complex equation with a conjugate












0












$begingroup$


Find all the solutions to the equation:
$(1-i)z^{3}bar{z}=7+i$



My attempt:
$z^3bar{z}=frac{7+i}{1-i}=3+4i\$
$z^3bar{z}=3+4i rightarrow arg(z^3bar{z})=arg(3+4i)\$
$arg(z^3)-arg(z)=tan^{-1}(4/3)+2pi k\$
$2arg(z)=tan^{-1}(4/3)+2pi k\$

Therefore the angle is:
$arg(z)=frac{tan^{-1}(4/3)}{2}+pi k$



And to find the magnitude:
$| z^3bar{z}|=|z^3||z|=|z|^4=|3+4i| \$
$|z|^4=5 rightarrow |z|=sqrt[4]5\$

Therefore
$z=sqrt[4]5cdot e^{frac{1}{2}itan^{-1}(4/3)+ipi k}.$

By plugging $k = 0$ and $k = 1$ we get
$z_{1}=sqrt[4]5cdot e^{frac{1}{2}itan^{-1}(4/3)}=sqrt[4]5(cos(0.5tan^{-1}(4/3)) + isin(0.5tan^{-1}(4/3))$
$z_{2}=sqrt[4]5cdot e^{frac{1}{2}itan^{-1}(4/3)+ipi}\=sqrt[4]5(cos(0.5tan^{-1}(4/3)+pi) + isin(0.5tan^{-1}(4/3)+pi)$



Yet the correct solution is:
$z=pm sqrt[4]5(cos(0.5tan^{-1}(4/3)) + isin(0.5tan^{-1}(4/3))\$

So $z_1$ is a correct solution, but i'm not sure what about $z_2$ and why there is a negative solution in the answer.

Thanks










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Find all the solutions to the equation:
    $(1-i)z^{3}bar{z}=7+i$



    My attempt:
    $z^3bar{z}=frac{7+i}{1-i}=3+4i\$
    $z^3bar{z}=3+4i rightarrow arg(z^3bar{z})=arg(3+4i)\$
    $arg(z^3)-arg(z)=tan^{-1}(4/3)+2pi k\$
    $2arg(z)=tan^{-1}(4/3)+2pi k\$

    Therefore the angle is:
    $arg(z)=frac{tan^{-1}(4/3)}{2}+pi k$



    And to find the magnitude:
    $| z^3bar{z}|=|z^3||z|=|z|^4=|3+4i| \$
    $|z|^4=5 rightarrow |z|=sqrt[4]5\$

    Therefore
    $z=sqrt[4]5cdot e^{frac{1}{2}itan^{-1}(4/3)+ipi k}.$

    By plugging $k = 0$ and $k = 1$ we get
    $z_{1}=sqrt[4]5cdot e^{frac{1}{2}itan^{-1}(4/3)}=sqrt[4]5(cos(0.5tan^{-1}(4/3)) + isin(0.5tan^{-1}(4/3))$
    $z_{2}=sqrt[4]5cdot e^{frac{1}{2}itan^{-1}(4/3)+ipi}\=sqrt[4]5(cos(0.5tan^{-1}(4/3)+pi) + isin(0.5tan^{-1}(4/3)+pi)$



    Yet the correct solution is:
    $z=pm sqrt[4]5(cos(0.5tan^{-1}(4/3)) + isin(0.5tan^{-1}(4/3))\$

    So $z_1$ is a correct solution, but i'm not sure what about $z_2$ and why there is a negative solution in the answer.

    Thanks










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Find all the solutions to the equation:
      $(1-i)z^{3}bar{z}=7+i$



      My attempt:
      $z^3bar{z}=frac{7+i}{1-i}=3+4i\$
      $z^3bar{z}=3+4i rightarrow arg(z^3bar{z})=arg(3+4i)\$
      $arg(z^3)-arg(z)=tan^{-1}(4/3)+2pi k\$
      $2arg(z)=tan^{-1}(4/3)+2pi k\$

      Therefore the angle is:
      $arg(z)=frac{tan^{-1}(4/3)}{2}+pi k$



      And to find the magnitude:
      $| z^3bar{z}|=|z^3||z|=|z|^4=|3+4i| \$
      $|z|^4=5 rightarrow |z|=sqrt[4]5\$

      Therefore
      $z=sqrt[4]5cdot e^{frac{1}{2}itan^{-1}(4/3)+ipi k}.$

      By plugging $k = 0$ and $k = 1$ we get
      $z_{1}=sqrt[4]5cdot e^{frac{1}{2}itan^{-1}(4/3)}=sqrt[4]5(cos(0.5tan^{-1}(4/3)) + isin(0.5tan^{-1}(4/3))$
      $z_{2}=sqrt[4]5cdot e^{frac{1}{2}itan^{-1}(4/3)+ipi}\=sqrt[4]5(cos(0.5tan^{-1}(4/3)+pi) + isin(0.5tan^{-1}(4/3)+pi)$



      Yet the correct solution is:
      $z=pm sqrt[4]5(cos(0.5tan^{-1}(4/3)) + isin(0.5tan^{-1}(4/3))\$

      So $z_1$ is a correct solution, but i'm not sure what about $z_2$ and why there is a negative solution in the answer.

      Thanks










      share|cite|improve this question











      $endgroup$




      Find all the solutions to the equation:
      $(1-i)z^{3}bar{z}=7+i$



      My attempt:
      $z^3bar{z}=frac{7+i}{1-i}=3+4i\$
      $z^3bar{z}=3+4i rightarrow arg(z^3bar{z})=arg(3+4i)\$
      $arg(z^3)-arg(z)=tan^{-1}(4/3)+2pi k\$
      $2arg(z)=tan^{-1}(4/3)+2pi k\$

      Therefore the angle is:
      $arg(z)=frac{tan^{-1}(4/3)}{2}+pi k$



      And to find the magnitude:
      $| z^3bar{z}|=|z^3||z|=|z|^4=|3+4i| \$
      $|z|^4=5 rightarrow |z|=sqrt[4]5\$

      Therefore
      $z=sqrt[4]5cdot e^{frac{1}{2}itan^{-1}(4/3)+ipi k}.$

      By plugging $k = 0$ and $k = 1$ we get
      $z_{1}=sqrt[4]5cdot e^{frac{1}{2}itan^{-1}(4/3)}=sqrt[4]5(cos(0.5tan^{-1}(4/3)) + isin(0.5tan^{-1}(4/3))$
      $z_{2}=sqrt[4]5cdot e^{frac{1}{2}itan^{-1}(4/3)+ipi}\=sqrt[4]5(cos(0.5tan^{-1}(4/3)+pi) + isin(0.5tan^{-1}(4/3)+pi)$



      Yet the correct solution is:
      $z=pm sqrt[4]5(cos(0.5tan^{-1}(4/3)) + isin(0.5tan^{-1}(4/3))\$

      So $z_1$ is a correct solution, but i'm not sure what about $z_2$ and why there is a negative solution in the answer.

      Thanks







      complex-numbers






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 20 at 19:47









      J. W. Tanner

      2,7911217




      2,7911217










      asked Jan 20 at 18:31









      PulleyBoyPulleyBoy

      31




      31






















          3 Answers
          3






          active

          oldest

          votes


















          0












          $begingroup$

          Simplify $z_2$ using $cos(theta+pi)=-cos(theta)$ and $sin(theta+pi)=-sin(theta)$.






          share|cite|improve this answer











          $endgroup$





















            0












            $begingroup$

            You can simplify $z^3bar z=sqrt{5}z^2$ giving $$z^2=dfrac{3+4i}{sqrt{5}}iff z=pmdfrac{2+i}{sqrt[4]{5}}$$



            Since $(2+i)^2=4+4i-1=3+4i$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Downvote??? This is an elegant solution, congrats @zwim (+1). Though, some additional steps can help to understand - would you add any?
              $endgroup$
              – user376343
              Jan 20 at 23:36



















            0












            $begingroup$

            From$$r^3rtext{ cis }(3theta-theta)=5text{ cis}arctanfrac43,$$
            we draw
            $$r=sqrt[4]5,$$



            $$theta=frac12arctanfrac43+kpi.$$



            Hence



            $$pmsqrt[4]5text{ cis}left(frac12arctanfrac43right).$$



            (The $pm$ comes from $kpi$.)






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080956%2fcomplex-equation-with-a-conjugate%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              0












              $begingroup$

              Simplify $z_2$ using $cos(theta+pi)=-cos(theta)$ and $sin(theta+pi)=-sin(theta)$.






              share|cite|improve this answer











              $endgroup$


















                0












                $begingroup$

                Simplify $z_2$ using $cos(theta+pi)=-cos(theta)$ and $sin(theta+pi)=-sin(theta)$.






                share|cite|improve this answer











                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  Simplify $z_2$ using $cos(theta+pi)=-cos(theta)$ and $sin(theta+pi)=-sin(theta)$.






                  share|cite|improve this answer











                  $endgroup$



                  Simplify $z_2$ using $cos(theta+pi)=-cos(theta)$ and $sin(theta+pi)=-sin(theta)$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 20 at 19:05

























                  answered Jan 20 at 18:35









                  J. W. TannerJ. W. Tanner

                  2,7911217




                  2,7911217























                      0












                      $begingroup$

                      You can simplify $z^3bar z=sqrt{5}z^2$ giving $$z^2=dfrac{3+4i}{sqrt{5}}iff z=pmdfrac{2+i}{sqrt[4]{5}}$$



                      Since $(2+i)^2=4+4i-1=3+4i$






                      share|cite|improve this answer









                      $endgroup$













                      • $begingroup$
                        Downvote??? This is an elegant solution, congrats @zwim (+1). Though, some additional steps can help to understand - would you add any?
                        $endgroup$
                        – user376343
                        Jan 20 at 23:36
















                      0












                      $begingroup$

                      You can simplify $z^3bar z=sqrt{5}z^2$ giving $$z^2=dfrac{3+4i}{sqrt{5}}iff z=pmdfrac{2+i}{sqrt[4]{5}}$$



                      Since $(2+i)^2=4+4i-1=3+4i$






                      share|cite|improve this answer









                      $endgroup$













                      • $begingroup$
                        Downvote??? This is an elegant solution, congrats @zwim (+1). Though, some additional steps can help to understand - would you add any?
                        $endgroup$
                        – user376343
                        Jan 20 at 23:36














                      0












                      0








                      0





                      $begingroup$

                      You can simplify $z^3bar z=sqrt{5}z^2$ giving $$z^2=dfrac{3+4i}{sqrt{5}}iff z=pmdfrac{2+i}{sqrt[4]{5}}$$



                      Since $(2+i)^2=4+4i-1=3+4i$






                      share|cite|improve this answer









                      $endgroup$



                      You can simplify $z^3bar z=sqrt{5}z^2$ giving $$z^2=dfrac{3+4i}{sqrt{5}}iff z=pmdfrac{2+i}{sqrt[4]{5}}$$



                      Since $(2+i)^2=4+4i-1=3+4i$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Jan 20 at 19:00









                      zwimzwim

                      12.5k831




                      12.5k831












                      • $begingroup$
                        Downvote??? This is an elegant solution, congrats @zwim (+1). Though, some additional steps can help to understand - would you add any?
                        $endgroup$
                        – user376343
                        Jan 20 at 23:36


















                      • $begingroup$
                        Downvote??? This is an elegant solution, congrats @zwim (+1). Though, some additional steps can help to understand - would you add any?
                        $endgroup$
                        – user376343
                        Jan 20 at 23:36
















                      $begingroup$
                      Downvote??? This is an elegant solution, congrats @zwim (+1). Though, some additional steps can help to understand - would you add any?
                      $endgroup$
                      – user376343
                      Jan 20 at 23:36




                      $begingroup$
                      Downvote??? This is an elegant solution, congrats @zwim (+1). Though, some additional steps can help to understand - would you add any?
                      $endgroup$
                      – user376343
                      Jan 20 at 23:36











                      0












                      $begingroup$

                      From$$r^3rtext{ cis }(3theta-theta)=5text{ cis}arctanfrac43,$$
                      we draw
                      $$r=sqrt[4]5,$$



                      $$theta=frac12arctanfrac43+kpi.$$



                      Hence



                      $$pmsqrt[4]5text{ cis}left(frac12arctanfrac43right).$$



                      (The $pm$ comes from $kpi$.)






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        From$$r^3rtext{ cis }(3theta-theta)=5text{ cis}arctanfrac43,$$
                        we draw
                        $$r=sqrt[4]5,$$



                        $$theta=frac12arctanfrac43+kpi.$$



                        Hence



                        $$pmsqrt[4]5text{ cis}left(frac12arctanfrac43right).$$



                        (The $pm$ comes from $kpi$.)






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          From$$r^3rtext{ cis }(3theta-theta)=5text{ cis}arctanfrac43,$$
                          we draw
                          $$r=sqrt[4]5,$$



                          $$theta=frac12arctanfrac43+kpi.$$



                          Hence



                          $$pmsqrt[4]5text{ cis}left(frac12arctanfrac43right).$$



                          (The $pm$ comes from $kpi$.)






                          share|cite|improve this answer









                          $endgroup$



                          From$$r^3rtext{ cis }(3theta-theta)=5text{ cis}arctanfrac43,$$
                          we draw
                          $$r=sqrt[4]5,$$



                          $$theta=frac12arctanfrac43+kpi.$$



                          Hence



                          $$pmsqrt[4]5text{ cis}left(frac12arctanfrac43right).$$



                          (The $pm$ comes from $kpi$.)







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Jan 20 at 19:16









                          Yves DaoustYves Daoust

                          129k676227




                          129k676227






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080956%2fcomplex-equation-with-a-conjugate%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              MongoDB - Not Authorized To Execute Command

                              in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                              How to fix TextFormField cause rebuild widget in Flutter