Maximum vertical distance for concave function.
$begingroup$
I need to find the maximum vertical distance between a parabola $f(x)=3-x^2$ and a line $g(x)=x+1$ on the interval of $[-2,1]$. Usually I see people doing $g(x)-f(x)$, in other words subtracting the parabola from the line. But since in this case we have a concave function does it mean I have to do $f(x)-g(x)$? Or is it always "line - parabola"?
optimization quadratics
$endgroup$
add a comment |
$begingroup$
I need to find the maximum vertical distance between a parabola $f(x)=3-x^2$ and a line $g(x)=x+1$ on the interval of $[-2,1]$. Usually I see people doing $g(x)-f(x)$, in other words subtracting the parabola from the line. But since in this case we have a concave function does it mean I have to do $f(x)-g(x)$? Or is it always "line - parabola"?
optimization quadratics
$endgroup$
add a comment |
$begingroup$
I need to find the maximum vertical distance between a parabola $f(x)=3-x^2$ and a line $g(x)=x+1$ on the interval of $[-2,1]$. Usually I see people doing $g(x)-f(x)$, in other words subtracting the parabola from the line. But since in this case we have a concave function does it mean I have to do $f(x)-g(x)$? Or is it always "line - parabola"?
optimization quadratics
$endgroup$
I need to find the maximum vertical distance between a parabola $f(x)=3-x^2$ and a line $g(x)=x+1$ on the interval of $[-2,1]$. Usually I see people doing $g(x)-f(x)$, in other words subtracting the parabola from the line. But since in this case we have a concave function does it mean I have to do $f(x)-g(x)$? Or is it always "line - parabola"?
optimization quadratics
optimization quadratics
edited Jan 27 at 14:41
Michael Rozenberg
109k1896200
109k1896200
asked Jan 27 at 14:01
Nick202Nick202
605
605
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$f(x)geq g(x)$ for all $-2leq xleq1$ and
$$f(x)-g(x)=3-x^2-x-1=frac{9}{4}-frac{1}{4}-x-x^2=frac{9}{4}-left(frac{1}{2}+xright)^2leqfrac{9}{4}.$$
The equality occurs for $x=-frac{1}{2}in[-2,1]$,
which says that $frac{9}{4}$ is the answer.
$endgroup$
$begingroup$
Where did you get the $9/4$ and the $1/4$ from?
$endgroup$
– Nick202
Jan 27 at 14:21
$begingroup$
@Nick202 Just $frac{9}{4}-frac{1}{4}=2=3-1.$
$endgroup$
– Michael Rozenberg
Jan 27 at 14:22
add a comment |
$begingroup$
It does not matter. You should be thinking absolute distance: $$|f(x)-g(x)|=|g(x)-f(x)|$$
If you ignore the absolute value, you should be thinking about extremum instead of minimum or maximum, and then you are fine.
$endgroup$
$begingroup$
So I will get a composite function of $|-x^2-x+4|$?
$endgroup$
– Nick202
Jan 27 at 14:15
$begingroup$
$3-x^2-(x+1)=-x^2-x+2$. But yes.
$endgroup$
– Andrei
Jan 27 at 14:17
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089590%2fmaximum-vertical-distance-for-concave-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$f(x)geq g(x)$ for all $-2leq xleq1$ and
$$f(x)-g(x)=3-x^2-x-1=frac{9}{4}-frac{1}{4}-x-x^2=frac{9}{4}-left(frac{1}{2}+xright)^2leqfrac{9}{4}.$$
The equality occurs for $x=-frac{1}{2}in[-2,1]$,
which says that $frac{9}{4}$ is the answer.
$endgroup$
$begingroup$
Where did you get the $9/4$ and the $1/4$ from?
$endgroup$
– Nick202
Jan 27 at 14:21
$begingroup$
@Nick202 Just $frac{9}{4}-frac{1}{4}=2=3-1.$
$endgroup$
– Michael Rozenberg
Jan 27 at 14:22
add a comment |
$begingroup$
$f(x)geq g(x)$ for all $-2leq xleq1$ and
$$f(x)-g(x)=3-x^2-x-1=frac{9}{4}-frac{1}{4}-x-x^2=frac{9}{4}-left(frac{1}{2}+xright)^2leqfrac{9}{4}.$$
The equality occurs for $x=-frac{1}{2}in[-2,1]$,
which says that $frac{9}{4}$ is the answer.
$endgroup$
$begingroup$
Where did you get the $9/4$ and the $1/4$ from?
$endgroup$
– Nick202
Jan 27 at 14:21
$begingroup$
@Nick202 Just $frac{9}{4}-frac{1}{4}=2=3-1.$
$endgroup$
– Michael Rozenberg
Jan 27 at 14:22
add a comment |
$begingroup$
$f(x)geq g(x)$ for all $-2leq xleq1$ and
$$f(x)-g(x)=3-x^2-x-1=frac{9}{4}-frac{1}{4}-x-x^2=frac{9}{4}-left(frac{1}{2}+xright)^2leqfrac{9}{4}.$$
The equality occurs for $x=-frac{1}{2}in[-2,1]$,
which says that $frac{9}{4}$ is the answer.
$endgroup$
$f(x)geq g(x)$ for all $-2leq xleq1$ and
$$f(x)-g(x)=3-x^2-x-1=frac{9}{4}-frac{1}{4}-x-x^2=frac{9}{4}-left(frac{1}{2}+xright)^2leqfrac{9}{4}.$$
The equality occurs for $x=-frac{1}{2}in[-2,1]$,
which says that $frac{9}{4}$ is the answer.
answered Jan 27 at 14:19
Michael RozenbergMichael Rozenberg
109k1896200
109k1896200
$begingroup$
Where did you get the $9/4$ and the $1/4$ from?
$endgroup$
– Nick202
Jan 27 at 14:21
$begingroup$
@Nick202 Just $frac{9}{4}-frac{1}{4}=2=3-1.$
$endgroup$
– Michael Rozenberg
Jan 27 at 14:22
add a comment |
$begingroup$
Where did you get the $9/4$ and the $1/4$ from?
$endgroup$
– Nick202
Jan 27 at 14:21
$begingroup$
@Nick202 Just $frac{9}{4}-frac{1}{4}=2=3-1.$
$endgroup$
– Michael Rozenberg
Jan 27 at 14:22
$begingroup$
Where did you get the $9/4$ and the $1/4$ from?
$endgroup$
– Nick202
Jan 27 at 14:21
$begingroup$
Where did you get the $9/4$ and the $1/4$ from?
$endgroup$
– Nick202
Jan 27 at 14:21
$begingroup$
@Nick202 Just $frac{9}{4}-frac{1}{4}=2=3-1.$
$endgroup$
– Michael Rozenberg
Jan 27 at 14:22
$begingroup$
@Nick202 Just $frac{9}{4}-frac{1}{4}=2=3-1.$
$endgroup$
– Michael Rozenberg
Jan 27 at 14:22
add a comment |
$begingroup$
It does not matter. You should be thinking absolute distance: $$|f(x)-g(x)|=|g(x)-f(x)|$$
If you ignore the absolute value, you should be thinking about extremum instead of minimum or maximum, and then you are fine.
$endgroup$
$begingroup$
So I will get a composite function of $|-x^2-x+4|$?
$endgroup$
– Nick202
Jan 27 at 14:15
$begingroup$
$3-x^2-(x+1)=-x^2-x+2$. But yes.
$endgroup$
– Andrei
Jan 27 at 14:17
add a comment |
$begingroup$
It does not matter. You should be thinking absolute distance: $$|f(x)-g(x)|=|g(x)-f(x)|$$
If you ignore the absolute value, you should be thinking about extremum instead of minimum or maximum, and then you are fine.
$endgroup$
$begingroup$
So I will get a composite function of $|-x^2-x+4|$?
$endgroup$
– Nick202
Jan 27 at 14:15
$begingroup$
$3-x^2-(x+1)=-x^2-x+2$. But yes.
$endgroup$
– Andrei
Jan 27 at 14:17
add a comment |
$begingroup$
It does not matter. You should be thinking absolute distance: $$|f(x)-g(x)|=|g(x)-f(x)|$$
If you ignore the absolute value, you should be thinking about extremum instead of minimum or maximum, and then you are fine.
$endgroup$
It does not matter. You should be thinking absolute distance: $$|f(x)-g(x)|=|g(x)-f(x)|$$
If you ignore the absolute value, you should be thinking about extremum instead of minimum or maximum, and then you are fine.
answered Jan 27 at 14:13
AndreiAndrei
13.2k21230
13.2k21230
$begingroup$
So I will get a composite function of $|-x^2-x+4|$?
$endgroup$
– Nick202
Jan 27 at 14:15
$begingroup$
$3-x^2-(x+1)=-x^2-x+2$. But yes.
$endgroup$
– Andrei
Jan 27 at 14:17
add a comment |
$begingroup$
So I will get a composite function of $|-x^2-x+4|$?
$endgroup$
– Nick202
Jan 27 at 14:15
$begingroup$
$3-x^2-(x+1)=-x^2-x+2$. But yes.
$endgroup$
– Andrei
Jan 27 at 14:17
$begingroup$
So I will get a composite function of $|-x^2-x+4|$?
$endgroup$
– Nick202
Jan 27 at 14:15
$begingroup$
So I will get a composite function of $|-x^2-x+4|$?
$endgroup$
– Nick202
Jan 27 at 14:15
$begingroup$
$3-x^2-(x+1)=-x^2-x+2$. But yes.
$endgroup$
– Andrei
Jan 27 at 14:17
$begingroup$
$3-x^2-(x+1)=-x^2-x+2$. But yes.
$endgroup$
– Andrei
Jan 27 at 14:17
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089590%2fmaximum-vertical-distance-for-concave-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown