nondecreasing rearrangement is equimeasurable
$begingroup$
Two functions $f(x)$ and $g(x)$ are called equi-measurable if $m({x:f(x)>t})=m({x:g(x)>t})$.
Nondecreasing rearrangement of a function $f(x)$ is defined as $$f^*(tau)=inf{t>0:m({x:f(x)>t}leqtau}.$$
Prove that $f^*(tau)$ and $f(x)$ are equimeasurable.
real-analysis measure-theory decreasing-rearrangements
$endgroup$
add a comment |
$begingroup$
Two functions $f(x)$ and $g(x)$ are called equi-measurable if $m({x:f(x)>t})=m({x:g(x)>t})$.
Nondecreasing rearrangement of a function $f(x)$ is defined as $$f^*(tau)=inf{t>0:m({x:f(x)>t}leqtau}.$$
Prove that $f^*(tau)$ and $f(x)$ are equimeasurable.
real-analysis measure-theory decreasing-rearrangements
$endgroup$
10
$begingroup$
What are your thoughts on the matter? Do you see a point where to start?
$endgroup$
– t.b.
Dec 30 '11 at 21:40
$begingroup$
This proof can be found in "Classical Fourier Analysis", Grafakos, Proposition 1.4.5 (12)
$endgroup$
– Carucel
Feb 25 '16 at 10:51
add a comment |
$begingroup$
Two functions $f(x)$ and $g(x)$ are called equi-measurable if $m({x:f(x)>t})=m({x:g(x)>t})$.
Nondecreasing rearrangement of a function $f(x)$ is defined as $$f^*(tau)=inf{t>0:m({x:f(x)>t}leqtau}.$$
Prove that $f^*(tau)$ and $f(x)$ are equimeasurable.
real-analysis measure-theory decreasing-rearrangements
$endgroup$
Two functions $f(x)$ and $g(x)$ are called equi-measurable if $m({x:f(x)>t})=m({x:g(x)>t})$.
Nondecreasing rearrangement of a function $f(x)$ is defined as $$f^*(tau)=inf{t>0:m({x:f(x)>t}leqtau}.$$
Prove that $f^*(tau)$ and $f(x)$ are equimeasurable.
real-analysis measure-theory decreasing-rearrangements
real-analysis measure-theory decreasing-rearrangements
edited Nov 30 '17 at 13:18


Guy Fsone
17.2k43074
17.2k43074
asked Dec 30 '11 at 21:15
TimTim
562
562
10
$begingroup$
What are your thoughts on the matter? Do you see a point where to start?
$endgroup$
– t.b.
Dec 30 '11 at 21:40
$begingroup$
This proof can be found in "Classical Fourier Analysis", Grafakos, Proposition 1.4.5 (12)
$endgroup$
– Carucel
Feb 25 '16 at 10:51
add a comment |
10
$begingroup$
What are your thoughts on the matter? Do you see a point where to start?
$endgroup$
– t.b.
Dec 30 '11 at 21:40
$begingroup$
This proof can be found in "Classical Fourier Analysis", Grafakos, Proposition 1.4.5 (12)
$endgroup$
– Carucel
Feb 25 '16 at 10:51
10
10
$begingroup$
What are your thoughts on the matter? Do you see a point where to start?
$endgroup$
– t.b.
Dec 30 '11 at 21:40
$begingroup$
What are your thoughts on the matter? Do you see a point where to start?
$endgroup$
– t.b.
Dec 30 '11 at 21:40
$begingroup$
This proof can be found in "Classical Fourier Analysis", Grafakos, Proposition 1.4.5 (12)
$endgroup$
– Carucel
Feb 25 '16 at 10:51
$begingroup$
This proof can be found in "Classical Fourier Analysis", Grafakos, Proposition 1.4.5 (12)
$endgroup$
– Carucel
Feb 25 '16 at 10:51
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You want to prove that ${f>t}^* = {f^*>t},,text{?}$
Fix $t>0$ et $yin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$. One can check that for every, $0<s< t$ one has $$left{x in mathbb{R}^n: |f(x)| > t right}subset left{x in mathbb{R}^n: |f(x)| > s right}$$ this entails that,
begin{equation}label{eq-inclu t-s}tag{I}
left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset left{x in mathbb{R}^n: |f(x)| > s right}^{*}~~~textrm{for all $sin ]0,t[$}.
end{equation}
this implies that,$$ mathbf{1}_{left{ | f| > s right}^*}(y) =1 ~~~sin (0,t)$$
Therefore, from definition of $f^{*}$, if $yin {|f|>t}^*$ then we have
$$begin{align*}
f^{*}(y) &:= int_{0}^{+ infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
&= int_{0}^{t} mathbf{1}_{left{ | f| > s right}^*}(y) ds+ int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
& = int_{0}^{t} ds+int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds \ &>t.
end{align*}$$
Whence, $$left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset left{ x in mathbb{R}^n:f^{*}(x)> t right}.$$
On the other hand, if we suppose, $ynotin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$ then for all $s>0$ such that $ yin left{x in mathbb{R}^n: |f(x)| > s right}^{*}$ one has $0<sleq t$.
Indeed, $t>s $ then from eqref{eq-inclu t-s} $$yin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$$ which is contradiction since we assumed that the converse is true. this means that,
$$supleft{s>0 : yin left{x in mathbb{R}^n: |f(x)| > s right}^{*}right}leq t. $$
We then deduce that,
$$begin{align*}
f^{*}(y) &:= int_{0}^{+ infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
&= int_{0}^{t} mathbf{1}_{left{ | f| > s right}^*}(y) ds+ underbrace{int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds}_{=0}leq=t
end{align*}$$
that is $f^*(y)leq t$ or that $ynotin left{x in mathbb{R}^n: f^*(x) > t right}$. We've just prove that,
begin{equation}label{eq}tag{II}
Bbb R^nsetminus left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset Bbb R^nsetminusleft{x in mathbb{R}^n: f^*(x) > s right}~~~textrm{for all $sin ]0,t[$}.
end{equation}
Which end the prove by taking the complementary.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f95277%2fnondecreasing-rearrangement-is-equimeasurable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You want to prove that ${f>t}^* = {f^*>t},,text{?}$
Fix $t>0$ et $yin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$. One can check that for every, $0<s< t$ one has $$left{x in mathbb{R}^n: |f(x)| > t right}subset left{x in mathbb{R}^n: |f(x)| > s right}$$ this entails that,
begin{equation}label{eq-inclu t-s}tag{I}
left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset left{x in mathbb{R}^n: |f(x)| > s right}^{*}~~~textrm{for all $sin ]0,t[$}.
end{equation}
this implies that,$$ mathbf{1}_{left{ | f| > s right}^*}(y) =1 ~~~sin (0,t)$$
Therefore, from definition of $f^{*}$, if $yin {|f|>t}^*$ then we have
$$begin{align*}
f^{*}(y) &:= int_{0}^{+ infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
&= int_{0}^{t} mathbf{1}_{left{ | f| > s right}^*}(y) ds+ int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
& = int_{0}^{t} ds+int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds \ &>t.
end{align*}$$
Whence, $$left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset left{ x in mathbb{R}^n:f^{*}(x)> t right}.$$
On the other hand, if we suppose, $ynotin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$ then for all $s>0$ such that $ yin left{x in mathbb{R}^n: |f(x)| > s right}^{*}$ one has $0<sleq t$.
Indeed, $t>s $ then from eqref{eq-inclu t-s} $$yin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$$ which is contradiction since we assumed that the converse is true. this means that,
$$supleft{s>0 : yin left{x in mathbb{R}^n: |f(x)| > s right}^{*}right}leq t. $$
We then deduce that,
$$begin{align*}
f^{*}(y) &:= int_{0}^{+ infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
&= int_{0}^{t} mathbf{1}_{left{ | f| > s right}^*}(y) ds+ underbrace{int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds}_{=0}leq=t
end{align*}$$
that is $f^*(y)leq t$ or that $ynotin left{x in mathbb{R}^n: f^*(x) > t right}$. We've just prove that,
begin{equation}label{eq}tag{II}
Bbb R^nsetminus left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset Bbb R^nsetminusleft{x in mathbb{R}^n: f^*(x) > s right}~~~textrm{for all $sin ]0,t[$}.
end{equation}
Which end the prove by taking the complementary.
$endgroup$
add a comment |
$begingroup$
You want to prove that ${f>t}^* = {f^*>t},,text{?}$
Fix $t>0$ et $yin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$. One can check that for every, $0<s< t$ one has $$left{x in mathbb{R}^n: |f(x)| > t right}subset left{x in mathbb{R}^n: |f(x)| > s right}$$ this entails that,
begin{equation}label{eq-inclu t-s}tag{I}
left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset left{x in mathbb{R}^n: |f(x)| > s right}^{*}~~~textrm{for all $sin ]0,t[$}.
end{equation}
this implies that,$$ mathbf{1}_{left{ | f| > s right}^*}(y) =1 ~~~sin (0,t)$$
Therefore, from definition of $f^{*}$, if $yin {|f|>t}^*$ then we have
$$begin{align*}
f^{*}(y) &:= int_{0}^{+ infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
&= int_{0}^{t} mathbf{1}_{left{ | f| > s right}^*}(y) ds+ int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
& = int_{0}^{t} ds+int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds \ &>t.
end{align*}$$
Whence, $$left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset left{ x in mathbb{R}^n:f^{*}(x)> t right}.$$
On the other hand, if we suppose, $ynotin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$ then for all $s>0$ such that $ yin left{x in mathbb{R}^n: |f(x)| > s right}^{*}$ one has $0<sleq t$.
Indeed, $t>s $ then from eqref{eq-inclu t-s} $$yin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$$ which is contradiction since we assumed that the converse is true. this means that,
$$supleft{s>0 : yin left{x in mathbb{R}^n: |f(x)| > s right}^{*}right}leq t. $$
We then deduce that,
$$begin{align*}
f^{*}(y) &:= int_{0}^{+ infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
&= int_{0}^{t} mathbf{1}_{left{ | f| > s right}^*}(y) ds+ underbrace{int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds}_{=0}leq=t
end{align*}$$
that is $f^*(y)leq t$ or that $ynotin left{x in mathbb{R}^n: f^*(x) > t right}$. We've just prove that,
begin{equation}label{eq}tag{II}
Bbb R^nsetminus left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset Bbb R^nsetminusleft{x in mathbb{R}^n: f^*(x) > s right}~~~textrm{for all $sin ]0,t[$}.
end{equation}
Which end the prove by taking the complementary.
$endgroup$
add a comment |
$begingroup$
You want to prove that ${f>t}^* = {f^*>t},,text{?}$
Fix $t>0$ et $yin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$. One can check that for every, $0<s< t$ one has $$left{x in mathbb{R}^n: |f(x)| > t right}subset left{x in mathbb{R}^n: |f(x)| > s right}$$ this entails that,
begin{equation}label{eq-inclu t-s}tag{I}
left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset left{x in mathbb{R}^n: |f(x)| > s right}^{*}~~~textrm{for all $sin ]0,t[$}.
end{equation}
this implies that,$$ mathbf{1}_{left{ | f| > s right}^*}(y) =1 ~~~sin (0,t)$$
Therefore, from definition of $f^{*}$, if $yin {|f|>t}^*$ then we have
$$begin{align*}
f^{*}(y) &:= int_{0}^{+ infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
&= int_{0}^{t} mathbf{1}_{left{ | f| > s right}^*}(y) ds+ int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
& = int_{0}^{t} ds+int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds \ &>t.
end{align*}$$
Whence, $$left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset left{ x in mathbb{R}^n:f^{*}(x)> t right}.$$
On the other hand, if we suppose, $ynotin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$ then for all $s>0$ such that $ yin left{x in mathbb{R}^n: |f(x)| > s right}^{*}$ one has $0<sleq t$.
Indeed, $t>s $ then from eqref{eq-inclu t-s} $$yin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$$ which is contradiction since we assumed that the converse is true. this means that,
$$supleft{s>0 : yin left{x in mathbb{R}^n: |f(x)| > s right}^{*}right}leq t. $$
We then deduce that,
$$begin{align*}
f^{*}(y) &:= int_{0}^{+ infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
&= int_{0}^{t} mathbf{1}_{left{ | f| > s right}^*}(y) ds+ underbrace{int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds}_{=0}leq=t
end{align*}$$
that is $f^*(y)leq t$ or that $ynotin left{x in mathbb{R}^n: f^*(x) > t right}$. We've just prove that,
begin{equation}label{eq}tag{II}
Bbb R^nsetminus left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset Bbb R^nsetminusleft{x in mathbb{R}^n: f^*(x) > s right}~~~textrm{for all $sin ]0,t[$}.
end{equation}
Which end the prove by taking the complementary.
$endgroup$
You want to prove that ${f>t}^* = {f^*>t},,text{?}$
Fix $t>0$ et $yin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$. One can check that for every, $0<s< t$ one has $$left{x in mathbb{R}^n: |f(x)| > t right}subset left{x in mathbb{R}^n: |f(x)| > s right}$$ this entails that,
begin{equation}label{eq-inclu t-s}tag{I}
left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset left{x in mathbb{R}^n: |f(x)| > s right}^{*}~~~textrm{for all $sin ]0,t[$}.
end{equation}
this implies that,$$ mathbf{1}_{left{ | f| > s right}^*}(y) =1 ~~~sin (0,t)$$
Therefore, from definition of $f^{*}$, if $yin {|f|>t}^*$ then we have
$$begin{align*}
f^{*}(y) &:= int_{0}^{+ infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
&= int_{0}^{t} mathbf{1}_{left{ | f| > s right}^*}(y) ds+ int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
& = int_{0}^{t} ds+int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds \ &>t.
end{align*}$$
Whence, $$left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset left{ x in mathbb{R}^n:f^{*}(x)> t right}.$$
On the other hand, if we suppose, $ynotin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$ then for all $s>0$ such that $ yin left{x in mathbb{R}^n: |f(x)| > s right}^{*}$ one has $0<sleq t$.
Indeed, $t>s $ then from eqref{eq-inclu t-s} $$yin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$$ which is contradiction since we assumed that the converse is true. this means that,
$$supleft{s>0 : yin left{x in mathbb{R}^n: |f(x)| > s right}^{*}right}leq t. $$
We then deduce that,
$$begin{align*}
f^{*}(y) &:= int_{0}^{+ infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
&= int_{0}^{t} mathbf{1}_{left{ | f| > s right}^*}(y) ds+ underbrace{int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds}_{=0}leq=t
end{align*}$$
that is $f^*(y)leq t$ or that $ynotin left{x in mathbb{R}^n: f^*(x) > t right}$. We've just prove that,
begin{equation}label{eq}tag{II}
Bbb R^nsetminus left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset Bbb R^nsetminusleft{x in mathbb{R}^n: f^*(x) > s right}~~~textrm{for all $sin ]0,t[$}.
end{equation}
Which end the prove by taking the complementary.
answered Nov 24 '17 at 20:55


Guy FsoneGuy Fsone
17.2k43074
17.2k43074
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f95277%2fnondecreasing-rearrangement-is-equimeasurable%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
10
$begingroup$
What are your thoughts on the matter? Do you see a point where to start?
$endgroup$
– t.b.
Dec 30 '11 at 21:40
$begingroup$
This proof can be found in "Classical Fourier Analysis", Grafakos, Proposition 1.4.5 (12)
$endgroup$
– Carucel
Feb 25 '16 at 10:51