Solving Indefinite integral without FTC
$begingroup$
While I was watching some physics lectures, I saw a professor write down the $int r*dr$. The writing multiplication sign (normally just implied) prompted me to attempt to solve this integral without the use of the fundamental theorem. So I wrote as follows:
$r(Delta r) +(r+Delta r)(Delta r)+(r+2Delta r)(Delta r)...$
However, if I take this $Delta r$ to $0$, I will end up with 0. What am I doing wrong?
Thanks :)
calculus nonstandard-analysis
$endgroup$
add a comment |
$begingroup$
While I was watching some physics lectures, I saw a professor write down the $int r*dr$. The writing multiplication sign (normally just implied) prompted me to attempt to solve this integral without the use of the fundamental theorem. So I wrote as follows:
$r(Delta r) +(r+Delta r)(Delta r)+(r+2Delta r)(Delta r)...$
However, if I take this $Delta r$ to $0$, I will end up with 0. What am I doing wrong?
Thanks :)
calculus nonstandard-analysis
$endgroup$
add a comment |
$begingroup$
While I was watching some physics lectures, I saw a professor write down the $int r*dr$. The writing multiplication sign (normally just implied) prompted me to attempt to solve this integral without the use of the fundamental theorem. So I wrote as follows:
$r(Delta r) +(r+Delta r)(Delta r)+(r+2Delta r)(Delta r)...$
However, if I take this $Delta r$ to $0$, I will end up with 0. What am I doing wrong?
Thanks :)
calculus nonstandard-analysis
$endgroup$
While I was watching some physics lectures, I saw a professor write down the $int r*dr$. The writing multiplication sign (normally just implied) prompted me to attempt to solve this integral without the use of the fundamental theorem. So I wrote as follows:
$r(Delta r) +(r+Delta r)(Delta r)+(r+2Delta r)(Delta r)...$
However, if I take this $Delta r$ to $0$, I will end up with 0. What am I doing wrong?
Thanks :)
calculus nonstandard-analysis
calculus nonstandard-analysis
asked Jan 28 at 3:40
Dude156Dude156
572316
572316
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
You need to be more specific, group terms where warranted, and take a limit.
Let's add bounds to the integral.
$$int_a^b r dr$$
Now, say we are going to divide the interval into $n$ chunks, so that each interval is of width $Delta r = (b-a)/n$.
Starting at $r = a$, our Riemann approximation becomes...
$$a left( frac{b-a}{n} right) + left( a + frac{b-a}{n} right) left( frac{b-a}{n} right) + left( a + 2 cdot frac{b-a}{n} right) left( frac{b-a}{n} right) + cdots + left( a + (n-1)cdot frac{b-a}{n} right) left( frac{b-a}{n} right)$$
Simplfy the expression.
$$left[ a + left( a + frac{b-a}{n} right) + left( a + 2 cdot frac{b-a}{n} right) + cdots + left( a + (n-1)cdot frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$
$$left[ na + left(frac{b-a}{n} right) + left(2 cdot frac{b-a}{n} right) + cdots + left((n-1)cdot frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$
Use the fact that $1 + 2 + cdots + (n-1) = frac{n(n-1)}{2}$.
$$left[ na + left( frac{n(n-1)}{2} right) left(frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$
Continue simplifying...
$$na left( frac{b-a}{n} right) + left( frac{n(n-1)}{2} right) left(frac{b-a}{n} right)^2 $$
$$a(b-a) + frac{(n-1)(b-a)^2}{2n}$$
$$a(b-a) + left( frac{1}{2} - frac{1}{2n}right)(b^2 - 2ab + a^2)$$
$$ab - a^2 + frac{a^2}{2} - ab + frac{b^2}{2} - frac{b^2 - 2ab + a^2}{2n}$$
$$frac{b^2}{2} -frac{a^2}{2} - frac{b^2 - 2ab + a^2}{2n}$$
Now, take the limit as $Delta r rightarrow infty$.
$$lim_{n rightarrow infty} left[ frac{b^2}{2} -frac{a^2}{2} - frac{b^2 - 2ab + a^2}{2n} right] = frac{b^2}{2} -frac{a^2}{2}$$
Thus,
$$int_a^b r dr = frac{b^2}{2} - frac{a^2}{2},$$
which implies the indefinite integral takes the following form.
$$int r dr = frac{r^2}{2} + C$$
$endgroup$
$begingroup$
Yes, here you took a definite integral using the reimann sum method. I know about this technique, however I'm looking at something that doesn't require an introduction of bounds. Is there any way to do that?
$endgroup$
– Dude156
Jan 28 at 4:10
1
$begingroup$
You can't do a Riemann approximation without bounds, no. The indefinite integral function is defined in terms of the definite integral. $$int f(x) dx equiv left( int_0^x f(u)du right) + C$$
$endgroup$
– Trevor Kafka
Jan 28 at 4:20
$begingroup$
ahh, now I understand what you mean by "be more specific". Thanks man!
$endgroup$
– Dude156
Jan 28 at 4:38
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090438%2fsolving-indefinite-integral-without-ftc%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You need to be more specific, group terms where warranted, and take a limit.
Let's add bounds to the integral.
$$int_a^b r dr$$
Now, say we are going to divide the interval into $n$ chunks, so that each interval is of width $Delta r = (b-a)/n$.
Starting at $r = a$, our Riemann approximation becomes...
$$a left( frac{b-a}{n} right) + left( a + frac{b-a}{n} right) left( frac{b-a}{n} right) + left( a + 2 cdot frac{b-a}{n} right) left( frac{b-a}{n} right) + cdots + left( a + (n-1)cdot frac{b-a}{n} right) left( frac{b-a}{n} right)$$
Simplfy the expression.
$$left[ a + left( a + frac{b-a}{n} right) + left( a + 2 cdot frac{b-a}{n} right) + cdots + left( a + (n-1)cdot frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$
$$left[ na + left(frac{b-a}{n} right) + left(2 cdot frac{b-a}{n} right) + cdots + left((n-1)cdot frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$
Use the fact that $1 + 2 + cdots + (n-1) = frac{n(n-1)}{2}$.
$$left[ na + left( frac{n(n-1)}{2} right) left(frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$
Continue simplifying...
$$na left( frac{b-a}{n} right) + left( frac{n(n-1)}{2} right) left(frac{b-a}{n} right)^2 $$
$$a(b-a) + frac{(n-1)(b-a)^2}{2n}$$
$$a(b-a) + left( frac{1}{2} - frac{1}{2n}right)(b^2 - 2ab + a^2)$$
$$ab - a^2 + frac{a^2}{2} - ab + frac{b^2}{2} - frac{b^2 - 2ab + a^2}{2n}$$
$$frac{b^2}{2} -frac{a^2}{2} - frac{b^2 - 2ab + a^2}{2n}$$
Now, take the limit as $Delta r rightarrow infty$.
$$lim_{n rightarrow infty} left[ frac{b^2}{2} -frac{a^2}{2} - frac{b^2 - 2ab + a^2}{2n} right] = frac{b^2}{2} -frac{a^2}{2}$$
Thus,
$$int_a^b r dr = frac{b^2}{2} - frac{a^2}{2},$$
which implies the indefinite integral takes the following form.
$$int r dr = frac{r^2}{2} + C$$
$endgroup$
$begingroup$
Yes, here you took a definite integral using the reimann sum method. I know about this technique, however I'm looking at something that doesn't require an introduction of bounds. Is there any way to do that?
$endgroup$
– Dude156
Jan 28 at 4:10
1
$begingroup$
You can't do a Riemann approximation without bounds, no. The indefinite integral function is defined in terms of the definite integral. $$int f(x) dx equiv left( int_0^x f(u)du right) + C$$
$endgroup$
– Trevor Kafka
Jan 28 at 4:20
$begingroup$
ahh, now I understand what you mean by "be more specific". Thanks man!
$endgroup$
– Dude156
Jan 28 at 4:38
add a comment |
$begingroup$
You need to be more specific, group terms where warranted, and take a limit.
Let's add bounds to the integral.
$$int_a^b r dr$$
Now, say we are going to divide the interval into $n$ chunks, so that each interval is of width $Delta r = (b-a)/n$.
Starting at $r = a$, our Riemann approximation becomes...
$$a left( frac{b-a}{n} right) + left( a + frac{b-a}{n} right) left( frac{b-a}{n} right) + left( a + 2 cdot frac{b-a}{n} right) left( frac{b-a}{n} right) + cdots + left( a + (n-1)cdot frac{b-a}{n} right) left( frac{b-a}{n} right)$$
Simplfy the expression.
$$left[ a + left( a + frac{b-a}{n} right) + left( a + 2 cdot frac{b-a}{n} right) + cdots + left( a + (n-1)cdot frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$
$$left[ na + left(frac{b-a}{n} right) + left(2 cdot frac{b-a}{n} right) + cdots + left((n-1)cdot frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$
Use the fact that $1 + 2 + cdots + (n-1) = frac{n(n-1)}{2}$.
$$left[ na + left( frac{n(n-1)}{2} right) left(frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$
Continue simplifying...
$$na left( frac{b-a}{n} right) + left( frac{n(n-1)}{2} right) left(frac{b-a}{n} right)^2 $$
$$a(b-a) + frac{(n-1)(b-a)^2}{2n}$$
$$a(b-a) + left( frac{1}{2} - frac{1}{2n}right)(b^2 - 2ab + a^2)$$
$$ab - a^2 + frac{a^2}{2} - ab + frac{b^2}{2} - frac{b^2 - 2ab + a^2}{2n}$$
$$frac{b^2}{2} -frac{a^2}{2} - frac{b^2 - 2ab + a^2}{2n}$$
Now, take the limit as $Delta r rightarrow infty$.
$$lim_{n rightarrow infty} left[ frac{b^2}{2} -frac{a^2}{2} - frac{b^2 - 2ab + a^2}{2n} right] = frac{b^2}{2} -frac{a^2}{2}$$
Thus,
$$int_a^b r dr = frac{b^2}{2} - frac{a^2}{2},$$
which implies the indefinite integral takes the following form.
$$int r dr = frac{r^2}{2} + C$$
$endgroup$
$begingroup$
Yes, here you took a definite integral using the reimann sum method. I know about this technique, however I'm looking at something that doesn't require an introduction of bounds. Is there any way to do that?
$endgroup$
– Dude156
Jan 28 at 4:10
1
$begingroup$
You can't do a Riemann approximation without bounds, no. The indefinite integral function is defined in terms of the definite integral. $$int f(x) dx equiv left( int_0^x f(u)du right) + C$$
$endgroup$
– Trevor Kafka
Jan 28 at 4:20
$begingroup$
ahh, now I understand what you mean by "be more specific". Thanks man!
$endgroup$
– Dude156
Jan 28 at 4:38
add a comment |
$begingroup$
You need to be more specific, group terms where warranted, and take a limit.
Let's add bounds to the integral.
$$int_a^b r dr$$
Now, say we are going to divide the interval into $n$ chunks, so that each interval is of width $Delta r = (b-a)/n$.
Starting at $r = a$, our Riemann approximation becomes...
$$a left( frac{b-a}{n} right) + left( a + frac{b-a}{n} right) left( frac{b-a}{n} right) + left( a + 2 cdot frac{b-a}{n} right) left( frac{b-a}{n} right) + cdots + left( a + (n-1)cdot frac{b-a}{n} right) left( frac{b-a}{n} right)$$
Simplfy the expression.
$$left[ a + left( a + frac{b-a}{n} right) + left( a + 2 cdot frac{b-a}{n} right) + cdots + left( a + (n-1)cdot frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$
$$left[ na + left(frac{b-a}{n} right) + left(2 cdot frac{b-a}{n} right) + cdots + left((n-1)cdot frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$
Use the fact that $1 + 2 + cdots + (n-1) = frac{n(n-1)}{2}$.
$$left[ na + left( frac{n(n-1)}{2} right) left(frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$
Continue simplifying...
$$na left( frac{b-a}{n} right) + left( frac{n(n-1)}{2} right) left(frac{b-a}{n} right)^2 $$
$$a(b-a) + frac{(n-1)(b-a)^2}{2n}$$
$$a(b-a) + left( frac{1}{2} - frac{1}{2n}right)(b^2 - 2ab + a^2)$$
$$ab - a^2 + frac{a^2}{2} - ab + frac{b^2}{2} - frac{b^2 - 2ab + a^2}{2n}$$
$$frac{b^2}{2} -frac{a^2}{2} - frac{b^2 - 2ab + a^2}{2n}$$
Now, take the limit as $Delta r rightarrow infty$.
$$lim_{n rightarrow infty} left[ frac{b^2}{2} -frac{a^2}{2} - frac{b^2 - 2ab + a^2}{2n} right] = frac{b^2}{2} -frac{a^2}{2}$$
Thus,
$$int_a^b r dr = frac{b^2}{2} - frac{a^2}{2},$$
which implies the indefinite integral takes the following form.
$$int r dr = frac{r^2}{2} + C$$
$endgroup$
You need to be more specific, group terms where warranted, and take a limit.
Let's add bounds to the integral.
$$int_a^b r dr$$
Now, say we are going to divide the interval into $n$ chunks, so that each interval is of width $Delta r = (b-a)/n$.
Starting at $r = a$, our Riemann approximation becomes...
$$a left( frac{b-a}{n} right) + left( a + frac{b-a}{n} right) left( frac{b-a}{n} right) + left( a + 2 cdot frac{b-a}{n} right) left( frac{b-a}{n} right) + cdots + left( a + (n-1)cdot frac{b-a}{n} right) left( frac{b-a}{n} right)$$
Simplfy the expression.
$$left[ a + left( a + frac{b-a}{n} right) + left( a + 2 cdot frac{b-a}{n} right) + cdots + left( a + (n-1)cdot frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$
$$left[ na + left(frac{b-a}{n} right) + left(2 cdot frac{b-a}{n} right) + cdots + left((n-1)cdot frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$
Use the fact that $1 + 2 + cdots + (n-1) = frac{n(n-1)}{2}$.
$$left[ na + left( frac{n(n-1)}{2} right) left(frac{b-a}{n} right) right] left( frac{b-a}{n} right)$$
Continue simplifying...
$$na left( frac{b-a}{n} right) + left( frac{n(n-1)}{2} right) left(frac{b-a}{n} right)^2 $$
$$a(b-a) + frac{(n-1)(b-a)^2}{2n}$$
$$a(b-a) + left( frac{1}{2} - frac{1}{2n}right)(b^2 - 2ab + a^2)$$
$$ab - a^2 + frac{a^2}{2} - ab + frac{b^2}{2} - frac{b^2 - 2ab + a^2}{2n}$$
$$frac{b^2}{2} -frac{a^2}{2} - frac{b^2 - 2ab + a^2}{2n}$$
Now, take the limit as $Delta r rightarrow infty$.
$$lim_{n rightarrow infty} left[ frac{b^2}{2} -frac{a^2}{2} - frac{b^2 - 2ab + a^2}{2n} right] = frac{b^2}{2} -frac{a^2}{2}$$
Thus,
$$int_a^b r dr = frac{b^2}{2} - frac{a^2}{2},$$
which implies the indefinite integral takes the following form.
$$int r dr = frac{r^2}{2} + C$$
answered Jan 28 at 4:01
Trevor KafkaTrevor Kafka
5309
5309
$begingroup$
Yes, here you took a definite integral using the reimann sum method. I know about this technique, however I'm looking at something that doesn't require an introduction of bounds. Is there any way to do that?
$endgroup$
– Dude156
Jan 28 at 4:10
1
$begingroup$
You can't do a Riemann approximation without bounds, no. The indefinite integral function is defined in terms of the definite integral. $$int f(x) dx equiv left( int_0^x f(u)du right) + C$$
$endgroup$
– Trevor Kafka
Jan 28 at 4:20
$begingroup$
ahh, now I understand what you mean by "be more specific". Thanks man!
$endgroup$
– Dude156
Jan 28 at 4:38
add a comment |
$begingroup$
Yes, here you took a definite integral using the reimann sum method. I know about this technique, however I'm looking at something that doesn't require an introduction of bounds. Is there any way to do that?
$endgroup$
– Dude156
Jan 28 at 4:10
1
$begingroup$
You can't do a Riemann approximation without bounds, no. The indefinite integral function is defined in terms of the definite integral. $$int f(x) dx equiv left( int_0^x f(u)du right) + C$$
$endgroup$
– Trevor Kafka
Jan 28 at 4:20
$begingroup$
ahh, now I understand what you mean by "be more specific". Thanks man!
$endgroup$
– Dude156
Jan 28 at 4:38
$begingroup$
Yes, here you took a definite integral using the reimann sum method. I know about this technique, however I'm looking at something that doesn't require an introduction of bounds. Is there any way to do that?
$endgroup$
– Dude156
Jan 28 at 4:10
$begingroup$
Yes, here you took a definite integral using the reimann sum method. I know about this technique, however I'm looking at something that doesn't require an introduction of bounds. Is there any way to do that?
$endgroup$
– Dude156
Jan 28 at 4:10
1
1
$begingroup$
You can't do a Riemann approximation without bounds, no. The indefinite integral function is defined in terms of the definite integral. $$int f(x) dx equiv left( int_0^x f(u)du right) + C$$
$endgroup$
– Trevor Kafka
Jan 28 at 4:20
$begingroup$
You can't do a Riemann approximation without bounds, no. The indefinite integral function is defined in terms of the definite integral. $$int f(x) dx equiv left( int_0^x f(u)du right) + C$$
$endgroup$
– Trevor Kafka
Jan 28 at 4:20
$begingroup$
ahh, now I understand what you mean by "be more specific". Thanks man!
$endgroup$
– Dude156
Jan 28 at 4:38
$begingroup$
ahh, now I understand what you mean by "be more specific". Thanks man!
$endgroup$
– Dude156
Jan 28 at 4:38
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3090438%2fsolving-indefinite-integral-without-ftc%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown