Recursive definition of the relation greater than on N X N
$begingroup$
Give a recursive definition of the relation greater than on N X N using the successor operators s?
I started this question throw this way:
basis: (1,0) ∈ N x N
could someone help me in recursive step?
thanks
relations
$endgroup$
add a comment |
$begingroup$
Give a recursive definition of the relation greater than on N X N using the successor operators s?
I started this question throw this way:
basis: (1,0) ∈ N x N
could someone help me in recursive step?
thanks
relations
$endgroup$
add a comment |
$begingroup$
Give a recursive definition of the relation greater than on N X N using the successor operators s?
I started this question throw this way:
basis: (1,0) ∈ N x N
could someone help me in recursive step?
thanks
relations
$endgroup$
Give a recursive definition of the relation greater than on N X N using the successor operators s?
I started this question throw this way:
basis: (1,0) ∈ N x N
could someone help me in recursive step?
thanks
relations
relations
asked Sep 21 '14 at 23:23
user3701952user3701952
62
62
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
If $(n,m) in >$ then
$(S(n),m) in >$ and
If $n neq S(m)$
$(n,S(m)) in >$
$endgroup$
add a comment |
$begingroup$
My favorite recursive definition of $>$ for natural numbers is:
$(0,n) notin ,>$ and
$(m+1,n)in,>iff [(m,n)in,>text{ or }m=n]$.
$endgroup$
add a comment |
$begingroup$
How about: if $(a,b) in >$ then $(a+1,b)in >$ and $(a+1,b+1)in >$. (Here I am using $(x,y)in >$ to signify $x>y$.)
$endgroup$
$begingroup$
Nice! Simpler than mine!
$endgroup$
– Jonas Gomes
Sep 21 '14 at 23:32
$begingroup$
@Jonas Gomes: Yours looks good too. They're pretty similar.
$endgroup$
– paw88789
Sep 21 '14 at 23:34
$begingroup$
what about the Closure ? [a,b] ∈ N x N it can be obtained from (1,0)
$endgroup$
– user3701952
Sep 21 '14 at 23:51
add a comment |
$begingroup$
How about:
$$forall x forall y (x < y leftrightarrow (s(x)=y lor exists z (x < z land s(z) = y)))$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f940814%2frecursive-definition-of-the-relation-greater-than-on-n-x-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $(n,m) in >$ then
$(S(n),m) in >$ and
If $n neq S(m)$
$(n,S(m)) in >$
$endgroup$
add a comment |
$begingroup$
If $(n,m) in >$ then
$(S(n),m) in >$ and
If $n neq S(m)$
$(n,S(m)) in >$
$endgroup$
add a comment |
$begingroup$
If $(n,m) in >$ then
$(S(n),m) in >$ and
If $n neq S(m)$
$(n,S(m)) in >$
$endgroup$
If $(n,m) in >$ then
$(S(n),m) in >$ and
If $n neq S(m)$
$(n,S(m)) in >$
answered Sep 21 '14 at 23:29


Jonas GomesJonas Gomes
1,9711823
1,9711823
add a comment |
add a comment |
$begingroup$
My favorite recursive definition of $>$ for natural numbers is:
$(0,n) notin ,>$ and
$(m+1,n)in,>iff [(m,n)in,>text{ or }m=n]$.
$endgroup$
add a comment |
$begingroup$
My favorite recursive definition of $>$ for natural numbers is:
$(0,n) notin ,>$ and
$(m+1,n)in,>iff [(m,n)in,>text{ or }m=n]$.
$endgroup$
add a comment |
$begingroup$
My favorite recursive definition of $>$ for natural numbers is:
$(0,n) notin ,>$ and
$(m+1,n)in,>iff [(m,n)in,>text{ or }m=n]$.
$endgroup$
My favorite recursive definition of $>$ for natural numbers is:
$(0,n) notin ,>$ and
$(m+1,n)in,>iff [(m,n)in,>text{ or }m=n]$.
answered Sep 21 '14 at 23:54
Andreas BlassAndreas Blass
50.2k452109
50.2k452109
add a comment |
add a comment |
$begingroup$
How about: if $(a,b) in >$ then $(a+1,b)in >$ and $(a+1,b+1)in >$. (Here I am using $(x,y)in >$ to signify $x>y$.)
$endgroup$
$begingroup$
Nice! Simpler than mine!
$endgroup$
– Jonas Gomes
Sep 21 '14 at 23:32
$begingroup$
@Jonas Gomes: Yours looks good too. They're pretty similar.
$endgroup$
– paw88789
Sep 21 '14 at 23:34
$begingroup$
what about the Closure ? [a,b] ∈ N x N it can be obtained from (1,0)
$endgroup$
– user3701952
Sep 21 '14 at 23:51
add a comment |
$begingroup$
How about: if $(a,b) in >$ then $(a+1,b)in >$ and $(a+1,b+1)in >$. (Here I am using $(x,y)in >$ to signify $x>y$.)
$endgroup$
$begingroup$
Nice! Simpler than mine!
$endgroup$
– Jonas Gomes
Sep 21 '14 at 23:32
$begingroup$
@Jonas Gomes: Yours looks good too. They're pretty similar.
$endgroup$
– paw88789
Sep 21 '14 at 23:34
$begingroup$
what about the Closure ? [a,b] ∈ N x N it can be obtained from (1,0)
$endgroup$
– user3701952
Sep 21 '14 at 23:51
add a comment |
$begingroup$
How about: if $(a,b) in >$ then $(a+1,b)in >$ and $(a+1,b+1)in >$. (Here I am using $(x,y)in >$ to signify $x>y$.)
$endgroup$
How about: if $(a,b) in >$ then $(a+1,b)in >$ and $(a+1,b+1)in >$. (Here I am using $(x,y)in >$ to signify $x>y$.)
answered Sep 21 '14 at 23:30
paw88789paw88789
29.4k12349
29.4k12349
$begingroup$
Nice! Simpler than mine!
$endgroup$
– Jonas Gomes
Sep 21 '14 at 23:32
$begingroup$
@Jonas Gomes: Yours looks good too. They're pretty similar.
$endgroup$
– paw88789
Sep 21 '14 at 23:34
$begingroup$
what about the Closure ? [a,b] ∈ N x N it can be obtained from (1,0)
$endgroup$
– user3701952
Sep 21 '14 at 23:51
add a comment |
$begingroup$
Nice! Simpler than mine!
$endgroup$
– Jonas Gomes
Sep 21 '14 at 23:32
$begingroup$
@Jonas Gomes: Yours looks good too. They're pretty similar.
$endgroup$
– paw88789
Sep 21 '14 at 23:34
$begingroup$
what about the Closure ? [a,b] ∈ N x N it can be obtained from (1,0)
$endgroup$
– user3701952
Sep 21 '14 at 23:51
$begingroup$
Nice! Simpler than mine!
$endgroup$
– Jonas Gomes
Sep 21 '14 at 23:32
$begingroup$
Nice! Simpler than mine!
$endgroup$
– Jonas Gomes
Sep 21 '14 at 23:32
$begingroup$
@Jonas Gomes: Yours looks good too. They're pretty similar.
$endgroup$
– paw88789
Sep 21 '14 at 23:34
$begingroup$
@Jonas Gomes: Yours looks good too. They're pretty similar.
$endgroup$
– paw88789
Sep 21 '14 at 23:34
$begingroup$
what about the Closure ? [a,b] ∈ N x N it can be obtained from (1,0)
$endgroup$
– user3701952
Sep 21 '14 at 23:51
$begingroup$
what about the Closure ? [a,b] ∈ N x N it can be obtained from (1,0)
$endgroup$
– user3701952
Sep 21 '14 at 23:51
add a comment |
$begingroup$
How about:
$$forall x forall y (x < y leftrightarrow (s(x)=y lor exists z (x < z land s(z) = y)))$$
$endgroup$
add a comment |
$begingroup$
How about:
$$forall x forall y (x < y leftrightarrow (s(x)=y lor exists z (x < z land s(z) = y)))$$
$endgroup$
add a comment |
$begingroup$
How about:
$$forall x forall y (x < y leftrightarrow (s(x)=y lor exists z (x < z land s(z) = y)))$$
$endgroup$
How about:
$$forall x forall y (x < y leftrightarrow (s(x)=y lor exists z (x < z land s(z) = y)))$$
answered Jan 22 at 19:45
Bram28Bram28
63.3k44793
63.3k44793
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f940814%2frecursive-definition-of-the-relation-greater-than-on-n-x-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown