Inequality related to a bijection $xmapsto |x|^{-2}x$












0












$begingroup$


Let $x,x'in mathbb{R}^d$ with usual norm.
begin{equation}
frac{|x-x'|}{(1+|x|)(1+|x'|)} leq left|frac{x}{|x|^2}-frac{x'}{|x'|^2}right|
end{equation}

I have read this inequality, however, fail to prove. I appreciate if one can demonstrate how it follows.










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Let $x,x'in mathbb{R}^d$ with usual norm.
    begin{equation}
    frac{|x-x'|}{(1+|x|)(1+|x'|)} leq left|frac{x}{|x|^2}-frac{x'}{|x'|^2}right|
    end{equation}

    I have read this inequality, however, fail to prove. I appreciate if one can demonstrate how it follows.










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Let $x,x'in mathbb{R}^d$ with usual norm.
      begin{equation}
      frac{|x-x'|}{(1+|x|)(1+|x'|)} leq left|frac{x}{|x|^2}-frac{x'}{|x'|^2}right|
      end{equation}

      I have read this inequality, however, fail to prove. I appreciate if one can demonstrate how it follows.










      share|cite|improve this question











      $endgroup$




      Let $x,x'in mathbb{R}^d$ with usual norm.
      begin{equation}
      frac{|x-x'|}{(1+|x|)(1+|x'|)} leq left|frac{x}{|x|^2}-frac{x'}{|x'|^2}right|
      end{equation}

      I have read this inequality, however, fail to prove. I appreciate if one can demonstrate how it follows.







      inequality inner-product-space absolute-value






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 28 at 10:38









      Michael Rozenberg

      109k1896201




      109k1896201










      asked Jan 28 at 4:58









      Jo'Jo'

      306110




      306110






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          We need to prove that
          $$left(frac{|x-x'|}{(1+|x|)(1+|x'|)}right)^2 leq left|frac{1}{|x|^2}x-frac{1}{|x'|^2}x'right|^2$$ or
          $$frac{|x|^2+|x'|^2-2xx'}{(1+|x|)^2(1+|x'|)^2}leqfrac{1}{|x|^2}+frac{1}{|x'|^2}-frac{2}{|x|^2|x'|^2}xx'$$ or
          $$(1+|x|)^2(1+|x'|)^2geq|x|^2|x'|^2,$$ which is obvious.






          share|cite|improve this answer











          $endgroup$





















            0












            $begingroup$

            begin{align*}
            left|frac{x}{|x|^2}-frac{y}{|y|^2}right|^2&=frac{1}{|x|^2}+frac{1}{|y|^2}-2frac{xcdot y}{|x|^2|y|^2}\
            &=frac{|x|^2+|y|^2-2xcdot y}{|x|^2|y|^2}\
            &=frac{|x-y|^2}{|x|^2|y|^2}\
            &gefrac{|x-y|^2}{(1+|x|)^2(1+|y|)^2}
            end{align*}






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Chrystomath.Second last line, correct?
              $endgroup$
              – Peter Szilas
              Jan 28 at 9:05











            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090496%2finequality-related-to-a-bijection-x-mapsto-x-2x%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            We need to prove that
            $$left(frac{|x-x'|}{(1+|x|)(1+|x'|)}right)^2 leq left|frac{1}{|x|^2}x-frac{1}{|x'|^2}x'right|^2$$ or
            $$frac{|x|^2+|x'|^2-2xx'}{(1+|x|)^2(1+|x'|)^2}leqfrac{1}{|x|^2}+frac{1}{|x'|^2}-frac{2}{|x|^2|x'|^2}xx'$$ or
            $$(1+|x|)^2(1+|x'|)^2geq|x|^2|x'|^2,$$ which is obvious.






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              We need to prove that
              $$left(frac{|x-x'|}{(1+|x|)(1+|x'|)}right)^2 leq left|frac{1}{|x|^2}x-frac{1}{|x'|^2}x'right|^2$$ or
              $$frac{|x|^2+|x'|^2-2xx'}{(1+|x|)^2(1+|x'|)^2}leqfrac{1}{|x|^2}+frac{1}{|x'|^2}-frac{2}{|x|^2|x'|^2}xx'$$ or
              $$(1+|x|)^2(1+|x'|)^2geq|x|^2|x'|^2,$$ which is obvious.






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                We need to prove that
                $$left(frac{|x-x'|}{(1+|x|)(1+|x'|)}right)^2 leq left|frac{1}{|x|^2}x-frac{1}{|x'|^2}x'right|^2$$ or
                $$frac{|x|^2+|x'|^2-2xx'}{(1+|x|)^2(1+|x'|)^2}leqfrac{1}{|x|^2}+frac{1}{|x'|^2}-frac{2}{|x|^2|x'|^2}xx'$$ or
                $$(1+|x|)^2(1+|x'|)^2geq|x|^2|x'|^2,$$ which is obvious.






                share|cite|improve this answer











                $endgroup$



                We need to prove that
                $$left(frac{|x-x'|}{(1+|x|)(1+|x'|)}right)^2 leq left|frac{1}{|x|^2}x-frac{1}{|x'|^2}x'right|^2$$ or
                $$frac{|x|^2+|x'|^2-2xx'}{(1+|x|)^2(1+|x'|)^2}leqfrac{1}{|x|^2}+frac{1}{|x'|^2}-frac{2}{|x|^2|x'|^2}xx'$$ or
                $$(1+|x|)^2(1+|x'|)^2geq|x|^2|x'|^2,$$ which is obvious.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 28 at 5:28

























                answered Jan 28 at 5:12









                Michael RozenbergMichael Rozenberg

                109k1896201




                109k1896201























                    0












                    $begingroup$

                    begin{align*}
                    left|frac{x}{|x|^2}-frac{y}{|y|^2}right|^2&=frac{1}{|x|^2}+frac{1}{|y|^2}-2frac{xcdot y}{|x|^2|y|^2}\
                    &=frac{|x|^2+|y|^2-2xcdot y}{|x|^2|y|^2}\
                    &=frac{|x-y|^2}{|x|^2|y|^2}\
                    &gefrac{|x-y|^2}{(1+|x|)^2(1+|y|)^2}
                    end{align*}






                    share|cite|improve this answer











                    $endgroup$













                    • $begingroup$
                      Chrystomath.Second last line, correct?
                      $endgroup$
                      – Peter Szilas
                      Jan 28 at 9:05
















                    0












                    $begingroup$

                    begin{align*}
                    left|frac{x}{|x|^2}-frac{y}{|y|^2}right|^2&=frac{1}{|x|^2}+frac{1}{|y|^2}-2frac{xcdot y}{|x|^2|y|^2}\
                    &=frac{|x|^2+|y|^2-2xcdot y}{|x|^2|y|^2}\
                    &=frac{|x-y|^2}{|x|^2|y|^2}\
                    &gefrac{|x-y|^2}{(1+|x|)^2(1+|y|)^2}
                    end{align*}






                    share|cite|improve this answer











                    $endgroup$













                    • $begingroup$
                      Chrystomath.Second last line, correct?
                      $endgroup$
                      – Peter Szilas
                      Jan 28 at 9:05














                    0












                    0








                    0





                    $begingroup$

                    begin{align*}
                    left|frac{x}{|x|^2}-frac{y}{|y|^2}right|^2&=frac{1}{|x|^2}+frac{1}{|y|^2}-2frac{xcdot y}{|x|^2|y|^2}\
                    &=frac{|x|^2+|y|^2-2xcdot y}{|x|^2|y|^2}\
                    &=frac{|x-y|^2}{|x|^2|y|^2}\
                    &gefrac{|x-y|^2}{(1+|x|)^2(1+|y|)^2}
                    end{align*}






                    share|cite|improve this answer











                    $endgroup$



                    begin{align*}
                    left|frac{x}{|x|^2}-frac{y}{|y|^2}right|^2&=frac{1}{|x|^2}+frac{1}{|y|^2}-2frac{xcdot y}{|x|^2|y|^2}\
                    &=frac{|x|^2+|y|^2-2xcdot y}{|x|^2|y|^2}\
                    &=frac{|x-y|^2}{|x|^2|y|^2}\
                    &gefrac{|x-y|^2}{(1+|x|)^2(1+|y|)^2}
                    end{align*}







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Jan 29 at 7:22

























                    answered Jan 28 at 8:05









                    ChrystomathChrystomath

                    1,838513




                    1,838513












                    • $begingroup$
                      Chrystomath.Second last line, correct?
                      $endgroup$
                      – Peter Szilas
                      Jan 28 at 9:05


















                    • $begingroup$
                      Chrystomath.Second last line, correct?
                      $endgroup$
                      – Peter Szilas
                      Jan 28 at 9:05
















                    $begingroup$
                    Chrystomath.Second last line, correct?
                    $endgroup$
                    – Peter Szilas
                    Jan 28 at 9:05




                    $begingroup$
                    Chrystomath.Second last line, correct?
                    $endgroup$
                    – Peter Szilas
                    Jan 28 at 9:05


















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090496%2finequality-related-to-a-bijection-x-mapsto-x-2x%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    Npm cannot find a required file even through it is in the searched directory

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith