Real roots of U(2)
$begingroup$
On page 350 of Hall's book real roots of $U(2)$ are listed as $(1, 1)$ and $(-1, -1)$ after identifying the maximal torus algebra $frak{t}$ of diagonal matrices with $mathbb{R}^2$. However, my calculations show that the roots should be $(1, -1)$ and $(-1, 1)$, and I don't see what am I missing. Here are the calculations:
Let $H=text{diag}(ai, bi)$ and $$X_1=begin{bmatrix}0&1\-1&0end{bmatrix}, X_2=begin{bmatrix}0&i\i&0end{bmatrix}.$$
Then $[H, X_1]=(a-b)X_2$ and $[H, X_2]=(b-a)X_1$ which implies that
$$[H, X_1+iX_2]=-i(a-b)(X_1+iX_2), quad [H, X_1-iX_2]=i(a-b)(X_1-iX_2).$$ Thus, the real root corresponding to $X+iX_2in mathfrak{t}_mathbb{C}$ is $alpha=text{diag}(-i, i)in mathfrak{t}$ because
$$langle alpha , Hrangle =text{tr}(alpha^*H)=b-a$$.
I suspect that we are using different inner products (because at the bottom of page 351 apparently the author gets $langle alpha, alpharangle=1$.) Any clarification is appreciated.
lie-algebras root-systems
$endgroup$
add a comment |
$begingroup$
On page 350 of Hall's book real roots of $U(2)$ are listed as $(1, 1)$ and $(-1, -1)$ after identifying the maximal torus algebra $frak{t}$ of diagonal matrices with $mathbb{R}^2$. However, my calculations show that the roots should be $(1, -1)$ and $(-1, 1)$, and I don't see what am I missing. Here are the calculations:
Let $H=text{diag}(ai, bi)$ and $$X_1=begin{bmatrix}0&1\-1&0end{bmatrix}, X_2=begin{bmatrix}0&i\i&0end{bmatrix}.$$
Then $[H, X_1]=(a-b)X_2$ and $[H, X_2]=(b-a)X_1$ which implies that
$$[H, X_1+iX_2]=-i(a-b)(X_1+iX_2), quad [H, X_1-iX_2]=i(a-b)(X_1-iX_2).$$ Thus, the real root corresponding to $X+iX_2in mathfrak{t}_mathbb{C}$ is $alpha=text{diag}(-i, i)in mathfrak{t}$ because
$$langle alpha , Hrangle =text{tr}(alpha^*H)=b-a$$.
I suspect that we are using different inner products (because at the bottom of page 351 apparently the author gets $langle alpha, alpharangle=1$.) Any clarification is appreciated.
lie-algebras root-systems
$endgroup$
add a comment |
$begingroup$
On page 350 of Hall's book real roots of $U(2)$ are listed as $(1, 1)$ and $(-1, -1)$ after identifying the maximal torus algebra $frak{t}$ of diagonal matrices with $mathbb{R}^2$. However, my calculations show that the roots should be $(1, -1)$ and $(-1, 1)$, and I don't see what am I missing. Here are the calculations:
Let $H=text{diag}(ai, bi)$ and $$X_1=begin{bmatrix}0&1\-1&0end{bmatrix}, X_2=begin{bmatrix}0&i\i&0end{bmatrix}.$$
Then $[H, X_1]=(a-b)X_2$ and $[H, X_2]=(b-a)X_1$ which implies that
$$[H, X_1+iX_2]=-i(a-b)(X_1+iX_2), quad [H, X_1-iX_2]=i(a-b)(X_1-iX_2).$$ Thus, the real root corresponding to $X+iX_2in mathfrak{t}_mathbb{C}$ is $alpha=text{diag}(-i, i)in mathfrak{t}$ because
$$langle alpha , Hrangle =text{tr}(alpha^*H)=b-a$$.
I suspect that we are using different inner products (because at the bottom of page 351 apparently the author gets $langle alpha, alpharangle=1$.) Any clarification is appreciated.
lie-algebras root-systems
$endgroup$
On page 350 of Hall's book real roots of $U(2)$ are listed as $(1, 1)$ and $(-1, -1)$ after identifying the maximal torus algebra $frak{t}$ of diagonal matrices with $mathbb{R}^2$. However, my calculations show that the roots should be $(1, -1)$ and $(-1, 1)$, and I don't see what am I missing. Here are the calculations:
Let $H=text{diag}(ai, bi)$ and $$X_1=begin{bmatrix}0&1\-1&0end{bmatrix}, X_2=begin{bmatrix}0&i\i&0end{bmatrix}.$$
Then $[H, X_1]=(a-b)X_2$ and $[H, X_2]=(b-a)X_1$ which implies that
$$[H, X_1+iX_2]=-i(a-b)(X_1+iX_2), quad [H, X_1-iX_2]=i(a-b)(X_1-iX_2).$$ Thus, the real root corresponding to $X+iX_2in mathfrak{t}_mathbb{C}$ is $alpha=text{diag}(-i, i)in mathfrak{t}$ because
$$langle alpha , Hrangle =text{tr}(alpha^*H)=b-a$$.
I suspect that we are using different inner products (because at the bottom of page 351 apparently the author gets $langle alpha, alpharangle=1$.) Any clarification is appreciated.
lie-algebras root-systems
lie-algebras root-systems
asked Jan 28 at 2:24
SimonSimon
289111
289111
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090372%2freal-roots-of-u2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090372%2freal-roots-of-u2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown