Using Induction to prove this inequality?
$begingroup$
I'm having a hard time solving the following problem:
Let ${displaystyle (a_{n})_{nin mathbb {N_{0}} }}$ be the sequence defined recursively by:
$a_{0}=2$
$a_{n+1} = frac{1+3^{n+1}}{2} + sum_{i=0}^n a_i qquad forall n in mathbb{N_{0}}$
Prove (by induction):
$$a_{n} le 3^{n} + 2^nqquad forall n in mathbb{N_{0}} $$
Every way I tried so far gets me nowhere and I'm starting to get confused. Solutions or any hints will be highly appreciated. Thank you in advance.
sequences-and-series induction natural-numbers
$endgroup$
add a comment |
$begingroup$
I'm having a hard time solving the following problem:
Let ${displaystyle (a_{n})_{nin mathbb {N_{0}} }}$ be the sequence defined recursively by:
$a_{0}=2$
$a_{n+1} = frac{1+3^{n+1}}{2} + sum_{i=0}^n a_i qquad forall n in mathbb{N_{0}}$
Prove (by induction):
$$a_{n} le 3^{n} + 2^nqquad forall n in mathbb{N_{0}} $$
Every way I tried so far gets me nowhere and I'm starting to get confused. Solutions or any hints will be highly appreciated. Thank you in advance.
sequences-and-series induction natural-numbers
$endgroup$
add a comment |
$begingroup$
I'm having a hard time solving the following problem:
Let ${displaystyle (a_{n})_{nin mathbb {N_{0}} }}$ be the sequence defined recursively by:
$a_{0}=2$
$a_{n+1} = frac{1+3^{n+1}}{2} + sum_{i=0}^n a_i qquad forall n in mathbb{N_{0}}$
Prove (by induction):
$$a_{n} le 3^{n} + 2^nqquad forall n in mathbb{N_{0}} $$
Every way I tried so far gets me nowhere and I'm starting to get confused. Solutions or any hints will be highly appreciated. Thank you in advance.
sequences-and-series induction natural-numbers
$endgroup$
I'm having a hard time solving the following problem:
Let ${displaystyle (a_{n})_{nin mathbb {N_{0}} }}$ be the sequence defined recursively by:
$a_{0}=2$
$a_{n+1} = frac{1+3^{n+1}}{2} + sum_{i=0}^n a_i qquad forall n in mathbb{N_{0}}$
Prove (by induction):
$$a_{n} le 3^{n} + 2^nqquad forall n in mathbb{N_{0}} $$
Every way I tried so far gets me nowhere and I'm starting to get confused. Solutions or any hints will be highly appreciated. Thank you in advance.
sequences-and-series induction natural-numbers
sequences-and-series induction natural-numbers
edited Jan 20 at 16:48
Nebzat
asked Jan 20 at 16:40
NebzatNebzat
244
244
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint:
Using strong induction, you have
begin{align}
a_{n+1}= frac{1+3^{n+1}}{2} + sum_{i=0}^n a_i&le frac{1+3^{n+1}}{2} + sum_{i=0}^n(3^i+ 2^i)\
& = frac{1+3^{n+1}}{2}+frac{3^{n+1}-1}2 + 2^{n+1}-1.
end{align}
Can you end it?
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080795%2fusing-induction-to-prove-this-inequality%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
Using strong induction, you have
begin{align}
a_{n+1}= frac{1+3^{n+1}}{2} + sum_{i=0}^n a_i&le frac{1+3^{n+1}}{2} + sum_{i=0}^n(3^i+ 2^i)\
& = frac{1+3^{n+1}}{2}+frac{3^{n+1}-1}2 + 2^{n+1}-1.
end{align}
Can you end it?
$endgroup$
add a comment |
$begingroup$
Hint:
Using strong induction, you have
begin{align}
a_{n+1}= frac{1+3^{n+1}}{2} + sum_{i=0}^n a_i&le frac{1+3^{n+1}}{2} + sum_{i=0}^n(3^i+ 2^i)\
& = frac{1+3^{n+1}}{2}+frac{3^{n+1}-1}2 + 2^{n+1}-1.
end{align}
Can you end it?
$endgroup$
add a comment |
$begingroup$
Hint:
Using strong induction, you have
begin{align}
a_{n+1}= frac{1+3^{n+1}}{2} + sum_{i=0}^n a_i&le frac{1+3^{n+1}}{2} + sum_{i=0}^n(3^i+ 2^i)\
& = frac{1+3^{n+1}}{2}+frac{3^{n+1}-1}2 + 2^{n+1}-1.
end{align}
Can you end it?
$endgroup$
Hint:
Using strong induction, you have
begin{align}
a_{n+1}= frac{1+3^{n+1}}{2} + sum_{i=0}^n a_i&le frac{1+3^{n+1}}{2} + sum_{i=0}^n(3^i+ 2^i)\
& = frac{1+3^{n+1}}{2}+frac{3^{n+1}-1}2 + 2^{n+1}-1.
end{align}
Can you end it?
answered Jan 20 at 16:56
BernardBernard
122k740116
122k740116
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080795%2fusing-induction-to-prove-this-inequality%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown