If $q|frac{x^5-2^5}{x-2}$ then $q=1 mod5$
$begingroup$
Prove if $q$ is prime and in the form of $4k-1$ and $qmidfrac{x^5-2^5}{x-2} $ then $ qequiv1 mod 5$
elementary-number-theory
$endgroup$
|
show 2 more comments
$begingroup$
Prove if $q$ is prime and in the form of $4k-1$ and $qmidfrac{x^5-2^5}{x-2} $ then $ qequiv1 mod 5$
elementary-number-theory
$endgroup$
$begingroup$
if $x=4$ then we note that $2,|,496$. Taking $x=17$ we note that $5,|,94655$
$endgroup$
– lulu
Jan 26 at 13:54
$begingroup$
pay attention to " if "
$endgroup$
– Michael Brockhausen
Jan 26 at 13:58
$begingroup$
I don't understand. Letting $F(x)=frac {x^5-32}{x-2}$ My observations show that $2,|,F(4)$ and $5,|,F(17)$. Either of those appears to disprove your claim.
$endgroup$
– lulu
Jan 26 at 14:00
$begingroup$
you should prove $ qequiv1 Mod 5$
$endgroup$
– Michael Brockhausen
Jan 26 at 14:03
$begingroup$
I don't understand. I can't prove it because it is not true. $2not equiv 1 pmod 5$ and $5not equiv 1 pmod 5$.
$endgroup$
– lulu
Jan 26 at 14:05
|
show 2 more comments
$begingroup$
Prove if $q$ is prime and in the form of $4k-1$ and $qmidfrac{x^5-2^5}{x-2} $ then $ qequiv1 mod 5$
elementary-number-theory
$endgroup$
Prove if $q$ is prime and in the form of $4k-1$ and $qmidfrac{x^5-2^5}{x-2} $ then $ qequiv1 mod 5$
elementary-number-theory
elementary-number-theory
edited Jan 26 at 14:11
Michael Brockhausen
asked Jan 26 at 13:46


Michael BrockhausenMichael Brockhausen
122
122
$begingroup$
if $x=4$ then we note that $2,|,496$. Taking $x=17$ we note that $5,|,94655$
$endgroup$
– lulu
Jan 26 at 13:54
$begingroup$
pay attention to " if "
$endgroup$
– Michael Brockhausen
Jan 26 at 13:58
$begingroup$
I don't understand. Letting $F(x)=frac {x^5-32}{x-2}$ My observations show that $2,|,F(4)$ and $5,|,F(17)$. Either of those appears to disprove your claim.
$endgroup$
– lulu
Jan 26 at 14:00
$begingroup$
you should prove $ qequiv1 Mod 5$
$endgroup$
– Michael Brockhausen
Jan 26 at 14:03
$begingroup$
I don't understand. I can't prove it because it is not true. $2not equiv 1 pmod 5$ and $5not equiv 1 pmod 5$.
$endgroup$
– lulu
Jan 26 at 14:05
|
show 2 more comments
$begingroup$
if $x=4$ then we note that $2,|,496$. Taking $x=17$ we note that $5,|,94655$
$endgroup$
– lulu
Jan 26 at 13:54
$begingroup$
pay attention to " if "
$endgroup$
– Michael Brockhausen
Jan 26 at 13:58
$begingroup$
I don't understand. Letting $F(x)=frac {x^5-32}{x-2}$ My observations show that $2,|,F(4)$ and $5,|,F(17)$. Either of those appears to disprove your claim.
$endgroup$
– lulu
Jan 26 at 14:00
$begingroup$
you should prove $ qequiv1 Mod 5$
$endgroup$
– Michael Brockhausen
Jan 26 at 14:03
$begingroup$
I don't understand. I can't prove it because it is not true. $2not equiv 1 pmod 5$ and $5not equiv 1 pmod 5$.
$endgroup$
– lulu
Jan 26 at 14:05
$begingroup$
if $x=4$ then we note that $2,|,496$. Taking $x=17$ we note that $5,|,94655$
$endgroup$
– lulu
Jan 26 at 13:54
$begingroup$
if $x=4$ then we note that $2,|,496$. Taking $x=17$ we note that $5,|,94655$
$endgroup$
– lulu
Jan 26 at 13:54
$begingroup$
pay attention to " if "
$endgroup$
– Michael Brockhausen
Jan 26 at 13:58
$begingroup$
pay attention to " if "
$endgroup$
– Michael Brockhausen
Jan 26 at 13:58
$begingroup$
I don't understand. Letting $F(x)=frac {x^5-32}{x-2}$ My observations show that $2,|,F(4)$ and $5,|,F(17)$. Either of those appears to disprove your claim.
$endgroup$
– lulu
Jan 26 at 14:00
$begingroup$
I don't understand. Letting $F(x)=frac {x^5-32}{x-2}$ My observations show that $2,|,F(4)$ and $5,|,F(17)$. Either of those appears to disprove your claim.
$endgroup$
– lulu
Jan 26 at 14:00
$begingroup$
you should prove $ qequiv1 Mod 5$
$endgroup$
– Michael Brockhausen
Jan 26 at 14:03
$begingroup$
you should prove $ qequiv1 Mod 5$
$endgroup$
– Michael Brockhausen
Jan 26 at 14:03
$begingroup$
I don't understand. I can't prove it because it is not true. $2not equiv 1 pmod 5$ and $5not equiv 1 pmod 5$.
$endgroup$
– lulu
Jan 26 at 14:05
$begingroup$
I don't understand. I can't prove it because it is not true. $2not equiv 1 pmod 5$ and $5not equiv 1 pmod 5$.
$endgroup$
– lulu
Jan 26 at 14:05
|
show 2 more comments
2 Answers
2
active
oldest
votes
$begingroup$
Clearly, $qmid x^5-2^5$, that is, $x^5equiv 2^5pmod{q}$. Now, observe that, if $xequiv 2pmod{5}$, then $qmid 80$, which is not possible as $qequiv -1pmod{4}$. Hence, $xnotequiv 2pmod{5}$. This means, if we let $aequiv x2^{-1}pmod{q}$, then $a^5equiv 1pmod{q}$, and $anotequiv 1pmod{q}$. Now, let $d$ be the smallest positive integer for which $a^dequiv 1pmod{q}$.
It is well known that $dmid 5$ and $dnmid 1$. Therefore, $d=5$. Finally, since $q$ is a prime, we have, by Fermat's theorem, that $a^{q-1}equiv 1pmod{q}$, hence, $5=dmid q-1$, which is the claim.
$endgroup$
add a comment |
$begingroup$
Clearly, $xnotequiv2pmod q (1)$
Let $xequiv2ypmod qimplies y^5equiv1pmod q$ for odd prime $q$
$implies(5,q-1)mid$ord$_qy$
If $5nmid(q-1),(5,q-1)=1implies1mid$ord$_qyimplies$ord$_qy=1implies y^1equiv1pmod q$
$implies xequiv2qequiv2pmod q$ which contradicts $(1)$
$endgroup$
$begingroup$
I have two question. First why $x notequiv 2 (mod q)$. Second what is y?
$endgroup$
– Michael Brockhausen
Jan 26 at 15:23
$begingroup$
@MichaelBrockhausen, Observe that $q$ divides $y^5-2^5$. What are the roots of $y^5-2^5=0$ and those of $$dfrac{y^5-2^5}{y-2}=0$$ For the second question, $xequiv2ypmod q$
$endgroup$
– lab bhattacharjee
Jan 26 at 15:33
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088266%2fif-q-fracx5-25x-2-then-q-1-mod5%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Clearly, $qmid x^5-2^5$, that is, $x^5equiv 2^5pmod{q}$. Now, observe that, if $xequiv 2pmod{5}$, then $qmid 80$, which is not possible as $qequiv -1pmod{4}$. Hence, $xnotequiv 2pmod{5}$. This means, if we let $aequiv x2^{-1}pmod{q}$, then $a^5equiv 1pmod{q}$, and $anotequiv 1pmod{q}$. Now, let $d$ be the smallest positive integer for which $a^dequiv 1pmod{q}$.
It is well known that $dmid 5$ and $dnmid 1$. Therefore, $d=5$. Finally, since $q$ is a prime, we have, by Fermat's theorem, that $a^{q-1}equiv 1pmod{q}$, hence, $5=dmid q-1$, which is the claim.
$endgroup$
add a comment |
$begingroup$
Clearly, $qmid x^5-2^5$, that is, $x^5equiv 2^5pmod{q}$. Now, observe that, if $xequiv 2pmod{5}$, then $qmid 80$, which is not possible as $qequiv -1pmod{4}$. Hence, $xnotequiv 2pmod{5}$. This means, if we let $aequiv x2^{-1}pmod{q}$, then $a^5equiv 1pmod{q}$, and $anotequiv 1pmod{q}$. Now, let $d$ be the smallest positive integer for which $a^dequiv 1pmod{q}$.
It is well known that $dmid 5$ and $dnmid 1$. Therefore, $d=5$. Finally, since $q$ is a prime, we have, by Fermat's theorem, that $a^{q-1}equiv 1pmod{q}$, hence, $5=dmid q-1$, which is the claim.
$endgroup$
add a comment |
$begingroup$
Clearly, $qmid x^5-2^5$, that is, $x^5equiv 2^5pmod{q}$. Now, observe that, if $xequiv 2pmod{5}$, then $qmid 80$, which is not possible as $qequiv -1pmod{4}$. Hence, $xnotequiv 2pmod{5}$. This means, if we let $aequiv x2^{-1}pmod{q}$, then $a^5equiv 1pmod{q}$, and $anotequiv 1pmod{q}$. Now, let $d$ be the smallest positive integer for which $a^dequiv 1pmod{q}$.
It is well known that $dmid 5$ and $dnmid 1$. Therefore, $d=5$. Finally, since $q$ is a prime, we have, by Fermat's theorem, that $a^{q-1}equiv 1pmod{q}$, hence, $5=dmid q-1$, which is the claim.
$endgroup$
Clearly, $qmid x^5-2^5$, that is, $x^5equiv 2^5pmod{q}$. Now, observe that, if $xequiv 2pmod{5}$, then $qmid 80$, which is not possible as $qequiv -1pmod{4}$. Hence, $xnotequiv 2pmod{5}$. This means, if we let $aequiv x2^{-1}pmod{q}$, then $a^5equiv 1pmod{q}$, and $anotequiv 1pmod{q}$. Now, let $d$ be the smallest positive integer for which $a^dequiv 1pmod{q}$.
It is well known that $dmid 5$ and $dnmid 1$. Therefore, $d=5$. Finally, since $q$ is a prime, we have, by Fermat's theorem, that $a^{q-1}equiv 1pmod{q}$, hence, $5=dmid q-1$, which is the claim.
answered Jan 27 at 8:49
AaronAaron
1,922415
1,922415
add a comment |
add a comment |
$begingroup$
Clearly, $xnotequiv2pmod q (1)$
Let $xequiv2ypmod qimplies y^5equiv1pmod q$ for odd prime $q$
$implies(5,q-1)mid$ord$_qy$
If $5nmid(q-1),(5,q-1)=1implies1mid$ord$_qyimplies$ord$_qy=1implies y^1equiv1pmod q$
$implies xequiv2qequiv2pmod q$ which contradicts $(1)$
$endgroup$
$begingroup$
I have two question. First why $x notequiv 2 (mod q)$. Second what is y?
$endgroup$
– Michael Brockhausen
Jan 26 at 15:23
$begingroup$
@MichaelBrockhausen, Observe that $q$ divides $y^5-2^5$. What are the roots of $y^5-2^5=0$ and those of $$dfrac{y^5-2^5}{y-2}=0$$ For the second question, $xequiv2ypmod q$
$endgroup$
– lab bhattacharjee
Jan 26 at 15:33
add a comment |
$begingroup$
Clearly, $xnotequiv2pmod q (1)$
Let $xequiv2ypmod qimplies y^5equiv1pmod q$ for odd prime $q$
$implies(5,q-1)mid$ord$_qy$
If $5nmid(q-1),(5,q-1)=1implies1mid$ord$_qyimplies$ord$_qy=1implies y^1equiv1pmod q$
$implies xequiv2qequiv2pmod q$ which contradicts $(1)$
$endgroup$
$begingroup$
I have two question. First why $x notequiv 2 (mod q)$. Second what is y?
$endgroup$
– Michael Brockhausen
Jan 26 at 15:23
$begingroup$
@MichaelBrockhausen, Observe that $q$ divides $y^5-2^5$. What are the roots of $y^5-2^5=0$ and those of $$dfrac{y^5-2^5}{y-2}=0$$ For the second question, $xequiv2ypmod q$
$endgroup$
– lab bhattacharjee
Jan 26 at 15:33
add a comment |
$begingroup$
Clearly, $xnotequiv2pmod q (1)$
Let $xequiv2ypmod qimplies y^5equiv1pmod q$ for odd prime $q$
$implies(5,q-1)mid$ord$_qy$
If $5nmid(q-1),(5,q-1)=1implies1mid$ord$_qyimplies$ord$_qy=1implies y^1equiv1pmod q$
$implies xequiv2qequiv2pmod q$ which contradicts $(1)$
$endgroup$
Clearly, $xnotequiv2pmod q (1)$
Let $xequiv2ypmod qimplies y^5equiv1pmod q$ for odd prime $q$
$implies(5,q-1)mid$ord$_qy$
If $5nmid(q-1),(5,q-1)=1implies1mid$ord$_qyimplies$ord$_qy=1implies y^1equiv1pmod q$
$implies xequiv2qequiv2pmod q$ which contradicts $(1)$
answered Jan 26 at 14:33
lab bhattacharjeelab bhattacharjee
227k15158276
227k15158276
$begingroup$
I have two question. First why $x notequiv 2 (mod q)$. Second what is y?
$endgroup$
– Michael Brockhausen
Jan 26 at 15:23
$begingroup$
@MichaelBrockhausen, Observe that $q$ divides $y^5-2^5$. What are the roots of $y^5-2^5=0$ and those of $$dfrac{y^5-2^5}{y-2}=0$$ For the second question, $xequiv2ypmod q$
$endgroup$
– lab bhattacharjee
Jan 26 at 15:33
add a comment |
$begingroup$
I have two question. First why $x notequiv 2 (mod q)$. Second what is y?
$endgroup$
– Michael Brockhausen
Jan 26 at 15:23
$begingroup$
@MichaelBrockhausen, Observe that $q$ divides $y^5-2^5$. What are the roots of $y^5-2^5=0$ and those of $$dfrac{y^5-2^5}{y-2}=0$$ For the second question, $xequiv2ypmod q$
$endgroup$
– lab bhattacharjee
Jan 26 at 15:33
$begingroup$
I have two question. First why $x notequiv 2 (mod q)$. Second what is y?
$endgroup$
– Michael Brockhausen
Jan 26 at 15:23
$begingroup$
I have two question. First why $x notequiv 2 (mod q)$. Second what is y?
$endgroup$
– Michael Brockhausen
Jan 26 at 15:23
$begingroup$
@MichaelBrockhausen, Observe that $q$ divides $y^5-2^5$. What are the roots of $y^5-2^5=0$ and those of $$dfrac{y^5-2^5}{y-2}=0$$ For the second question, $xequiv2ypmod q$
$endgroup$
– lab bhattacharjee
Jan 26 at 15:33
$begingroup$
@MichaelBrockhausen, Observe that $q$ divides $y^5-2^5$. What are the roots of $y^5-2^5=0$ and those of $$dfrac{y^5-2^5}{y-2}=0$$ For the second question, $xequiv2ypmod q$
$endgroup$
– lab bhattacharjee
Jan 26 at 15:33
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088266%2fif-q-fracx5-25x-2-then-q-1-mod5%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
if $x=4$ then we note that $2,|,496$. Taking $x=17$ we note that $5,|,94655$
$endgroup$
– lulu
Jan 26 at 13:54
$begingroup$
pay attention to " if "
$endgroup$
– Michael Brockhausen
Jan 26 at 13:58
$begingroup$
I don't understand. Letting $F(x)=frac {x^5-32}{x-2}$ My observations show that $2,|,F(4)$ and $5,|,F(17)$. Either of those appears to disprove your claim.
$endgroup$
– lulu
Jan 26 at 14:00
$begingroup$
you should prove $ qequiv1 Mod 5$
$endgroup$
– Michael Brockhausen
Jan 26 at 14:03
$begingroup$
I don't understand. I can't prove it because it is not true. $2not equiv 1 pmod 5$ and $5not equiv 1 pmod 5$.
$endgroup$
– lulu
Jan 26 at 14:05