Solving Indefinite integral without FTC












0












$begingroup$


While I was watching some physics lectures, I saw a professor write down the $int r*dr$. The writing multiplication sign (normally just implied) prompted me to attempt to solve this integral without the use of the fundamental theorem. So I wrote as follows:



$r(Delta r) +(r+Delta r)(Delta r)+(r+2Delta r)(Delta r)...$



However, if I take this $Delta r$ to $0$, I will end up with 0. What am I doing wrong?



Thanks :)










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    While I was watching some physics lectures, I saw a professor write down the $int r*dr$. The writing multiplication sign (normally just implied) prompted me to attempt to solve this integral without the use of the fundamental theorem. So I wrote as follows:



    $r(Delta r) +(r+Delta r)(Delta r)+(r+2Delta r)(Delta r)...$



    However, if I take this $Delta r$ to $0$, I will end up with 0. What am I doing wrong?



    Thanks :)










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      While I was watching some physics lectures, I saw a professor write down the $int r*dr$. The writing multiplication sign (normally just implied) prompted me to attempt to solve this integral without the use of the fundamental theorem. So I wrote as follows:



      $r(Delta r) +(r+Delta r)(Delta r)+(r+2Delta r)(Delta r)...$



      However, if I take this $Delta r$ to $0$, I will end up with 0. What am I doing wrong?



      Thanks :)










      share|cite|improve this question









      $endgroup$




      While I was watching some physics lectures, I saw a professor write down the $int r*dr$. The writing multiplication sign (normally just implied) prompted me to attempt to solve this integral without the use of the fundamental theorem. So I wrote as follows:



      $r(Delta r) +(r+Delta r)(Delta r)+(r+2Delta r)(Delta r)...$



      However, if I take this $Delta r$ to $0$, I will end up with 0. What am I doing wrong?



      Thanks :)







      calculus nonstandard-analysis






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 28 at 3:40









      Dude156Dude156

      572316




      572316






















          1 Answer
          1






          active

          oldest

          votes


















          4












          $begingroup$

          You need to be more specific, group terms where warranted, and take a limit.



          Let's add bounds to the integral.



          $$int_a^b r dr$$



          Now, say we are going to divide the interval into $n$ chunks, so that each interval is of width $Delta r = (b-a)/n$.



          Starting at $r = a$, our Riemann approximation becomes...



          $$a left( frac{b-a}{n} right) + left( a + frac{b-a}{n} right) left( frac{b-a}{n} right) + left( a + 2 cdot frac{b-a}{n} right) left( frac{b-a}{n} right) + cdots + left( a + (n-1)cdot frac{b-a}{n} right) left( frac{b-a}{n} right)$$



          Simplfy the expression.



          $$left[ a + left( a + frac{b-a}{n} right) + left( a + 2 cdot frac{b-a}{n} right) + cdots + left( a + (n-1)cdot frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$



          $$left[ na + left(frac{b-a}{n} right) + left(2 cdot frac{b-a}{n} right) + cdots + left((n-1)cdot frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$



          Use the fact that $1 + 2 + cdots + (n-1) = frac{n(n-1)}{2}$.



          $$left[ na + left( frac{n(n-1)}{2} right) left(frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$



          Continue simplifying...



          $$na left( frac{b-a}{n} right) + left( frac{n(n-1)}{2} right) left(frac{b-a}{n} right)^2 $$



          $$a(b-a) + frac{(n-1)(b-a)^2}{2n}$$



          $$a(b-a) + left( frac{1}{2} - frac{1}{2n}right)(b^2 - 2ab + a^2)$$



          $$ab - a^2 + frac{a^2}{2} - ab + frac{b^2}{2} - frac{b^2 - 2ab + a^2}{2n}$$



          $$frac{b^2}{2} -frac{a^2}{2} - frac{b^2 - 2ab + a^2}{2n}$$



          Now, take the limit as $Delta r rightarrow infty$.



          $$lim_{n rightarrow infty} left[ frac{b^2}{2} -frac{a^2}{2} - frac{b^2 - 2ab + a^2}{2n} right] = frac{b^2}{2} -frac{a^2}{2}$$



          Thus,



          $$int_a^b r dr = frac{b^2}{2} - frac{a^2}{2},$$



          which implies the indefinite integral takes the following form.



          $$int r dr = frac{r^2}{2} + C$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Yes, here you took a definite integral using the reimann sum method. I know about this technique, however I'm looking at something that doesn't require an introduction of bounds. Is there any way to do that?
            $endgroup$
            – Dude156
            Jan 28 at 4:10






          • 1




            $begingroup$
            You can't do a Riemann approximation without bounds, no. The indefinite integral function is defined in terms of the definite integral. $$int f(x) dx equiv left( int_0^x f(u)du right) + C$$
            $endgroup$
            – Trevor Kafka
            Jan 28 at 4:20










          • $begingroup$
            ahh, now I understand what you mean by "be more specific". Thanks man!
            $endgroup$
            – Dude156
            Jan 28 at 4:38











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090438%2fsolving-indefinite-integral-without-ftc%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          You need to be more specific, group terms where warranted, and take a limit.



          Let's add bounds to the integral.



          $$int_a^b r dr$$



          Now, say we are going to divide the interval into $n$ chunks, so that each interval is of width $Delta r = (b-a)/n$.



          Starting at $r = a$, our Riemann approximation becomes...



          $$a left( frac{b-a}{n} right) + left( a + frac{b-a}{n} right) left( frac{b-a}{n} right) + left( a + 2 cdot frac{b-a}{n} right) left( frac{b-a}{n} right) + cdots + left( a + (n-1)cdot frac{b-a}{n} right) left( frac{b-a}{n} right)$$



          Simplfy the expression.



          $$left[ a + left( a + frac{b-a}{n} right) + left( a + 2 cdot frac{b-a}{n} right) + cdots + left( a + (n-1)cdot frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$



          $$left[ na + left(frac{b-a}{n} right) + left(2 cdot frac{b-a}{n} right) + cdots + left((n-1)cdot frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$



          Use the fact that $1 + 2 + cdots + (n-1) = frac{n(n-1)}{2}$.



          $$left[ na + left( frac{n(n-1)}{2} right) left(frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$



          Continue simplifying...



          $$na left( frac{b-a}{n} right) + left( frac{n(n-1)}{2} right) left(frac{b-a}{n} right)^2 $$



          $$a(b-a) + frac{(n-1)(b-a)^2}{2n}$$



          $$a(b-a) + left( frac{1}{2} - frac{1}{2n}right)(b^2 - 2ab + a^2)$$



          $$ab - a^2 + frac{a^2}{2} - ab + frac{b^2}{2} - frac{b^2 - 2ab + a^2}{2n}$$



          $$frac{b^2}{2} -frac{a^2}{2} - frac{b^2 - 2ab + a^2}{2n}$$



          Now, take the limit as $Delta r rightarrow infty$.



          $$lim_{n rightarrow infty} left[ frac{b^2}{2} -frac{a^2}{2} - frac{b^2 - 2ab + a^2}{2n} right] = frac{b^2}{2} -frac{a^2}{2}$$



          Thus,



          $$int_a^b r dr = frac{b^2}{2} - frac{a^2}{2},$$



          which implies the indefinite integral takes the following form.



          $$int r dr = frac{r^2}{2} + C$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Yes, here you took a definite integral using the reimann sum method. I know about this technique, however I'm looking at something that doesn't require an introduction of bounds. Is there any way to do that?
            $endgroup$
            – Dude156
            Jan 28 at 4:10






          • 1




            $begingroup$
            You can't do a Riemann approximation without bounds, no. The indefinite integral function is defined in terms of the definite integral. $$int f(x) dx equiv left( int_0^x f(u)du right) + C$$
            $endgroup$
            – Trevor Kafka
            Jan 28 at 4:20










          • $begingroup$
            ahh, now I understand what you mean by "be more specific". Thanks man!
            $endgroup$
            – Dude156
            Jan 28 at 4:38
















          4












          $begingroup$

          You need to be more specific, group terms where warranted, and take a limit.



          Let's add bounds to the integral.



          $$int_a^b r dr$$



          Now, say we are going to divide the interval into $n$ chunks, so that each interval is of width $Delta r = (b-a)/n$.



          Starting at $r = a$, our Riemann approximation becomes...



          $$a left( frac{b-a}{n} right) + left( a + frac{b-a}{n} right) left( frac{b-a}{n} right) + left( a + 2 cdot frac{b-a}{n} right) left( frac{b-a}{n} right) + cdots + left( a + (n-1)cdot frac{b-a}{n} right) left( frac{b-a}{n} right)$$



          Simplfy the expression.



          $$left[ a + left( a + frac{b-a}{n} right) + left( a + 2 cdot frac{b-a}{n} right) + cdots + left( a + (n-1)cdot frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$



          $$left[ na + left(frac{b-a}{n} right) + left(2 cdot frac{b-a}{n} right) + cdots + left((n-1)cdot frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$



          Use the fact that $1 + 2 + cdots + (n-1) = frac{n(n-1)}{2}$.



          $$left[ na + left( frac{n(n-1)}{2} right) left(frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$



          Continue simplifying...



          $$na left( frac{b-a}{n} right) + left( frac{n(n-1)}{2} right) left(frac{b-a}{n} right)^2 $$



          $$a(b-a) + frac{(n-1)(b-a)^2}{2n}$$



          $$a(b-a) + left( frac{1}{2} - frac{1}{2n}right)(b^2 - 2ab + a^2)$$



          $$ab - a^2 + frac{a^2}{2} - ab + frac{b^2}{2} - frac{b^2 - 2ab + a^2}{2n}$$



          $$frac{b^2}{2} -frac{a^2}{2} - frac{b^2 - 2ab + a^2}{2n}$$



          Now, take the limit as $Delta r rightarrow infty$.



          $$lim_{n rightarrow infty} left[ frac{b^2}{2} -frac{a^2}{2} - frac{b^2 - 2ab + a^2}{2n} right] = frac{b^2}{2} -frac{a^2}{2}$$



          Thus,



          $$int_a^b r dr = frac{b^2}{2} - frac{a^2}{2},$$



          which implies the indefinite integral takes the following form.



          $$int r dr = frac{r^2}{2} + C$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Yes, here you took a definite integral using the reimann sum method. I know about this technique, however I'm looking at something that doesn't require an introduction of bounds. Is there any way to do that?
            $endgroup$
            – Dude156
            Jan 28 at 4:10






          • 1




            $begingroup$
            You can't do a Riemann approximation without bounds, no. The indefinite integral function is defined in terms of the definite integral. $$int f(x) dx equiv left( int_0^x f(u)du right) + C$$
            $endgroup$
            – Trevor Kafka
            Jan 28 at 4:20










          • $begingroup$
            ahh, now I understand what you mean by "be more specific". Thanks man!
            $endgroup$
            – Dude156
            Jan 28 at 4:38














          4












          4








          4





          $begingroup$

          You need to be more specific, group terms where warranted, and take a limit.



          Let's add bounds to the integral.



          $$int_a^b r dr$$



          Now, say we are going to divide the interval into $n$ chunks, so that each interval is of width $Delta r = (b-a)/n$.



          Starting at $r = a$, our Riemann approximation becomes...



          $$a left( frac{b-a}{n} right) + left( a + frac{b-a}{n} right) left( frac{b-a}{n} right) + left( a + 2 cdot frac{b-a}{n} right) left( frac{b-a}{n} right) + cdots + left( a + (n-1)cdot frac{b-a}{n} right) left( frac{b-a}{n} right)$$



          Simplfy the expression.



          $$left[ a + left( a + frac{b-a}{n} right) + left( a + 2 cdot frac{b-a}{n} right) + cdots + left( a + (n-1)cdot frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$



          $$left[ na + left(frac{b-a}{n} right) + left(2 cdot frac{b-a}{n} right) + cdots + left((n-1)cdot frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$



          Use the fact that $1 + 2 + cdots + (n-1) = frac{n(n-1)}{2}$.



          $$left[ na + left( frac{n(n-1)}{2} right) left(frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$



          Continue simplifying...



          $$na left( frac{b-a}{n} right) + left( frac{n(n-1)}{2} right) left(frac{b-a}{n} right)^2 $$



          $$a(b-a) + frac{(n-1)(b-a)^2}{2n}$$



          $$a(b-a) + left( frac{1}{2} - frac{1}{2n}right)(b^2 - 2ab + a^2)$$



          $$ab - a^2 + frac{a^2}{2} - ab + frac{b^2}{2} - frac{b^2 - 2ab + a^2}{2n}$$



          $$frac{b^2}{2} -frac{a^2}{2} - frac{b^2 - 2ab + a^2}{2n}$$



          Now, take the limit as $Delta r rightarrow infty$.



          $$lim_{n rightarrow infty} left[ frac{b^2}{2} -frac{a^2}{2} - frac{b^2 - 2ab + a^2}{2n} right] = frac{b^2}{2} -frac{a^2}{2}$$



          Thus,



          $$int_a^b r dr = frac{b^2}{2} - frac{a^2}{2},$$



          which implies the indefinite integral takes the following form.



          $$int r dr = frac{r^2}{2} + C$$






          share|cite|improve this answer









          $endgroup$



          You need to be more specific, group terms where warranted, and take a limit.



          Let's add bounds to the integral.



          $$int_a^b r dr$$



          Now, say we are going to divide the interval into $n$ chunks, so that each interval is of width $Delta r = (b-a)/n$.



          Starting at $r = a$, our Riemann approximation becomes...



          $$a left( frac{b-a}{n} right) + left( a + frac{b-a}{n} right) left( frac{b-a}{n} right) + left( a + 2 cdot frac{b-a}{n} right) left( frac{b-a}{n} right) + cdots + left( a + (n-1)cdot frac{b-a}{n} right) left( frac{b-a}{n} right)$$



          Simplfy the expression.



          $$left[ a + left( a + frac{b-a}{n} right) + left( a + 2 cdot frac{b-a}{n} right) + cdots + left( a + (n-1)cdot frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$



          $$left[ na + left(frac{b-a}{n} right) + left(2 cdot frac{b-a}{n} right) + cdots + left((n-1)cdot frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$



          Use the fact that $1 + 2 + cdots + (n-1) = frac{n(n-1)}{2}$.



          $$left[ na + left( frac{n(n-1)}{2} right) left(frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$



          Continue simplifying...



          $$na left( frac{b-a}{n} right) + left( frac{n(n-1)}{2} right) left(frac{b-a}{n} right)^2 $$



          $$a(b-a) + frac{(n-1)(b-a)^2}{2n}$$



          $$a(b-a) + left( frac{1}{2} - frac{1}{2n}right)(b^2 - 2ab + a^2)$$



          $$ab - a^2 + frac{a^2}{2} - ab + frac{b^2}{2} - frac{b^2 - 2ab + a^2}{2n}$$



          $$frac{b^2}{2} -frac{a^2}{2} - frac{b^2 - 2ab + a^2}{2n}$$



          Now, take the limit as $Delta r rightarrow infty$.



          $$lim_{n rightarrow infty} left[ frac{b^2}{2} -frac{a^2}{2} - frac{b^2 - 2ab + a^2}{2n} right] = frac{b^2}{2} -frac{a^2}{2}$$



          Thus,



          $$int_a^b r dr = frac{b^2}{2} - frac{a^2}{2},$$



          which implies the indefinite integral takes the following form.



          $$int r dr = frac{r^2}{2} + C$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 28 at 4:01









          Trevor KafkaTrevor Kafka

          5309




          5309












          • $begingroup$
            Yes, here you took a definite integral using the reimann sum method. I know about this technique, however I'm looking at something that doesn't require an introduction of bounds. Is there any way to do that?
            $endgroup$
            – Dude156
            Jan 28 at 4:10






          • 1




            $begingroup$
            You can't do a Riemann approximation without bounds, no. The indefinite integral function is defined in terms of the definite integral. $$int f(x) dx equiv left( int_0^x f(u)du right) + C$$
            $endgroup$
            – Trevor Kafka
            Jan 28 at 4:20










          • $begingroup$
            ahh, now I understand what you mean by "be more specific". Thanks man!
            $endgroup$
            – Dude156
            Jan 28 at 4:38


















          • $begingroup$
            Yes, here you took a definite integral using the reimann sum method. I know about this technique, however I'm looking at something that doesn't require an introduction of bounds. Is there any way to do that?
            $endgroup$
            – Dude156
            Jan 28 at 4:10






          • 1




            $begingroup$
            You can't do a Riemann approximation without bounds, no. The indefinite integral function is defined in terms of the definite integral. $$int f(x) dx equiv left( int_0^x f(u)du right) + C$$
            $endgroup$
            – Trevor Kafka
            Jan 28 at 4:20










          • $begingroup$
            ahh, now I understand what you mean by "be more specific". Thanks man!
            $endgroup$
            – Dude156
            Jan 28 at 4:38
















          $begingroup$
          Yes, here you took a definite integral using the reimann sum method. I know about this technique, however I'm looking at something that doesn't require an introduction of bounds. Is there any way to do that?
          $endgroup$
          – Dude156
          Jan 28 at 4:10




          $begingroup$
          Yes, here you took a definite integral using the reimann sum method. I know about this technique, however I'm looking at something that doesn't require an introduction of bounds. Is there any way to do that?
          $endgroup$
          – Dude156
          Jan 28 at 4:10




          1




          1




          $begingroup$
          You can't do a Riemann approximation without bounds, no. The indefinite integral function is defined in terms of the definite integral. $$int f(x) dx equiv left( int_0^x f(u)du right) + C$$
          $endgroup$
          – Trevor Kafka
          Jan 28 at 4:20




          $begingroup$
          You can't do a Riemann approximation without bounds, no. The indefinite integral function is defined in terms of the definite integral. $$int f(x) dx equiv left( int_0^x f(u)du right) + C$$
          $endgroup$
          – Trevor Kafka
          Jan 28 at 4:20












          $begingroup$
          ahh, now I understand what you mean by "be more specific". Thanks man!
          $endgroup$
          – Dude156
          Jan 28 at 4:38




          $begingroup$
          ahh, now I understand what you mean by "be more specific". Thanks man!
          $endgroup$
          – Dude156
          Jan 28 at 4:38


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090438%2fsolving-indefinite-integral-without-ftc%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith