Lagrange polynomial $x^n$ coefficient
$begingroup$
How can we show using Lagrange interpolation polynomial that
$$sum_{i=0}^n y_i prod_{j=0, jne i}^n frac{1}{x_i-x_j}$$
is the coefficient of $x^{n}$?
I know that $f[x_0,x_1, .. x_n]$ is the coefficient of $x^{n}$ in Newton polynomial $$sum_{i=0}^n f[x_0,x_1, .. x_i] prod_{j=0, }^{i-1} (x-x_i)$$
So $$bigg[f[x_0,x_1,..x_n]bigg] * x^n $$should be equal (?) to
$$bigg[sum_{i=0}^n y_i prod_{j=0, jne i}^n frac{1}{x_i-x_j}bigg] * x^n $$ There is possible to show that using above facts?
numerical-methods interpolation lagrange-interpolation
$endgroup$
add a comment |
$begingroup$
How can we show using Lagrange interpolation polynomial that
$$sum_{i=0}^n y_i prod_{j=0, jne i}^n frac{1}{x_i-x_j}$$
is the coefficient of $x^{n}$?
I know that $f[x_0,x_1, .. x_n]$ is the coefficient of $x^{n}$ in Newton polynomial $$sum_{i=0}^n f[x_0,x_1, .. x_i] prod_{j=0, }^{i-1} (x-x_i)$$
So $$bigg[f[x_0,x_1,..x_n]bigg] * x^n $$should be equal (?) to
$$bigg[sum_{i=0}^n y_i prod_{j=0, jne i}^n frac{1}{x_i-x_j}bigg] * x^n $$ There is possible to show that using above facts?
numerical-methods interpolation lagrange-interpolation
$endgroup$
add a comment |
$begingroup$
How can we show using Lagrange interpolation polynomial that
$$sum_{i=0}^n y_i prod_{j=0, jne i}^n frac{1}{x_i-x_j}$$
is the coefficient of $x^{n}$?
I know that $f[x_0,x_1, .. x_n]$ is the coefficient of $x^{n}$ in Newton polynomial $$sum_{i=0}^n f[x_0,x_1, .. x_i] prod_{j=0, }^{i-1} (x-x_i)$$
So $$bigg[f[x_0,x_1,..x_n]bigg] * x^n $$should be equal (?) to
$$bigg[sum_{i=0}^n y_i prod_{j=0, jne i}^n frac{1}{x_i-x_j}bigg] * x^n $$ There is possible to show that using above facts?
numerical-methods interpolation lagrange-interpolation
$endgroup$
How can we show using Lagrange interpolation polynomial that
$$sum_{i=0}^n y_i prod_{j=0, jne i}^n frac{1}{x_i-x_j}$$
is the coefficient of $x^{n}$?
I know that $f[x_0,x_1, .. x_n]$ is the coefficient of $x^{n}$ in Newton polynomial $$sum_{i=0}^n f[x_0,x_1, .. x_i] prod_{j=0, }^{i-1} (x-x_i)$$
So $$bigg[f[x_0,x_1,..x_n]bigg] * x^n $$should be equal (?) to
$$bigg[sum_{i=0}^n y_i prod_{j=0, jne i}^n frac{1}{x_i-x_j}bigg] * x^n $$ There is possible to show that using above facts?
numerical-methods interpolation lagrange-interpolation
numerical-methods interpolation lagrange-interpolation
edited Feb 5 at 9:18
Max
9211318
9211318
asked Jan 27 at 13:15


MarkMark
63
63
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The (interpolation)polynomial $P_n$ can be written as $sum_{i=0}^nC_ix^i$ (Monomial basis),
and $C_n$ can be expressed as: $C_n = sum^n_{i=0}y_iprod^n_{j=0,jneq i}frac{1}{x_i-x_j}$
Proof from Langrange-interpolation:
$L_n = sum^n_{i=0}y_iprod^n_{j=0,jneq i}frac{x-x_j}{x_i-x_j}$
If we expand the product $(x-x_0)...(x-x_{n_1})$ to $x^n + ...x^{n-1} + etc.$
And we only look at the $x^n$ component, $C_n$ follows.
The same holds up for Newton-interpolation:
$N_n = sum_{i=0}^nf[x_0,...,x_i](x-x_0)...(x-x_{i-1})$
Then we get: $C_n = f[x_0,...,x_n]$.
Thus, written differently:
$f[x_0,...,x_n] = sum^n_{i=0}frac{y_i}{prod^n_{j=0,jneq i}(x_i-x_j)}$ (https://en.wikipedia.org/wiki/Divided_differences)
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089548%2flagrange-polynomial-xn-coefficient%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The (interpolation)polynomial $P_n$ can be written as $sum_{i=0}^nC_ix^i$ (Monomial basis),
and $C_n$ can be expressed as: $C_n = sum^n_{i=0}y_iprod^n_{j=0,jneq i}frac{1}{x_i-x_j}$
Proof from Langrange-interpolation:
$L_n = sum^n_{i=0}y_iprod^n_{j=0,jneq i}frac{x-x_j}{x_i-x_j}$
If we expand the product $(x-x_0)...(x-x_{n_1})$ to $x^n + ...x^{n-1} + etc.$
And we only look at the $x^n$ component, $C_n$ follows.
The same holds up for Newton-interpolation:
$N_n = sum_{i=0}^nf[x_0,...,x_i](x-x_0)...(x-x_{i-1})$
Then we get: $C_n = f[x_0,...,x_n]$.
Thus, written differently:
$f[x_0,...,x_n] = sum^n_{i=0}frac{y_i}{prod^n_{j=0,jneq i}(x_i-x_j)}$ (https://en.wikipedia.org/wiki/Divided_differences)
$endgroup$
add a comment |
$begingroup$
The (interpolation)polynomial $P_n$ can be written as $sum_{i=0}^nC_ix^i$ (Monomial basis),
and $C_n$ can be expressed as: $C_n = sum^n_{i=0}y_iprod^n_{j=0,jneq i}frac{1}{x_i-x_j}$
Proof from Langrange-interpolation:
$L_n = sum^n_{i=0}y_iprod^n_{j=0,jneq i}frac{x-x_j}{x_i-x_j}$
If we expand the product $(x-x_0)...(x-x_{n_1})$ to $x^n + ...x^{n-1} + etc.$
And we only look at the $x^n$ component, $C_n$ follows.
The same holds up for Newton-interpolation:
$N_n = sum_{i=0}^nf[x_0,...,x_i](x-x_0)...(x-x_{i-1})$
Then we get: $C_n = f[x_0,...,x_n]$.
Thus, written differently:
$f[x_0,...,x_n] = sum^n_{i=0}frac{y_i}{prod^n_{j=0,jneq i}(x_i-x_j)}$ (https://en.wikipedia.org/wiki/Divided_differences)
$endgroup$
add a comment |
$begingroup$
The (interpolation)polynomial $P_n$ can be written as $sum_{i=0}^nC_ix^i$ (Monomial basis),
and $C_n$ can be expressed as: $C_n = sum^n_{i=0}y_iprod^n_{j=0,jneq i}frac{1}{x_i-x_j}$
Proof from Langrange-interpolation:
$L_n = sum^n_{i=0}y_iprod^n_{j=0,jneq i}frac{x-x_j}{x_i-x_j}$
If we expand the product $(x-x_0)...(x-x_{n_1})$ to $x^n + ...x^{n-1} + etc.$
And we only look at the $x^n$ component, $C_n$ follows.
The same holds up for Newton-interpolation:
$N_n = sum_{i=0}^nf[x_0,...,x_i](x-x_0)...(x-x_{i-1})$
Then we get: $C_n = f[x_0,...,x_n]$.
Thus, written differently:
$f[x_0,...,x_n] = sum^n_{i=0}frac{y_i}{prod^n_{j=0,jneq i}(x_i-x_j)}$ (https://en.wikipedia.org/wiki/Divided_differences)
$endgroup$
The (interpolation)polynomial $P_n$ can be written as $sum_{i=0}^nC_ix^i$ (Monomial basis),
and $C_n$ can be expressed as: $C_n = sum^n_{i=0}y_iprod^n_{j=0,jneq i}frac{1}{x_i-x_j}$
Proof from Langrange-interpolation:
$L_n = sum^n_{i=0}y_iprod^n_{j=0,jneq i}frac{x-x_j}{x_i-x_j}$
If we expand the product $(x-x_0)...(x-x_{n_1})$ to $x^n + ...x^{n-1} + etc.$
And we only look at the $x^n$ component, $C_n$ follows.
The same holds up for Newton-interpolation:
$N_n = sum_{i=0}^nf[x_0,...,x_i](x-x_0)...(x-x_{i-1})$
Then we get: $C_n = f[x_0,...,x_n]$.
Thus, written differently:
$f[x_0,...,x_n] = sum^n_{i=0}frac{y_i}{prod^n_{j=0,jneq i}(x_i-x_j)}$ (https://en.wikipedia.org/wiki/Divided_differences)
answered Feb 4 at 15:31
MaxMax
9211318
9211318
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089548%2flagrange-polynomial-xn-coefficient%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown