nondecreasing rearrangement is equimeasurable












4












$begingroup$


Two functions $f(x)$ and $g(x)$ are called equi-measurable if $m({x:f(x)>t})=m({x:g(x)>t})$.
Nondecreasing rearrangement of a function $f(x)$ is defined as $$f^*(tau)=inf{t>0:m({x:f(x)>t}leqtau}.$$
Prove that $f^*(tau)$ and $f(x)$ are equimeasurable.










share|cite|improve this question











$endgroup$








  • 10




    $begingroup$
    What are your thoughts on the matter? Do you see a point where to start?
    $endgroup$
    – t.b.
    Dec 30 '11 at 21:40










  • $begingroup$
    This proof can be found in "Classical Fourier Analysis", Grafakos, Proposition 1.4.5 (12)
    $endgroup$
    – Carucel
    Feb 25 '16 at 10:51
















4












$begingroup$


Two functions $f(x)$ and $g(x)$ are called equi-measurable if $m({x:f(x)>t})=m({x:g(x)>t})$.
Nondecreasing rearrangement of a function $f(x)$ is defined as $$f^*(tau)=inf{t>0:m({x:f(x)>t}leqtau}.$$
Prove that $f^*(tau)$ and $f(x)$ are equimeasurable.










share|cite|improve this question











$endgroup$








  • 10




    $begingroup$
    What are your thoughts on the matter? Do you see a point where to start?
    $endgroup$
    – t.b.
    Dec 30 '11 at 21:40










  • $begingroup$
    This proof can be found in "Classical Fourier Analysis", Grafakos, Proposition 1.4.5 (12)
    $endgroup$
    – Carucel
    Feb 25 '16 at 10:51














4












4








4


4



$begingroup$


Two functions $f(x)$ and $g(x)$ are called equi-measurable if $m({x:f(x)>t})=m({x:g(x)>t})$.
Nondecreasing rearrangement of a function $f(x)$ is defined as $$f^*(tau)=inf{t>0:m({x:f(x)>t}leqtau}.$$
Prove that $f^*(tau)$ and $f(x)$ are equimeasurable.










share|cite|improve this question











$endgroup$




Two functions $f(x)$ and $g(x)$ are called equi-measurable if $m({x:f(x)>t})=m({x:g(x)>t})$.
Nondecreasing rearrangement of a function $f(x)$ is defined as $$f^*(tau)=inf{t>0:m({x:f(x)>t}leqtau}.$$
Prove that $f^*(tau)$ and $f(x)$ are equimeasurable.







real-analysis measure-theory decreasing-rearrangements






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 30 '17 at 13:18









Guy Fsone

17.2k43074




17.2k43074










asked Dec 30 '11 at 21:15









TimTim

562




562








  • 10




    $begingroup$
    What are your thoughts on the matter? Do you see a point where to start?
    $endgroup$
    – t.b.
    Dec 30 '11 at 21:40










  • $begingroup$
    This proof can be found in "Classical Fourier Analysis", Grafakos, Proposition 1.4.5 (12)
    $endgroup$
    – Carucel
    Feb 25 '16 at 10:51














  • 10




    $begingroup$
    What are your thoughts on the matter? Do you see a point where to start?
    $endgroup$
    – t.b.
    Dec 30 '11 at 21:40










  • $begingroup$
    This proof can be found in "Classical Fourier Analysis", Grafakos, Proposition 1.4.5 (12)
    $endgroup$
    – Carucel
    Feb 25 '16 at 10:51








10




10




$begingroup$
What are your thoughts on the matter? Do you see a point where to start?
$endgroup$
– t.b.
Dec 30 '11 at 21:40




$begingroup$
What are your thoughts on the matter? Do you see a point where to start?
$endgroup$
– t.b.
Dec 30 '11 at 21:40












$begingroup$
This proof can be found in "Classical Fourier Analysis", Grafakos, Proposition 1.4.5 (12)
$endgroup$
– Carucel
Feb 25 '16 at 10:51




$begingroup$
This proof can be found in "Classical Fourier Analysis", Grafakos, Proposition 1.4.5 (12)
$endgroup$
– Carucel
Feb 25 '16 at 10:51










1 Answer
1






active

oldest

votes


















0












$begingroup$


You want to prove that ${f>t}^* = {f^*>t},,text{?}$




Fix $t>0$ et $yin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$. One can check that for every, $0<s< t$ one has $$left{x in mathbb{R}^n: |f(x)| > t right}subset left{x in mathbb{R}^n: |f(x)| > s right}$$ this entails that,
begin{equation}label{eq-inclu t-s}tag{I}
left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset left{x in mathbb{R}^n: |f(x)| > s right}^{*}~~~textrm{for all $sin ]0,t[$}.
end{equation}
this implies that,$$ mathbf{1}_{left{ | f| > s right}^*}(y) =1 ~~~sin (0,t)$$



Therefore, from definition of $f^{*}$, if $yin {|f|>t}^*$ then we have
$$begin{align*}
f^{*}(y) &:= int_{0}^{+ infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
&= int_{0}^{t} mathbf{1}_{left{ | f| > s right}^*}(y) ds+ int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
& = int_{0}^{t} ds+int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds \ &>t.
end{align*}$$



Whence, $$left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset left{ x in mathbb{R}^n:f^{*}(x)> t right}.$$
On the other hand, if we suppose, $ynotin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$ then for all $s>0$ such that $ yin left{x in mathbb{R}^n: |f(x)| > s right}^{*}$ one has $0<sleq t$.



Indeed, $t>s $ then from eqref{eq-inclu t-s} $$yin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$$ which is contradiction since we assumed that the converse is true. this means that,



$$supleft{s>0 : yin left{x in mathbb{R}^n: |f(x)| > s right}^{*}right}leq t. $$
We then deduce that,
$$begin{align*}
f^{*}(y) &:= int_{0}^{+ infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
&= int_{0}^{t} mathbf{1}_{left{ | f| > s right}^*}(y) ds+ underbrace{int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds}_{=0}leq=t
end{align*}$$
that is $f^*(y)leq t$ or that $ynotin left{x in mathbb{R}^n: f^*(x) > t right}$. We've just prove that,



begin{equation}label{eq}tag{II}
Bbb R^nsetminus left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset Bbb R^nsetminusleft{x in mathbb{R}^n: f^*(x) > s right}~~~textrm{for all $sin ]0,t[$}.
end{equation}



Which end the prove by taking the complementary.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f95277%2fnondecreasing-rearrangement-is-equimeasurable%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$


    You want to prove that ${f>t}^* = {f^*>t},,text{?}$




    Fix $t>0$ et $yin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$. One can check that for every, $0<s< t$ one has $$left{x in mathbb{R}^n: |f(x)| > t right}subset left{x in mathbb{R}^n: |f(x)| > s right}$$ this entails that,
    begin{equation}label{eq-inclu t-s}tag{I}
    left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset left{x in mathbb{R}^n: |f(x)| > s right}^{*}~~~textrm{for all $sin ]0,t[$}.
    end{equation}
    this implies that,$$ mathbf{1}_{left{ | f| > s right}^*}(y) =1 ~~~sin (0,t)$$



    Therefore, from definition of $f^{*}$, if $yin {|f|>t}^*$ then we have
    $$begin{align*}
    f^{*}(y) &:= int_{0}^{+ infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
    &= int_{0}^{t} mathbf{1}_{left{ | f| > s right}^*}(y) ds+ int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
    & = int_{0}^{t} ds+int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds \ &>t.
    end{align*}$$



    Whence, $$left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset left{ x in mathbb{R}^n:f^{*}(x)> t right}.$$
    On the other hand, if we suppose, $ynotin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$ then for all $s>0$ such that $ yin left{x in mathbb{R}^n: |f(x)| > s right}^{*}$ one has $0<sleq t$.



    Indeed, $t>s $ then from eqref{eq-inclu t-s} $$yin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$$ which is contradiction since we assumed that the converse is true. this means that,



    $$supleft{s>0 : yin left{x in mathbb{R}^n: |f(x)| > s right}^{*}right}leq t. $$
    We then deduce that,
    $$begin{align*}
    f^{*}(y) &:= int_{0}^{+ infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
    &= int_{0}^{t} mathbf{1}_{left{ | f| > s right}^*}(y) ds+ underbrace{int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds}_{=0}leq=t
    end{align*}$$
    that is $f^*(y)leq t$ or that $ynotin left{x in mathbb{R}^n: f^*(x) > t right}$. We've just prove that,



    begin{equation}label{eq}tag{II}
    Bbb R^nsetminus left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset Bbb R^nsetminusleft{x in mathbb{R}^n: f^*(x) > s right}~~~textrm{for all $sin ]0,t[$}.
    end{equation}



    Which end the prove by taking the complementary.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$


      You want to prove that ${f>t}^* = {f^*>t},,text{?}$




      Fix $t>0$ et $yin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$. One can check that for every, $0<s< t$ one has $$left{x in mathbb{R}^n: |f(x)| > t right}subset left{x in mathbb{R}^n: |f(x)| > s right}$$ this entails that,
      begin{equation}label{eq-inclu t-s}tag{I}
      left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset left{x in mathbb{R}^n: |f(x)| > s right}^{*}~~~textrm{for all $sin ]0,t[$}.
      end{equation}
      this implies that,$$ mathbf{1}_{left{ | f| > s right}^*}(y) =1 ~~~sin (0,t)$$



      Therefore, from definition of $f^{*}$, if $yin {|f|>t}^*$ then we have
      $$begin{align*}
      f^{*}(y) &:= int_{0}^{+ infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
      &= int_{0}^{t} mathbf{1}_{left{ | f| > s right}^*}(y) ds+ int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
      & = int_{0}^{t} ds+int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds \ &>t.
      end{align*}$$



      Whence, $$left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset left{ x in mathbb{R}^n:f^{*}(x)> t right}.$$
      On the other hand, if we suppose, $ynotin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$ then for all $s>0$ such that $ yin left{x in mathbb{R}^n: |f(x)| > s right}^{*}$ one has $0<sleq t$.



      Indeed, $t>s $ then from eqref{eq-inclu t-s} $$yin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$$ which is contradiction since we assumed that the converse is true. this means that,



      $$supleft{s>0 : yin left{x in mathbb{R}^n: |f(x)| > s right}^{*}right}leq t. $$
      We then deduce that,
      $$begin{align*}
      f^{*}(y) &:= int_{0}^{+ infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
      &= int_{0}^{t} mathbf{1}_{left{ | f| > s right}^*}(y) ds+ underbrace{int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds}_{=0}leq=t
      end{align*}$$
      that is $f^*(y)leq t$ or that $ynotin left{x in mathbb{R}^n: f^*(x) > t right}$. We've just prove that,



      begin{equation}label{eq}tag{II}
      Bbb R^nsetminus left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset Bbb R^nsetminusleft{x in mathbb{R}^n: f^*(x) > s right}~~~textrm{for all $sin ]0,t[$}.
      end{equation}



      Which end the prove by taking the complementary.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$


        You want to prove that ${f>t}^* = {f^*>t},,text{?}$




        Fix $t>0$ et $yin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$. One can check that for every, $0<s< t$ one has $$left{x in mathbb{R}^n: |f(x)| > t right}subset left{x in mathbb{R}^n: |f(x)| > s right}$$ this entails that,
        begin{equation}label{eq-inclu t-s}tag{I}
        left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset left{x in mathbb{R}^n: |f(x)| > s right}^{*}~~~textrm{for all $sin ]0,t[$}.
        end{equation}
        this implies that,$$ mathbf{1}_{left{ | f| > s right}^*}(y) =1 ~~~sin (0,t)$$



        Therefore, from definition of $f^{*}$, if $yin {|f|>t}^*$ then we have
        $$begin{align*}
        f^{*}(y) &:= int_{0}^{+ infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
        &= int_{0}^{t} mathbf{1}_{left{ | f| > s right}^*}(y) ds+ int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
        & = int_{0}^{t} ds+int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds \ &>t.
        end{align*}$$



        Whence, $$left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset left{ x in mathbb{R}^n:f^{*}(x)> t right}.$$
        On the other hand, if we suppose, $ynotin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$ then for all $s>0$ such that $ yin left{x in mathbb{R}^n: |f(x)| > s right}^{*}$ one has $0<sleq t$.



        Indeed, $t>s $ then from eqref{eq-inclu t-s} $$yin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$$ which is contradiction since we assumed that the converse is true. this means that,



        $$supleft{s>0 : yin left{x in mathbb{R}^n: |f(x)| > s right}^{*}right}leq t. $$
        We then deduce that,
        $$begin{align*}
        f^{*}(y) &:= int_{0}^{+ infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
        &= int_{0}^{t} mathbf{1}_{left{ | f| > s right}^*}(y) ds+ underbrace{int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds}_{=0}leq=t
        end{align*}$$
        that is $f^*(y)leq t$ or that $ynotin left{x in mathbb{R}^n: f^*(x) > t right}$. We've just prove that,



        begin{equation}label{eq}tag{II}
        Bbb R^nsetminus left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset Bbb R^nsetminusleft{x in mathbb{R}^n: f^*(x) > s right}~~~textrm{for all $sin ]0,t[$}.
        end{equation}



        Which end the prove by taking the complementary.






        share|cite|improve this answer









        $endgroup$




        You want to prove that ${f>t}^* = {f^*>t},,text{?}$




        Fix $t>0$ et $yin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$. One can check that for every, $0<s< t$ one has $$left{x in mathbb{R}^n: |f(x)| > t right}subset left{x in mathbb{R}^n: |f(x)| > s right}$$ this entails that,
        begin{equation}label{eq-inclu t-s}tag{I}
        left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset left{x in mathbb{R}^n: |f(x)| > s right}^{*}~~~textrm{for all $sin ]0,t[$}.
        end{equation}
        this implies that,$$ mathbf{1}_{left{ | f| > s right}^*}(y) =1 ~~~sin (0,t)$$



        Therefore, from definition of $f^{*}$, if $yin {|f|>t}^*$ then we have
        $$begin{align*}
        f^{*}(y) &:= int_{0}^{+ infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
        &= int_{0}^{t} mathbf{1}_{left{ | f| > s right}^*}(y) ds+ int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
        & = int_{0}^{t} ds+int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds \ &>t.
        end{align*}$$



        Whence, $$left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset left{ x in mathbb{R}^n:f^{*}(x)> t right}.$$
        On the other hand, if we suppose, $ynotin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$ then for all $s>0$ such that $ yin left{x in mathbb{R}^n: |f(x)| > s right}^{*}$ one has $0<sleq t$.



        Indeed, $t>s $ then from eqref{eq-inclu t-s} $$yin left{x in mathbb{R}^n: |f(x)| > t right}^{*}$$ which is contradiction since we assumed that the converse is true. this means that,



        $$supleft{s>0 : yin left{x in mathbb{R}^n: |f(x)| > s right}^{*}right}leq t. $$
        We then deduce that,
        $$begin{align*}
        f^{*}(y) &:= int_{0}^{+ infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds\
        &= int_{0}^{t} mathbf{1}_{left{ | f| > s right}^*}(y) ds+ underbrace{int_{t}^{+infty} mathbf{1}_{left{ | f| > s right}^*}(y) ds}_{=0}leq=t
        end{align*}$$
        that is $f^*(y)leq t$ or that $ynotin left{x in mathbb{R}^n: f^*(x) > t right}$. We've just prove that,



        begin{equation}label{eq}tag{II}
        Bbb R^nsetminus left{x in mathbb{R}^n: |f(x)| > t right}^{*}subset Bbb R^nsetminusleft{x in mathbb{R}^n: f^*(x) > s right}~~~textrm{for all $sin ]0,t[$}.
        end{equation}



        Which end the prove by taking the complementary.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 24 '17 at 20:55









        Guy FsoneGuy Fsone

        17.2k43074




        17.2k43074






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f95277%2fnondecreasing-rearrangement-is-equimeasurable%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith