Lagrange polynomial $x^n$ coefficient












1












$begingroup$


How can we show using Lagrange interpolation polynomial that
$$sum_{i=0}^n y_i prod_{j=0, jne i}^n frac{1}{x_i-x_j}$$
is the coefficient of $x^{n}$?



I know that $f[x_0,x_1, .. x_n]$ is the coefficient of $x^{n}$ in Newton polynomial $$sum_{i=0}^n f[x_0,x_1, .. x_i] prod_{j=0, }^{i-1} (x-x_i)$$
So $$bigg[f[x_0,x_1,..x_n]bigg] * x^n $$should be equal (?) to
$$bigg[sum_{i=0}^n y_i prod_{j=0, jne i}^n frac{1}{x_i-x_j}bigg] * x^n $$ There is possible to show that using above facts?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    How can we show using Lagrange interpolation polynomial that
    $$sum_{i=0}^n y_i prod_{j=0, jne i}^n frac{1}{x_i-x_j}$$
    is the coefficient of $x^{n}$?



    I know that $f[x_0,x_1, .. x_n]$ is the coefficient of $x^{n}$ in Newton polynomial $$sum_{i=0}^n f[x_0,x_1, .. x_i] prod_{j=0, }^{i-1} (x-x_i)$$
    So $$bigg[f[x_0,x_1,..x_n]bigg] * x^n $$should be equal (?) to
    $$bigg[sum_{i=0}^n y_i prod_{j=0, jne i}^n frac{1}{x_i-x_j}bigg] * x^n $$ There is possible to show that using above facts?










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      How can we show using Lagrange interpolation polynomial that
      $$sum_{i=0}^n y_i prod_{j=0, jne i}^n frac{1}{x_i-x_j}$$
      is the coefficient of $x^{n}$?



      I know that $f[x_0,x_1, .. x_n]$ is the coefficient of $x^{n}$ in Newton polynomial $$sum_{i=0}^n f[x_0,x_1, .. x_i] prod_{j=0, }^{i-1} (x-x_i)$$
      So $$bigg[f[x_0,x_1,..x_n]bigg] * x^n $$should be equal (?) to
      $$bigg[sum_{i=0}^n y_i prod_{j=0, jne i}^n frac{1}{x_i-x_j}bigg] * x^n $$ There is possible to show that using above facts?










      share|cite|improve this question











      $endgroup$




      How can we show using Lagrange interpolation polynomial that
      $$sum_{i=0}^n y_i prod_{j=0, jne i}^n frac{1}{x_i-x_j}$$
      is the coefficient of $x^{n}$?



      I know that $f[x_0,x_1, .. x_n]$ is the coefficient of $x^{n}$ in Newton polynomial $$sum_{i=0}^n f[x_0,x_1, .. x_i] prod_{j=0, }^{i-1} (x-x_i)$$
      So $$bigg[f[x_0,x_1,..x_n]bigg] * x^n $$should be equal (?) to
      $$bigg[sum_{i=0}^n y_i prod_{j=0, jne i}^n frac{1}{x_i-x_j}bigg] * x^n $$ There is possible to show that using above facts?







      numerical-methods interpolation lagrange-interpolation






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Feb 5 at 9:18









      Max

      9211318




      9211318










      asked Jan 27 at 13:15









      MarkMark

      63




      63






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          The (interpolation)polynomial $P_n$ can be written as $sum_{i=0}^nC_ix^i$ (Monomial basis),



          and $C_n$ can be expressed as: $C_n = sum^n_{i=0}y_iprod^n_{j=0,jneq i}frac{1}{x_i-x_j}$



          Proof from Langrange-interpolation:



          $L_n = sum^n_{i=0}y_iprod^n_{j=0,jneq i}frac{x-x_j}{x_i-x_j}$



          If we expand the product $(x-x_0)...(x-x_{n_1})$ to $x^n + ...x^{n-1} + etc.$



          And we only look at the $x^n$ component, $C_n$ follows.



          The same holds up for Newton-interpolation:



          $N_n = sum_{i=0}^nf[x_0,...,x_i](x-x_0)...(x-x_{i-1})$



          Then we get: $C_n = f[x_0,...,x_n]$.



          Thus, written differently:



          $f[x_0,...,x_n] = sum^n_{i=0}frac{y_i}{prod^n_{j=0,jneq i}(x_i-x_j)}$ (https://en.wikipedia.org/wiki/Divided_differences)






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089548%2flagrange-polynomial-xn-coefficient%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            0












            $begingroup$

            The (interpolation)polynomial $P_n$ can be written as $sum_{i=0}^nC_ix^i$ (Monomial basis),



            and $C_n$ can be expressed as: $C_n = sum^n_{i=0}y_iprod^n_{j=0,jneq i}frac{1}{x_i-x_j}$



            Proof from Langrange-interpolation:



            $L_n = sum^n_{i=0}y_iprod^n_{j=0,jneq i}frac{x-x_j}{x_i-x_j}$



            If we expand the product $(x-x_0)...(x-x_{n_1})$ to $x^n + ...x^{n-1} + etc.$



            And we only look at the $x^n$ component, $C_n$ follows.



            The same holds up for Newton-interpolation:



            $N_n = sum_{i=0}^nf[x_0,...,x_i](x-x_0)...(x-x_{i-1})$



            Then we get: $C_n = f[x_0,...,x_n]$.



            Thus, written differently:



            $f[x_0,...,x_n] = sum^n_{i=0}frac{y_i}{prod^n_{j=0,jneq i}(x_i-x_j)}$ (https://en.wikipedia.org/wiki/Divided_differences)






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              The (interpolation)polynomial $P_n$ can be written as $sum_{i=0}^nC_ix^i$ (Monomial basis),



              and $C_n$ can be expressed as: $C_n = sum^n_{i=0}y_iprod^n_{j=0,jneq i}frac{1}{x_i-x_j}$



              Proof from Langrange-interpolation:



              $L_n = sum^n_{i=0}y_iprod^n_{j=0,jneq i}frac{x-x_j}{x_i-x_j}$



              If we expand the product $(x-x_0)...(x-x_{n_1})$ to $x^n + ...x^{n-1} + etc.$



              And we only look at the $x^n$ component, $C_n$ follows.



              The same holds up for Newton-interpolation:



              $N_n = sum_{i=0}^nf[x_0,...,x_i](x-x_0)...(x-x_{i-1})$



              Then we get: $C_n = f[x_0,...,x_n]$.



              Thus, written differently:



              $f[x_0,...,x_n] = sum^n_{i=0}frac{y_i}{prod^n_{j=0,jneq i}(x_i-x_j)}$ (https://en.wikipedia.org/wiki/Divided_differences)






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                The (interpolation)polynomial $P_n$ can be written as $sum_{i=0}^nC_ix^i$ (Monomial basis),



                and $C_n$ can be expressed as: $C_n = sum^n_{i=0}y_iprod^n_{j=0,jneq i}frac{1}{x_i-x_j}$



                Proof from Langrange-interpolation:



                $L_n = sum^n_{i=0}y_iprod^n_{j=0,jneq i}frac{x-x_j}{x_i-x_j}$



                If we expand the product $(x-x_0)...(x-x_{n_1})$ to $x^n + ...x^{n-1} + etc.$



                And we only look at the $x^n$ component, $C_n$ follows.



                The same holds up for Newton-interpolation:



                $N_n = sum_{i=0}^nf[x_0,...,x_i](x-x_0)...(x-x_{i-1})$



                Then we get: $C_n = f[x_0,...,x_n]$.



                Thus, written differently:



                $f[x_0,...,x_n] = sum^n_{i=0}frac{y_i}{prod^n_{j=0,jneq i}(x_i-x_j)}$ (https://en.wikipedia.org/wiki/Divided_differences)






                share|cite|improve this answer









                $endgroup$



                The (interpolation)polynomial $P_n$ can be written as $sum_{i=0}^nC_ix^i$ (Monomial basis),



                and $C_n$ can be expressed as: $C_n = sum^n_{i=0}y_iprod^n_{j=0,jneq i}frac{1}{x_i-x_j}$



                Proof from Langrange-interpolation:



                $L_n = sum^n_{i=0}y_iprod^n_{j=0,jneq i}frac{x-x_j}{x_i-x_j}$



                If we expand the product $(x-x_0)...(x-x_{n_1})$ to $x^n + ...x^{n-1} + etc.$



                And we only look at the $x^n$ component, $C_n$ follows.



                The same holds up for Newton-interpolation:



                $N_n = sum_{i=0}^nf[x_0,...,x_i](x-x_0)...(x-x_{i-1})$



                Then we get: $C_n = f[x_0,...,x_n]$.



                Thus, written differently:



                $f[x_0,...,x_n] = sum^n_{i=0}frac{y_i}{prod^n_{j=0,jneq i}(x_i-x_j)}$ (https://en.wikipedia.org/wiki/Divided_differences)







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Feb 4 at 15:31









                MaxMax

                9211318




                9211318






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089548%2flagrange-polynomial-xn-coefficient%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                    Npm cannot find a required file even through it is in the searched directory