Maximum vertical distance for concave function.












0












$begingroup$


I need to find the maximum vertical distance between a parabola $f(x)=3-x^2$ and a line $g(x)=x+1$ on the interval of $[-2,1]$. Usually I see people doing $g(x)-f(x)$, in other words subtracting the parabola from the line. But since in this case we have a concave function does it mean I have to do $f(x)-g(x)$? Or is it always "line - parabola"?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    I need to find the maximum vertical distance between a parabola $f(x)=3-x^2$ and a line $g(x)=x+1$ on the interval of $[-2,1]$. Usually I see people doing $g(x)-f(x)$, in other words subtracting the parabola from the line. But since in this case we have a concave function does it mean I have to do $f(x)-g(x)$? Or is it always "line - parabola"?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      I need to find the maximum vertical distance between a parabola $f(x)=3-x^2$ and a line $g(x)=x+1$ on the interval of $[-2,1]$. Usually I see people doing $g(x)-f(x)$, in other words subtracting the parabola from the line. But since in this case we have a concave function does it mean I have to do $f(x)-g(x)$? Or is it always "line - parabola"?










      share|cite|improve this question











      $endgroup$




      I need to find the maximum vertical distance between a parabola $f(x)=3-x^2$ and a line $g(x)=x+1$ on the interval of $[-2,1]$. Usually I see people doing $g(x)-f(x)$, in other words subtracting the parabola from the line. But since in this case we have a concave function does it mean I have to do $f(x)-g(x)$? Or is it always "line - parabola"?







      optimization quadratics






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 27 at 14:41









      Michael Rozenberg

      109k1896200




      109k1896200










      asked Jan 27 at 14:01









      Nick202Nick202

      605




      605






















          2 Answers
          2






          active

          oldest

          votes


















          0












          $begingroup$

          $f(x)geq g(x)$ for all $-2leq xleq1$ and



          $$f(x)-g(x)=3-x^2-x-1=frac{9}{4}-frac{1}{4}-x-x^2=frac{9}{4}-left(frac{1}{2}+xright)^2leqfrac{9}{4}.$$
          The equality occurs for $x=-frac{1}{2}in[-2,1]$,



          which says that $frac{9}{4}$ is the answer.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Where did you get the $9/4$ and the $1/4$ from?
            $endgroup$
            – Nick202
            Jan 27 at 14:21










          • $begingroup$
            @Nick202 Just $frac{9}{4}-frac{1}{4}=2=3-1.$
            $endgroup$
            – Michael Rozenberg
            Jan 27 at 14:22





















          0












          $begingroup$

          It does not matter. You should be thinking absolute distance: $$|f(x)-g(x)|=|g(x)-f(x)|$$
          If you ignore the absolute value, you should be thinking about extremum instead of minimum or maximum, and then you are fine.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            So I will get a composite function of $|-x^2-x+4|$?
            $endgroup$
            – Nick202
            Jan 27 at 14:15










          • $begingroup$
            $3-x^2-(x+1)=-x^2-x+2$. But yes.
            $endgroup$
            – Andrei
            Jan 27 at 14:17











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089590%2fmaximum-vertical-distance-for-concave-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          $f(x)geq g(x)$ for all $-2leq xleq1$ and



          $$f(x)-g(x)=3-x^2-x-1=frac{9}{4}-frac{1}{4}-x-x^2=frac{9}{4}-left(frac{1}{2}+xright)^2leqfrac{9}{4}.$$
          The equality occurs for $x=-frac{1}{2}in[-2,1]$,



          which says that $frac{9}{4}$ is the answer.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Where did you get the $9/4$ and the $1/4$ from?
            $endgroup$
            – Nick202
            Jan 27 at 14:21










          • $begingroup$
            @Nick202 Just $frac{9}{4}-frac{1}{4}=2=3-1.$
            $endgroup$
            – Michael Rozenberg
            Jan 27 at 14:22


















          0












          $begingroup$

          $f(x)geq g(x)$ for all $-2leq xleq1$ and



          $$f(x)-g(x)=3-x^2-x-1=frac{9}{4}-frac{1}{4}-x-x^2=frac{9}{4}-left(frac{1}{2}+xright)^2leqfrac{9}{4}.$$
          The equality occurs for $x=-frac{1}{2}in[-2,1]$,



          which says that $frac{9}{4}$ is the answer.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Where did you get the $9/4$ and the $1/4$ from?
            $endgroup$
            – Nick202
            Jan 27 at 14:21










          • $begingroup$
            @Nick202 Just $frac{9}{4}-frac{1}{4}=2=3-1.$
            $endgroup$
            – Michael Rozenberg
            Jan 27 at 14:22
















          0












          0








          0





          $begingroup$

          $f(x)geq g(x)$ for all $-2leq xleq1$ and



          $$f(x)-g(x)=3-x^2-x-1=frac{9}{4}-frac{1}{4}-x-x^2=frac{9}{4}-left(frac{1}{2}+xright)^2leqfrac{9}{4}.$$
          The equality occurs for $x=-frac{1}{2}in[-2,1]$,



          which says that $frac{9}{4}$ is the answer.






          share|cite|improve this answer









          $endgroup$



          $f(x)geq g(x)$ for all $-2leq xleq1$ and



          $$f(x)-g(x)=3-x^2-x-1=frac{9}{4}-frac{1}{4}-x-x^2=frac{9}{4}-left(frac{1}{2}+xright)^2leqfrac{9}{4}.$$
          The equality occurs for $x=-frac{1}{2}in[-2,1]$,



          which says that $frac{9}{4}$ is the answer.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 27 at 14:19









          Michael RozenbergMichael Rozenberg

          109k1896200




          109k1896200












          • $begingroup$
            Where did you get the $9/4$ and the $1/4$ from?
            $endgroup$
            – Nick202
            Jan 27 at 14:21










          • $begingroup$
            @Nick202 Just $frac{9}{4}-frac{1}{4}=2=3-1.$
            $endgroup$
            – Michael Rozenberg
            Jan 27 at 14:22




















          • $begingroup$
            Where did you get the $9/4$ and the $1/4$ from?
            $endgroup$
            – Nick202
            Jan 27 at 14:21










          • $begingroup$
            @Nick202 Just $frac{9}{4}-frac{1}{4}=2=3-1.$
            $endgroup$
            – Michael Rozenberg
            Jan 27 at 14:22


















          $begingroup$
          Where did you get the $9/4$ and the $1/4$ from?
          $endgroup$
          – Nick202
          Jan 27 at 14:21




          $begingroup$
          Where did you get the $9/4$ and the $1/4$ from?
          $endgroup$
          – Nick202
          Jan 27 at 14:21












          $begingroup$
          @Nick202 Just $frac{9}{4}-frac{1}{4}=2=3-1.$
          $endgroup$
          – Michael Rozenberg
          Jan 27 at 14:22






          $begingroup$
          @Nick202 Just $frac{9}{4}-frac{1}{4}=2=3-1.$
          $endgroup$
          – Michael Rozenberg
          Jan 27 at 14:22













          0












          $begingroup$

          It does not matter. You should be thinking absolute distance: $$|f(x)-g(x)|=|g(x)-f(x)|$$
          If you ignore the absolute value, you should be thinking about extremum instead of minimum or maximum, and then you are fine.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            So I will get a composite function of $|-x^2-x+4|$?
            $endgroup$
            – Nick202
            Jan 27 at 14:15










          • $begingroup$
            $3-x^2-(x+1)=-x^2-x+2$. But yes.
            $endgroup$
            – Andrei
            Jan 27 at 14:17
















          0












          $begingroup$

          It does not matter. You should be thinking absolute distance: $$|f(x)-g(x)|=|g(x)-f(x)|$$
          If you ignore the absolute value, you should be thinking about extremum instead of minimum or maximum, and then you are fine.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            So I will get a composite function of $|-x^2-x+4|$?
            $endgroup$
            – Nick202
            Jan 27 at 14:15










          • $begingroup$
            $3-x^2-(x+1)=-x^2-x+2$. But yes.
            $endgroup$
            – Andrei
            Jan 27 at 14:17














          0












          0








          0





          $begingroup$

          It does not matter. You should be thinking absolute distance: $$|f(x)-g(x)|=|g(x)-f(x)|$$
          If you ignore the absolute value, you should be thinking about extremum instead of minimum or maximum, and then you are fine.






          share|cite|improve this answer









          $endgroup$



          It does not matter. You should be thinking absolute distance: $$|f(x)-g(x)|=|g(x)-f(x)|$$
          If you ignore the absolute value, you should be thinking about extremum instead of minimum or maximum, and then you are fine.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 27 at 14:13









          AndreiAndrei

          13.2k21230




          13.2k21230












          • $begingroup$
            So I will get a composite function of $|-x^2-x+4|$?
            $endgroup$
            – Nick202
            Jan 27 at 14:15










          • $begingroup$
            $3-x^2-(x+1)=-x^2-x+2$. But yes.
            $endgroup$
            – Andrei
            Jan 27 at 14:17


















          • $begingroup$
            So I will get a composite function of $|-x^2-x+4|$?
            $endgroup$
            – Nick202
            Jan 27 at 14:15










          • $begingroup$
            $3-x^2-(x+1)=-x^2-x+2$. But yes.
            $endgroup$
            – Andrei
            Jan 27 at 14:17
















          $begingroup$
          So I will get a composite function of $|-x^2-x+4|$?
          $endgroup$
          – Nick202
          Jan 27 at 14:15




          $begingroup$
          So I will get a composite function of $|-x^2-x+4|$?
          $endgroup$
          – Nick202
          Jan 27 at 14:15












          $begingroup$
          $3-x^2-(x+1)=-x^2-x+2$. But yes.
          $endgroup$
          – Andrei
          Jan 27 at 14:17




          $begingroup$
          $3-x^2-(x+1)=-x^2-x+2$. But yes.
          $endgroup$
          – Andrei
          Jan 27 at 14:17


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089590%2fmaximum-vertical-distance-for-concave-function%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

          How to fix TextFormField cause rebuild widget in Flutter