Recursive definition of the relation greater than on N X N












0












$begingroup$


Give a recursive definition of the relation greater than on N X N using the successor operators s?



I started this question throw this way:



basis: (1,0) ∈ N x N



could someone help me in recursive step?



thanks










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Give a recursive definition of the relation greater than on N X N using the successor operators s?



    I started this question throw this way:



    basis: (1,0) ∈ N x N



    could someone help me in recursive step?



    thanks










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Give a recursive definition of the relation greater than on N X N using the successor operators s?



      I started this question throw this way:



      basis: (1,0) ∈ N x N



      could someone help me in recursive step?



      thanks










      share|cite|improve this question









      $endgroup$




      Give a recursive definition of the relation greater than on N X N using the successor operators s?



      I started this question throw this way:



      basis: (1,0) ∈ N x N



      could someone help me in recursive step?



      thanks







      relations






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Sep 21 '14 at 23:23









      user3701952user3701952

      62




      62






















          4 Answers
          4






          active

          oldest

          votes


















          1












          $begingroup$

          If $(n,m) in >$ then



          $(S(n),m) in >$ and



          If $n neq S(m)$



          $(n,S(m)) in >$






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            My favorite recursive definition of $>$ for natural numbers is:



            $(0,n) notin ,>$ and



            $(m+1,n)in,>iff [(m,n)in,>text{ or }m=n]$.






            share|cite|improve this answer









            $endgroup$





















              0












              $begingroup$

              How about: if $(a,b) in >$ then $(a+1,b)in >$ and $(a+1,b+1)in >$. (Here I am using $(x,y)in >$ to signify $x>y$.)






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                Nice! Simpler than mine!
                $endgroup$
                – Jonas Gomes
                Sep 21 '14 at 23:32










              • $begingroup$
                @Jonas Gomes: Yours looks good too. They're pretty similar.
                $endgroup$
                – paw88789
                Sep 21 '14 at 23:34










              • $begingroup$
                what about the Closure ? [a,b] ∈ N x N it can be obtained from (1,0)
                $endgroup$
                – user3701952
                Sep 21 '14 at 23:51





















              0












              $begingroup$

              How about:



              $$forall x forall y (x < y leftrightarrow (s(x)=y lor exists z (x < z land s(z) = y)))$$






              share|cite|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f940814%2frecursive-definition-of-the-relation-greater-than-on-n-x-n%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                4 Answers
                4






                active

                oldest

                votes








                4 Answers
                4






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                1












                $begingroup$

                If $(n,m) in >$ then



                $(S(n),m) in >$ and



                If $n neq S(m)$



                $(n,S(m)) in >$






                share|cite|improve this answer









                $endgroup$


















                  1












                  $begingroup$

                  If $(n,m) in >$ then



                  $(S(n),m) in >$ and



                  If $n neq S(m)$



                  $(n,S(m)) in >$






                  share|cite|improve this answer









                  $endgroup$
















                    1












                    1








                    1





                    $begingroup$

                    If $(n,m) in >$ then



                    $(S(n),m) in >$ and



                    If $n neq S(m)$



                    $(n,S(m)) in >$






                    share|cite|improve this answer









                    $endgroup$



                    If $(n,m) in >$ then



                    $(S(n),m) in >$ and



                    If $n neq S(m)$



                    $(n,S(m)) in >$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Sep 21 '14 at 23:29









                    Jonas GomesJonas Gomes

                    1,9711823




                    1,9711823























                        1












                        $begingroup$

                        My favorite recursive definition of $>$ for natural numbers is:



                        $(0,n) notin ,>$ and



                        $(m+1,n)in,>iff [(m,n)in,>text{ or }m=n]$.






                        share|cite|improve this answer









                        $endgroup$


















                          1












                          $begingroup$

                          My favorite recursive definition of $>$ for natural numbers is:



                          $(0,n) notin ,>$ and



                          $(m+1,n)in,>iff [(m,n)in,>text{ or }m=n]$.






                          share|cite|improve this answer









                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            My favorite recursive definition of $>$ for natural numbers is:



                            $(0,n) notin ,>$ and



                            $(m+1,n)in,>iff [(m,n)in,>text{ or }m=n]$.






                            share|cite|improve this answer









                            $endgroup$



                            My favorite recursive definition of $>$ for natural numbers is:



                            $(0,n) notin ,>$ and



                            $(m+1,n)in,>iff [(m,n)in,>text{ or }m=n]$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Sep 21 '14 at 23:54









                            Andreas BlassAndreas Blass

                            50.2k452109




                            50.2k452109























                                0












                                $begingroup$

                                How about: if $(a,b) in >$ then $(a+1,b)in >$ and $(a+1,b+1)in >$. (Here I am using $(x,y)in >$ to signify $x>y$.)






                                share|cite|improve this answer









                                $endgroup$













                                • $begingroup$
                                  Nice! Simpler than mine!
                                  $endgroup$
                                  – Jonas Gomes
                                  Sep 21 '14 at 23:32










                                • $begingroup$
                                  @Jonas Gomes: Yours looks good too. They're pretty similar.
                                  $endgroup$
                                  – paw88789
                                  Sep 21 '14 at 23:34










                                • $begingroup$
                                  what about the Closure ? [a,b] ∈ N x N it can be obtained from (1,0)
                                  $endgroup$
                                  – user3701952
                                  Sep 21 '14 at 23:51


















                                0












                                $begingroup$

                                How about: if $(a,b) in >$ then $(a+1,b)in >$ and $(a+1,b+1)in >$. (Here I am using $(x,y)in >$ to signify $x>y$.)






                                share|cite|improve this answer









                                $endgroup$













                                • $begingroup$
                                  Nice! Simpler than mine!
                                  $endgroup$
                                  – Jonas Gomes
                                  Sep 21 '14 at 23:32










                                • $begingroup$
                                  @Jonas Gomes: Yours looks good too. They're pretty similar.
                                  $endgroup$
                                  – paw88789
                                  Sep 21 '14 at 23:34










                                • $begingroup$
                                  what about the Closure ? [a,b] ∈ N x N it can be obtained from (1,0)
                                  $endgroup$
                                  – user3701952
                                  Sep 21 '14 at 23:51
















                                0












                                0








                                0





                                $begingroup$

                                How about: if $(a,b) in >$ then $(a+1,b)in >$ and $(a+1,b+1)in >$. (Here I am using $(x,y)in >$ to signify $x>y$.)






                                share|cite|improve this answer









                                $endgroup$



                                How about: if $(a,b) in >$ then $(a+1,b)in >$ and $(a+1,b+1)in >$. (Here I am using $(x,y)in >$ to signify $x>y$.)







                                share|cite|improve this answer












                                share|cite|improve this answer



                                share|cite|improve this answer










                                answered Sep 21 '14 at 23:30









                                paw88789paw88789

                                29.4k12349




                                29.4k12349












                                • $begingroup$
                                  Nice! Simpler than mine!
                                  $endgroup$
                                  – Jonas Gomes
                                  Sep 21 '14 at 23:32










                                • $begingroup$
                                  @Jonas Gomes: Yours looks good too. They're pretty similar.
                                  $endgroup$
                                  – paw88789
                                  Sep 21 '14 at 23:34










                                • $begingroup$
                                  what about the Closure ? [a,b] ∈ N x N it can be obtained from (1,0)
                                  $endgroup$
                                  – user3701952
                                  Sep 21 '14 at 23:51




















                                • $begingroup$
                                  Nice! Simpler than mine!
                                  $endgroup$
                                  – Jonas Gomes
                                  Sep 21 '14 at 23:32










                                • $begingroup$
                                  @Jonas Gomes: Yours looks good too. They're pretty similar.
                                  $endgroup$
                                  – paw88789
                                  Sep 21 '14 at 23:34










                                • $begingroup$
                                  what about the Closure ? [a,b] ∈ N x N it can be obtained from (1,0)
                                  $endgroup$
                                  – user3701952
                                  Sep 21 '14 at 23:51


















                                $begingroup$
                                Nice! Simpler than mine!
                                $endgroup$
                                – Jonas Gomes
                                Sep 21 '14 at 23:32




                                $begingroup$
                                Nice! Simpler than mine!
                                $endgroup$
                                – Jonas Gomes
                                Sep 21 '14 at 23:32












                                $begingroup$
                                @Jonas Gomes: Yours looks good too. They're pretty similar.
                                $endgroup$
                                – paw88789
                                Sep 21 '14 at 23:34




                                $begingroup$
                                @Jonas Gomes: Yours looks good too. They're pretty similar.
                                $endgroup$
                                – paw88789
                                Sep 21 '14 at 23:34












                                $begingroup$
                                what about the Closure ? [a,b] ∈ N x N it can be obtained from (1,0)
                                $endgroup$
                                – user3701952
                                Sep 21 '14 at 23:51






                                $begingroup$
                                what about the Closure ? [a,b] ∈ N x N it can be obtained from (1,0)
                                $endgroup$
                                – user3701952
                                Sep 21 '14 at 23:51













                                0












                                $begingroup$

                                How about:



                                $$forall x forall y (x < y leftrightarrow (s(x)=y lor exists z (x < z land s(z) = y)))$$






                                share|cite|improve this answer









                                $endgroup$


















                                  0












                                  $begingroup$

                                  How about:



                                  $$forall x forall y (x < y leftrightarrow (s(x)=y lor exists z (x < z land s(z) = y)))$$






                                  share|cite|improve this answer









                                  $endgroup$
















                                    0












                                    0








                                    0





                                    $begingroup$

                                    How about:



                                    $$forall x forall y (x < y leftrightarrow (s(x)=y lor exists z (x < z land s(z) = y)))$$






                                    share|cite|improve this answer









                                    $endgroup$



                                    How about:



                                    $$forall x forall y (x < y leftrightarrow (s(x)=y lor exists z (x < z land s(z) = y)))$$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Jan 22 at 19:45









                                    Bram28Bram28

                                    63.3k44793




                                    63.3k44793






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f940814%2frecursive-definition-of-the-relation-greater-than-on-n-x-n%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        MongoDB - Not Authorized To Execute Command

                                        in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                                        How to fix TextFormField cause rebuild widget in Flutter