isomorphism $R oplus R / langle (a,b) rangle simeq R$
$begingroup$
Let $R$ be a commutative ring. Let $(a,b) in R oplus R$, where $a,b in R$ are not units. Is it possible to show that there is never an isomorphism $R to (Roplus R)/langle (a,b) rangle$ of $R$-modules?
abstract-algebra ring-theory modules
$endgroup$
|
show 2 more comments
$begingroup$
Let $R$ be a commutative ring. Let $(a,b) in R oplus R$, where $a,b in R$ are not units. Is it possible to show that there is never an isomorphism $R to (Roplus R)/langle (a,b) rangle$ of $R$-modules?
abstract-algebra ring-theory modules
$endgroup$
$begingroup$
Surely there can be an isomorphism?
$endgroup$
– Lord Shark the Unknown
Jan 26 at 12:09
$begingroup$
@LordSharktheUnknown Can you think of an example?
$endgroup$
– zinR
Jan 26 at 14:18
2
$begingroup$
Take $R$ to be your favorite ring (say $k[x]$), pick $ain R$ such that neither $a$ nor $b=1-a$ is a unit.
$endgroup$
– Mohan
Jan 26 at 14:41
2
$begingroup$
$R=Bbb Z$, $(a,b)=(2,3)$.
$endgroup$
– Lord Shark the Unknown
Jan 26 at 14:59
$begingroup$
$R = mathbb{Z}/pmathbb{Z}$, $a = b = 1$. Then $|Roplus R/langle(a,b)rangle| = p$, hence $R oplus R/langle(a,b)ranglecong R$, simply because there are only two rings of order $p$, and we have non-zero multiplication in $Roplus R/langle(a,b)rangle$.
$endgroup$
– user3482749
Jan 26 at 17:14
|
show 2 more comments
$begingroup$
Let $R$ be a commutative ring. Let $(a,b) in R oplus R$, where $a,b in R$ are not units. Is it possible to show that there is never an isomorphism $R to (Roplus R)/langle (a,b) rangle$ of $R$-modules?
abstract-algebra ring-theory modules
$endgroup$
Let $R$ be a commutative ring. Let $(a,b) in R oplus R$, where $a,b in R$ are not units. Is it possible to show that there is never an isomorphism $R to (Roplus R)/langle (a,b) rangle$ of $R$-modules?
abstract-algebra ring-theory modules
abstract-algebra ring-theory modules
edited Jan 26 at 21:07
user26857
39.4k124183
39.4k124183
asked Jan 26 at 11:28
zinRzinR
688
688
$begingroup$
Surely there can be an isomorphism?
$endgroup$
– Lord Shark the Unknown
Jan 26 at 12:09
$begingroup$
@LordSharktheUnknown Can you think of an example?
$endgroup$
– zinR
Jan 26 at 14:18
2
$begingroup$
Take $R$ to be your favorite ring (say $k[x]$), pick $ain R$ such that neither $a$ nor $b=1-a$ is a unit.
$endgroup$
– Mohan
Jan 26 at 14:41
2
$begingroup$
$R=Bbb Z$, $(a,b)=(2,3)$.
$endgroup$
– Lord Shark the Unknown
Jan 26 at 14:59
$begingroup$
$R = mathbb{Z}/pmathbb{Z}$, $a = b = 1$. Then $|Roplus R/langle(a,b)rangle| = p$, hence $R oplus R/langle(a,b)ranglecong R$, simply because there are only two rings of order $p$, and we have non-zero multiplication in $Roplus R/langle(a,b)rangle$.
$endgroup$
– user3482749
Jan 26 at 17:14
|
show 2 more comments
$begingroup$
Surely there can be an isomorphism?
$endgroup$
– Lord Shark the Unknown
Jan 26 at 12:09
$begingroup$
@LordSharktheUnknown Can you think of an example?
$endgroup$
– zinR
Jan 26 at 14:18
2
$begingroup$
Take $R$ to be your favorite ring (say $k[x]$), pick $ain R$ such that neither $a$ nor $b=1-a$ is a unit.
$endgroup$
– Mohan
Jan 26 at 14:41
2
$begingroup$
$R=Bbb Z$, $(a,b)=(2,3)$.
$endgroup$
– Lord Shark the Unknown
Jan 26 at 14:59
$begingroup$
$R = mathbb{Z}/pmathbb{Z}$, $a = b = 1$. Then $|Roplus R/langle(a,b)rangle| = p$, hence $R oplus R/langle(a,b)ranglecong R$, simply because there are only two rings of order $p$, and we have non-zero multiplication in $Roplus R/langle(a,b)rangle$.
$endgroup$
– user3482749
Jan 26 at 17:14
$begingroup$
Surely there can be an isomorphism?
$endgroup$
– Lord Shark the Unknown
Jan 26 at 12:09
$begingroup$
Surely there can be an isomorphism?
$endgroup$
– Lord Shark the Unknown
Jan 26 at 12:09
$begingroup$
@LordSharktheUnknown Can you think of an example?
$endgroup$
– zinR
Jan 26 at 14:18
$begingroup$
@LordSharktheUnknown Can you think of an example?
$endgroup$
– zinR
Jan 26 at 14:18
2
2
$begingroup$
Take $R$ to be your favorite ring (say $k[x]$), pick $ain R$ such that neither $a$ nor $b=1-a$ is a unit.
$endgroup$
– Mohan
Jan 26 at 14:41
$begingroup$
Take $R$ to be your favorite ring (say $k[x]$), pick $ain R$ such that neither $a$ nor $b=1-a$ is a unit.
$endgroup$
– Mohan
Jan 26 at 14:41
2
2
$begingroup$
$R=Bbb Z$, $(a,b)=(2,3)$.
$endgroup$
– Lord Shark the Unknown
Jan 26 at 14:59
$begingroup$
$R=Bbb Z$, $(a,b)=(2,3)$.
$endgroup$
– Lord Shark the Unknown
Jan 26 at 14:59
$begingroup$
$R = mathbb{Z}/pmathbb{Z}$, $a = b = 1$. Then $|Roplus R/langle(a,b)rangle| = p$, hence $R oplus R/langle(a,b)ranglecong R$, simply because there are only two rings of order $p$, and we have non-zero multiplication in $Roplus R/langle(a,b)rangle$.
$endgroup$
– user3482749
Jan 26 at 17:14
$begingroup$
$R = mathbb{Z}/pmathbb{Z}$, $a = b = 1$. Then $|Roplus R/langle(a,b)rangle| = p$, hence $R oplus R/langle(a,b)ranglecong R$, simply because there are only two rings of order $p$, and we have non-zero multiplication in $Roplus R/langle(a,b)rangle$.
$endgroup$
– user3482749
Jan 26 at 17:14
|
show 2 more comments
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088145%2fisomorphism-r-oplus-r-langle-a-b-rangle-simeq-r%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3088145%2fisomorphism-r-oplus-r-langle-a-b-rangle-simeq-r%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Surely there can be an isomorphism?
$endgroup$
– Lord Shark the Unknown
Jan 26 at 12:09
$begingroup$
@LordSharktheUnknown Can you think of an example?
$endgroup$
– zinR
Jan 26 at 14:18
2
$begingroup$
Take $R$ to be your favorite ring (say $k[x]$), pick $ain R$ such that neither $a$ nor $b=1-a$ is a unit.
$endgroup$
– Mohan
Jan 26 at 14:41
2
$begingroup$
$R=Bbb Z$, $(a,b)=(2,3)$.
$endgroup$
– Lord Shark the Unknown
Jan 26 at 14:59
$begingroup$
$R = mathbb{Z}/pmathbb{Z}$, $a = b = 1$. Then $|Roplus R/langle(a,b)rangle| = p$, hence $R oplus R/langle(a,b)ranglecong R$, simply because there are only two rings of order $p$, and we have non-zero multiplication in $Roplus R/langle(a,b)rangle$.
$endgroup$
– user3482749
Jan 26 at 17:14