Inequality related to a bijection $xmapsto |x|^{-2}x$
$begingroup$
Let $x,x'in mathbb{R}^d$ with usual norm.
begin{equation}
frac{|x-x'|}{(1+|x|)(1+|x'|)} leq left|frac{x}{|x|^2}-frac{x'}{|x'|^2}right|
end{equation}
I have read this inequality, however, fail to prove. I appreciate if one can demonstrate how it follows.
inequality inner-product-space absolute-value
$endgroup$
add a comment |
$begingroup$
Let $x,x'in mathbb{R}^d$ with usual norm.
begin{equation}
frac{|x-x'|}{(1+|x|)(1+|x'|)} leq left|frac{x}{|x|^2}-frac{x'}{|x'|^2}right|
end{equation}
I have read this inequality, however, fail to prove. I appreciate if one can demonstrate how it follows.
inequality inner-product-space absolute-value
$endgroup$
add a comment |
$begingroup$
Let $x,x'in mathbb{R}^d$ with usual norm.
begin{equation}
frac{|x-x'|}{(1+|x|)(1+|x'|)} leq left|frac{x}{|x|^2}-frac{x'}{|x'|^2}right|
end{equation}
I have read this inequality, however, fail to prove. I appreciate if one can demonstrate how it follows.
inequality inner-product-space absolute-value
$endgroup$
Let $x,x'in mathbb{R}^d$ with usual norm.
begin{equation}
frac{|x-x'|}{(1+|x|)(1+|x'|)} leq left|frac{x}{|x|^2}-frac{x'}{|x'|^2}right|
end{equation}
I have read this inequality, however, fail to prove. I appreciate if one can demonstrate how it follows.
inequality inner-product-space absolute-value
inequality inner-product-space absolute-value
edited Jan 28 at 10:38
Michael Rozenberg
109k1896201
109k1896201
asked Jan 28 at 4:58
Jo'Jo'
306110
306110
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
We need to prove that
$$left(frac{|x-x'|}{(1+|x|)(1+|x'|)}right)^2 leq left|frac{1}{|x|^2}x-frac{1}{|x'|^2}x'right|^2$$ or
$$frac{|x|^2+|x'|^2-2xx'}{(1+|x|)^2(1+|x'|)^2}leqfrac{1}{|x|^2}+frac{1}{|x'|^2}-frac{2}{|x|^2|x'|^2}xx'$$ or
$$(1+|x|)^2(1+|x'|)^2geq|x|^2|x'|^2,$$ which is obvious.
$endgroup$
add a comment |
$begingroup$
begin{align*}
left|frac{x}{|x|^2}-frac{y}{|y|^2}right|^2&=frac{1}{|x|^2}+frac{1}{|y|^2}-2frac{xcdot y}{|x|^2|y|^2}\
&=frac{|x|^2+|y|^2-2xcdot y}{|x|^2|y|^2}\
&=frac{|x-y|^2}{|x|^2|y|^2}\
&gefrac{|x-y|^2}{(1+|x|)^2(1+|y|)^2}
end{align*}
$endgroup$
$begingroup$
Chrystomath.Second last line, correct?
$endgroup$
– Peter Szilas
Jan 28 at 9:05
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090496%2finequality-related-to-a-bijection-x-mapsto-x-2x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We need to prove that
$$left(frac{|x-x'|}{(1+|x|)(1+|x'|)}right)^2 leq left|frac{1}{|x|^2}x-frac{1}{|x'|^2}x'right|^2$$ or
$$frac{|x|^2+|x'|^2-2xx'}{(1+|x|)^2(1+|x'|)^2}leqfrac{1}{|x|^2}+frac{1}{|x'|^2}-frac{2}{|x|^2|x'|^2}xx'$$ or
$$(1+|x|)^2(1+|x'|)^2geq|x|^2|x'|^2,$$ which is obvious.
$endgroup$
add a comment |
$begingroup$
We need to prove that
$$left(frac{|x-x'|}{(1+|x|)(1+|x'|)}right)^2 leq left|frac{1}{|x|^2}x-frac{1}{|x'|^2}x'right|^2$$ or
$$frac{|x|^2+|x'|^2-2xx'}{(1+|x|)^2(1+|x'|)^2}leqfrac{1}{|x|^2}+frac{1}{|x'|^2}-frac{2}{|x|^2|x'|^2}xx'$$ or
$$(1+|x|)^2(1+|x'|)^2geq|x|^2|x'|^2,$$ which is obvious.
$endgroup$
add a comment |
$begingroup$
We need to prove that
$$left(frac{|x-x'|}{(1+|x|)(1+|x'|)}right)^2 leq left|frac{1}{|x|^2}x-frac{1}{|x'|^2}x'right|^2$$ or
$$frac{|x|^2+|x'|^2-2xx'}{(1+|x|)^2(1+|x'|)^2}leqfrac{1}{|x|^2}+frac{1}{|x'|^2}-frac{2}{|x|^2|x'|^2}xx'$$ or
$$(1+|x|)^2(1+|x'|)^2geq|x|^2|x'|^2,$$ which is obvious.
$endgroup$
We need to prove that
$$left(frac{|x-x'|}{(1+|x|)(1+|x'|)}right)^2 leq left|frac{1}{|x|^2}x-frac{1}{|x'|^2}x'right|^2$$ or
$$frac{|x|^2+|x'|^2-2xx'}{(1+|x|)^2(1+|x'|)^2}leqfrac{1}{|x|^2}+frac{1}{|x'|^2}-frac{2}{|x|^2|x'|^2}xx'$$ or
$$(1+|x|)^2(1+|x'|)^2geq|x|^2|x'|^2,$$ which is obvious.
edited Jan 28 at 5:28
answered Jan 28 at 5:12
Michael RozenbergMichael Rozenberg
109k1896201
109k1896201
add a comment |
add a comment |
$begingroup$
begin{align*}
left|frac{x}{|x|^2}-frac{y}{|y|^2}right|^2&=frac{1}{|x|^2}+frac{1}{|y|^2}-2frac{xcdot y}{|x|^2|y|^2}\
&=frac{|x|^2+|y|^2-2xcdot y}{|x|^2|y|^2}\
&=frac{|x-y|^2}{|x|^2|y|^2}\
&gefrac{|x-y|^2}{(1+|x|)^2(1+|y|)^2}
end{align*}
$endgroup$
$begingroup$
Chrystomath.Second last line, correct?
$endgroup$
– Peter Szilas
Jan 28 at 9:05
add a comment |
$begingroup$
begin{align*}
left|frac{x}{|x|^2}-frac{y}{|y|^2}right|^2&=frac{1}{|x|^2}+frac{1}{|y|^2}-2frac{xcdot y}{|x|^2|y|^2}\
&=frac{|x|^2+|y|^2-2xcdot y}{|x|^2|y|^2}\
&=frac{|x-y|^2}{|x|^2|y|^2}\
&gefrac{|x-y|^2}{(1+|x|)^2(1+|y|)^2}
end{align*}
$endgroup$
$begingroup$
Chrystomath.Second last line, correct?
$endgroup$
– Peter Szilas
Jan 28 at 9:05
add a comment |
$begingroup$
begin{align*}
left|frac{x}{|x|^2}-frac{y}{|y|^2}right|^2&=frac{1}{|x|^2}+frac{1}{|y|^2}-2frac{xcdot y}{|x|^2|y|^2}\
&=frac{|x|^2+|y|^2-2xcdot y}{|x|^2|y|^2}\
&=frac{|x-y|^2}{|x|^2|y|^2}\
&gefrac{|x-y|^2}{(1+|x|)^2(1+|y|)^2}
end{align*}
$endgroup$
begin{align*}
left|frac{x}{|x|^2}-frac{y}{|y|^2}right|^2&=frac{1}{|x|^2}+frac{1}{|y|^2}-2frac{xcdot y}{|x|^2|y|^2}\
&=frac{|x|^2+|y|^2-2xcdot y}{|x|^2|y|^2}\
&=frac{|x-y|^2}{|x|^2|y|^2}\
&gefrac{|x-y|^2}{(1+|x|)^2(1+|y|)^2}
end{align*}
edited Jan 29 at 7:22
answered Jan 28 at 8:05
ChrystomathChrystomath
1,838513
1,838513
$begingroup$
Chrystomath.Second last line, correct?
$endgroup$
– Peter Szilas
Jan 28 at 9:05
add a comment |
$begingroup$
Chrystomath.Second last line, correct?
$endgroup$
– Peter Szilas
Jan 28 at 9:05
$begingroup$
Chrystomath.Second last line, correct?
$endgroup$
– Peter Szilas
Jan 28 at 9:05
$begingroup$
Chrystomath.Second last line, correct?
$endgroup$
– Peter Szilas
Jan 28 at 9:05
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090496%2finequality-related-to-a-bijection-x-mapsto-x-2x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown