
and this converges for
$-1 lt x lt 1$
by comparison with
$sum x^n$
and converges for
$x = pm 1$
because it becomes
$sum frac{2}{n^2}
$
at $x=1$
and
$sum frac{2(-1)^n}{n^2}
$
at $x=-1$,
both of which converge.
$endgroup$
add a comment |
$begingroup$
$f(x) =sum_{n=1}^∞ left(sinfrac{2}{n^2}right)x^n
$
Since
$sin(x) approx x$
for small $x$,
$sinfrac{2}{n^2}
approx frac{2}{n^2}
$
so the sum behaves like
$sum_{n=1}^∞ frac{2x^n}{n^2}
$
and this converges for
$-1 lt x lt 1$
by comparison with
$sum x^n$
and converges for
$x = pm 1$
because it becomes
$sum frac{2}{n^2}
$
at $x=1$
and
$sum frac{2(-1)^n}{n^2}
$
at $x=-1$,
both of which converge.
$endgroup$
add a comment |
$begingroup$
$f(x) =sum_{n=1}^∞ left(sinfrac{2}{n^2}right)x^n
$
Since
$sin(x) approx x$
for small $x$,
$sinfrac{2}{n^2}
approx frac{2}{n^2}
$
so the sum behaves like
$sum_{n=1}^∞ frac{2x^n}{n^2}
$
and this converges for
$-1 lt x lt 1$
by comparison with
$sum x^n$
and converges for
$x = pm 1$
because it becomes
$sum frac{2}{n^2}
$
at $x=1$
and
$sum frac{2(-1)^n}{n^2}
$
at $x=-1$,
both of which converge.
$endgroup$
$f(x) =sum_{n=1}^∞ left(sinfrac{2}{n^2}right)x^n
$
Since
$sin(x) approx x$
for small $x$,
$sinfrac{2}{n^2}
approx frac{2}{n^2}
$
so the sum behaves like
$sum_{n=1}^∞ frac{2x^n}{n^2}
$
and this converges for
$-1 lt x lt 1$
by comparison with
$sum x^n$
and converges for
$x = pm 1$
because it becomes
$sum frac{2}{n^2}
$
at $x=1$
and
$sum frac{2(-1)^n}{n^2}
$
at $x=-1$,
both of which converge.
answered Jan 25 at 6:10
marty cohenmarty cohen
74.4k549129
74.4k549129
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3086712%2ffind-convergence-interval-of-fx-sum-n-1%25e2%2588%259e-left-sin-frac2n2-rightx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown