If $q|frac{x^5-2^5}{x-2}$ then $q=1 mod5$












-1












$begingroup$




Prove if $q$ is prime and in the form of $4k-1$ and $qmidfrac{x^5-2^5}{x-2} $ then $ qequiv1 mod 5$










share|cite|improve this question











$endgroup$












  • $begingroup$
    if $x=4$ then we note that $2,|,496$. Taking $x=17$ we note that $5,|,94655$
    $endgroup$
    – lulu
    Jan 26 at 13:54












  • $begingroup$
    pay attention to " if "
    $endgroup$
    – Michael Brockhausen
    Jan 26 at 13:58










  • $begingroup$
    I don't understand. Letting $F(x)=frac {x^5-32}{x-2}$ My observations show that $2,|,F(4)$ and $5,|,F(17)$. Either of those appears to disprove your claim.
    $endgroup$
    – lulu
    Jan 26 at 14:00










  • $begingroup$
    you should prove $ qequiv1 Mod 5$
    $endgroup$
    – Michael Brockhausen
    Jan 26 at 14:03










  • $begingroup$
    I don't understand. I can't prove it because it is not true. $2not equiv 1 pmod 5$ and $5not equiv 1 pmod 5$.
    $endgroup$
    – lulu
    Jan 26 at 14:05


















-1












$begingroup$




Prove if $q$ is prime and in the form of $4k-1$ and $qmidfrac{x^5-2^5}{x-2} $ then $ qequiv1 mod 5$










share|cite|improve this question











$endgroup$












  • $begingroup$
    if $x=4$ then we note that $2,|,496$. Taking $x=17$ we note that $5,|,94655$
    $endgroup$
    – lulu
    Jan 26 at 13:54












  • $begingroup$
    pay attention to " if "
    $endgroup$
    – Michael Brockhausen
    Jan 26 at 13:58










  • $begingroup$
    I don't understand. Letting $F(x)=frac {x^5-32}{x-2}$ My observations show that $2,|,F(4)$ and $5,|,F(17)$. Either of those appears to disprove your claim.
    $endgroup$
    – lulu
    Jan 26 at 14:00










  • $begingroup$
    you should prove $ qequiv1 Mod 5$
    $endgroup$
    – Michael Brockhausen
    Jan 26 at 14:03










  • $begingroup$
    I don't understand. I can't prove it because it is not true. $2not equiv 1 pmod 5$ and $5not equiv 1 pmod 5$.
    $endgroup$
    – lulu
    Jan 26 at 14:05
















-1












-1








-1





$begingroup$




Prove if $q$ is prime and in the form of $4k-1$ and $qmidfrac{x^5-2^5}{x-2} $ then $ qequiv1 mod 5$










share|cite|improve this question











$endgroup$






Prove if $q$ is prime and in the form of $4k-1$ and $qmidfrac{x^5-2^5}{x-2} $ then $ qequiv1 mod 5$







elementary-number-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 26 at 14:11







Michael Brockhausen

















asked Jan 26 at 13:46









Michael BrockhausenMichael Brockhausen

122




122












  • $begingroup$
    if $x=4$ then we note that $2,|,496$. Taking $x=17$ we note that $5,|,94655$
    $endgroup$
    – lulu
    Jan 26 at 13:54












  • $begingroup$
    pay attention to " if "
    $endgroup$
    – Michael Brockhausen
    Jan 26 at 13:58










  • $begingroup$
    I don't understand. Letting $F(x)=frac {x^5-32}{x-2}$ My observations show that $2,|,F(4)$ and $5,|,F(17)$. Either of those appears to disprove your claim.
    $endgroup$
    – lulu
    Jan 26 at 14:00










  • $begingroup$
    you should prove $ qequiv1 Mod 5$
    $endgroup$
    – Michael Brockhausen
    Jan 26 at 14:03










  • $begingroup$
    I don't understand. I can't prove it because it is not true. $2not equiv 1 pmod 5$ and $5not equiv 1 pmod 5$.
    $endgroup$
    – lulu
    Jan 26 at 14:05




















  • $begingroup$
    if $x=4$ then we note that $2,|,496$. Taking $x=17$ we note that $5,|,94655$
    $endgroup$
    – lulu
    Jan 26 at 13:54












  • $begingroup$
    pay attention to " if "
    $endgroup$
    – Michael Brockhausen
    Jan 26 at 13:58










  • $begingroup$
    I don't understand. Letting $F(x)=frac {x^5-32}{x-2}$ My observations show that $2,|,F(4)$ and $5,|,F(17)$. Either of those appears to disprove your claim.
    $endgroup$
    – lulu
    Jan 26 at 14:00










  • $begingroup$
    you should prove $ qequiv1 Mod 5$
    $endgroup$
    – Michael Brockhausen
    Jan 26 at 14:03










  • $begingroup$
    I don't understand. I can't prove it because it is not true. $2not equiv 1 pmod 5$ and $5not equiv 1 pmod 5$.
    $endgroup$
    – lulu
    Jan 26 at 14:05


















$begingroup$
if $x=4$ then we note that $2,|,496$. Taking $x=17$ we note that $5,|,94655$
$endgroup$
– lulu
Jan 26 at 13:54






$begingroup$
if $x=4$ then we note that $2,|,496$. Taking $x=17$ we note that $5,|,94655$
$endgroup$
– lulu
Jan 26 at 13:54














$begingroup$
pay attention to " if "
$endgroup$
– Michael Brockhausen
Jan 26 at 13:58




$begingroup$
pay attention to " if "
$endgroup$
– Michael Brockhausen
Jan 26 at 13:58












$begingroup$
I don't understand. Letting $F(x)=frac {x^5-32}{x-2}$ My observations show that $2,|,F(4)$ and $5,|,F(17)$. Either of those appears to disprove your claim.
$endgroup$
– lulu
Jan 26 at 14:00




$begingroup$
I don't understand. Letting $F(x)=frac {x^5-32}{x-2}$ My observations show that $2,|,F(4)$ and $5,|,F(17)$. Either of those appears to disprove your claim.
$endgroup$
– lulu
Jan 26 at 14:00












$begingroup$
you should prove $ qequiv1 Mod 5$
$endgroup$
– Michael Brockhausen
Jan 26 at 14:03




$begingroup$
you should prove $ qequiv1 Mod 5$
$endgroup$
– Michael Brockhausen
Jan 26 at 14:03












$begingroup$
I don't understand. I can't prove it because it is not true. $2not equiv 1 pmod 5$ and $5not equiv 1 pmod 5$.
$endgroup$
– lulu
Jan 26 at 14:05






$begingroup$
I don't understand. I can't prove it because it is not true. $2not equiv 1 pmod 5$ and $5not equiv 1 pmod 5$.
$endgroup$
– lulu
Jan 26 at 14:05












2 Answers
2






active

oldest

votes


















0












$begingroup$

Clearly, $qmid x^5-2^5$, that is, $x^5equiv 2^5pmod{q}$. Now, observe that, if $xequiv 2pmod{5}$, then $qmid 80$, which is not possible as $qequiv -1pmod{4}$. Hence, $xnotequiv 2pmod{5}$. This means, if we let $aequiv x2^{-1}pmod{q}$, then $a^5equiv 1pmod{q}$, and $anotequiv 1pmod{q}$. Now, let $d$ be the smallest positive integer for which $a^dequiv 1pmod{q}$.



It is well known that $dmid 5$ and $dnmid 1$. Therefore, $d=5$. Finally, since $q$ is a prime, we have, by Fermat's theorem, that $a^{q-1}equiv 1pmod{q}$, hence, $5=dmid q-1$, which is the claim.






share|cite|improve this answer









$endgroup$





















    -1












    $begingroup$

    Clearly, $xnotequiv2pmod q (1)$



    Let $xequiv2ypmod qimplies y^5equiv1pmod q$ for odd prime $q$



    $implies(5,q-1)mid$ord$_qy$



    If $5nmid(q-1),(5,q-1)=1implies1mid$ord$_qyimplies$ord$_qy=1implies y^1equiv1pmod q$



    $implies xequiv2qequiv2pmod q$ which contradicts $(1)$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      I have two question. First why $x notequiv 2 (mod q)$. Second what is y?
      $endgroup$
      – Michael Brockhausen
      Jan 26 at 15:23










    • $begingroup$
      @MichaelBrockhausen, Observe that $q$ divides $y^5-2^5$. What are the roots of $y^5-2^5=0$ and those of $$dfrac{y^5-2^5}{y-2}=0$$ For the second question, $xequiv2ypmod q$
      $endgroup$
      – lab bhattacharjee
      Jan 26 at 15:33













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088266%2fif-q-fracx5-25x-2-then-q-1-mod5%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Clearly, $qmid x^5-2^5$, that is, $x^5equiv 2^5pmod{q}$. Now, observe that, if $xequiv 2pmod{5}$, then $qmid 80$, which is not possible as $qequiv -1pmod{4}$. Hence, $xnotequiv 2pmod{5}$. This means, if we let $aequiv x2^{-1}pmod{q}$, then $a^5equiv 1pmod{q}$, and $anotequiv 1pmod{q}$. Now, let $d$ be the smallest positive integer for which $a^dequiv 1pmod{q}$.



    It is well known that $dmid 5$ and $dnmid 1$. Therefore, $d=5$. Finally, since $q$ is a prime, we have, by Fermat's theorem, that $a^{q-1}equiv 1pmod{q}$, hence, $5=dmid q-1$, which is the claim.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Clearly, $qmid x^5-2^5$, that is, $x^5equiv 2^5pmod{q}$. Now, observe that, if $xequiv 2pmod{5}$, then $qmid 80$, which is not possible as $qequiv -1pmod{4}$. Hence, $xnotequiv 2pmod{5}$. This means, if we let $aequiv x2^{-1}pmod{q}$, then $a^5equiv 1pmod{q}$, and $anotequiv 1pmod{q}$. Now, let $d$ be the smallest positive integer for which $a^dequiv 1pmod{q}$.



      It is well known that $dmid 5$ and $dnmid 1$. Therefore, $d=5$. Finally, since $q$ is a prime, we have, by Fermat's theorem, that $a^{q-1}equiv 1pmod{q}$, hence, $5=dmid q-1$, which is the claim.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Clearly, $qmid x^5-2^5$, that is, $x^5equiv 2^5pmod{q}$. Now, observe that, if $xequiv 2pmod{5}$, then $qmid 80$, which is not possible as $qequiv -1pmod{4}$. Hence, $xnotequiv 2pmod{5}$. This means, if we let $aequiv x2^{-1}pmod{q}$, then $a^5equiv 1pmod{q}$, and $anotequiv 1pmod{q}$. Now, let $d$ be the smallest positive integer for which $a^dequiv 1pmod{q}$.



        It is well known that $dmid 5$ and $dnmid 1$. Therefore, $d=5$. Finally, since $q$ is a prime, we have, by Fermat's theorem, that $a^{q-1}equiv 1pmod{q}$, hence, $5=dmid q-1$, which is the claim.






        share|cite|improve this answer









        $endgroup$



        Clearly, $qmid x^5-2^5$, that is, $x^5equiv 2^5pmod{q}$. Now, observe that, if $xequiv 2pmod{5}$, then $qmid 80$, which is not possible as $qequiv -1pmod{4}$. Hence, $xnotequiv 2pmod{5}$. This means, if we let $aequiv x2^{-1}pmod{q}$, then $a^5equiv 1pmod{q}$, and $anotequiv 1pmod{q}$. Now, let $d$ be the smallest positive integer for which $a^dequiv 1pmod{q}$.



        It is well known that $dmid 5$ and $dnmid 1$. Therefore, $d=5$. Finally, since $q$ is a prime, we have, by Fermat's theorem, that $a^{q-1}equiv 1pmod{q}$, hence, $5=dmid q-1$, which is the claim.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 27 at 8:49









        AaronAaron

        1,922415




        1,922415























            -1












            $begingroup$

            Clearly, $xnotequiv2pmod q (1)$



            Let $xequiv2ypmod qimplies y^5equiv1pmod q$ for odd prime $q$



            $implies(5,q-1)mid$ord$_qy$



            If $5nmid(q-1),(5,q-1)=1implies1mid$ord$_qyimplies$ord$_qy=1implies y^1equiv1pmod q$



            $implies xequiv2qequiv2pmod q$ which contradicts $(1)$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              I have two question. First why $x notequiv 2 (mod q)$. Second what is y?
              $endgroup$
              – Michael Brockhausen
              Jan 26 at 15:23










            • $begingroup$
              @MichaelBrockhausen, Observe that $q$ divides $y^5-2^5$. What are the roots of $y^5-2^5=0$ and those of $$dfrac{y^5-2^5}{y-2}=0$$ For the second question, $xequiv2ypmod q$
              $endgroup$
              – lab bhattacharjee
              Jan 26 at 15:33


















            -1












            $begingroup$

            Clearly, $xnotequiv2pmod q (1)$



            Let $xequiv2ypmod qimplies y^5equiv1pmod q$ for odd prime $q$



            $implies(5,q-1)mid$ord$_qy$



            If $5nmid(q-1),(5,q-1)=1implies1mid$ord$_qyimplies$ord$_qy=1implies y^1equiv1pmod q$



            $implies xequiv2qequiv2pmod q$ which contradicts $(1)$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              I have two question. First why $x notequiv 2 (mod q)$. Second what is y?
              $endgroup$
              – Michael Brockhausen
              Jan 26 at 15:23










            • $begingroup$
              @MichaelBrockhausen, Observe that $q$ divides $y^5-2^5$. What are the roots of $y^5-2^5=0$ and those of $$dfrac{y^5-2^5}{y-2}=0$$ For the second question, $xequiv2ypmod q$
              $endgroup$
              – lab bhattacharjee
              Jan 26 at 15:33
















            -1












            -1








            -1





            $begingroup$

            Clearly, $xnotequiv2pmod q (1)$



            Let $xequiv2ypmod qimplies y^5equiv1pmod q$ for odd prime $q$



            $implies(5,q-1)mid$ord$_qy$



            If $5nmid(q-1),(5,q-1)=1implies1mid$ord$_qyimplies$ord$_qy=1implies y^1equiv1pmod q$



            $implies xequiv2qequiv2pmod q$ which contradicts $(1)$






            share|cite|improve this answer









            $endgroup$



            Clearly, $xnotequiv2pmod q (1)$



            Let $xequiv2ypmod qimplies y^5equiv1pmod q$ for odd prime $q$



            $implies(5,q-1)mid$ord$_qy$



            If $5nmid(q-1),(5,q-1)=1implies1mid$ord$_qyimplies$ord$_qy=1implies y^1equiv1pmod q$



            $implies xequiv2qequiv2pmod q$ which contradicts $(1)$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 26 at 14:33









            lab bhattacharjeelab bhattacharjee

            227k15158276




            227k15158276












            • $begingroup$
              I have two question. First why $x notequiv 2 (mod q)$. Second what is y?
              $endgroup$
              – Michael Brockhausen
              Jan 26 at 15:23










            • $begingroup$
              @MichaelBrockhausen, Observe that $q$ divides $y^5-2^5$. What are the roots of $y^5-2^5=0$ and those of $$dfrac{y^5-2^5}{y-2}=0$$ For the second question, $xequiv2ypmod q$
              $endgroup$
              – lab bhattacharjee
              Jan 26 at 15:33




















            • $begingroup$
              I have two question. First why $x notequiv 2 (mod q)$. Second what is y?
              $endgroup$
              – Michael Brockhausen
              Jan 26 at 15:23










            • $begingroup$
              @MichaelBrockhausen, Observe that $q$ divides $y^5-2^5$. What are the roots of $y^5-2^5=0$ and those of $$dfrac{y^5-2^5}{y-2}=0$$ For the second question, $xequiv2ypmod q$
              $endgroup$
              – lab bhattacharjee
              Jan 26 at 15:33


















            $begingroup$
            I have two question. First why $x notequiv 2 (mod q)$. Second what is y?
            $endgroup$
            – Michael Brockhausen
            Jan 26 at 15:23




            $begingroup$
            I have two question. First why $x notequiv 2 (mod q)$. Second what is y?
            $endgroup$
            – Michael Brockhausen
            Jan 26 at 15:23












            $begingroup$
            @MichaelBrockhausen, Observe that $q$ divides $y^5-2^5$. What are the roots of $y^5-2^5=0$ and those of $$dfrac{y^5-2^5}{y-2}=0$$ For the second question, $xequiv2ypmod q$
            $endgroup$
            – lab bhattacharjee
            Jan 26 at 15:33






            $begingroup$
            @MichaelBrockhausen, Observe that $q$ divides $y^5-2^5$. What are the roots of $y^5-2^5=0$ and those of $$dfrac{y^5-2^5}{y-2}=0$$ For the second question, $xequiv2ypmod q$
            $endgroup$
            – lab bhattacharjee
            Jan 26 at 15:33




















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088266%2fif-q-fracx5-25x-2-then-q-1-mod5%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith