Verifying $ sum_{k=0}^{infty}{3k choose k}frac{9k^2-3k-1}{(3k-1)(3k-2)}left(frac{2}{27}right)^k=frac{1}{4}$
$begingroup$
$$
sum_{k=0}^{infty}{3k choose k}dfrac{9k^2-3k-1}{(3k-1)(3k-2)}left(dfrac{2}{27}right)^k=dfrac{1}{4}
$$
After some simplification, I got the following result:
$$
sum_{k=0}^{infty}left{{3k choose k}+dfrac{27}{2k}{3k-4 choose 2k-3}right}left(dfrac{2}{27}right)^k.
$$
Now, how I can proceed?
real-analysis summation
$endgroup$
add a comment |
$begingroup$
$$
sum_{k=0}^{infty}{3k choose k}dfrac{9k^2-3k-1}{(3k-1)(3k-2)}left(dfrac{2}{27}right)^k=dfrac{1}{4}
$$
After some simplification, I got the following result:
$$
sum_{k=0}^{infty}left{{3k choose k}+dfrac{27}{2k}{3k-4 choose 2k-3}right}left(dfrac{2}{27}right)^k.
$$
Now, how I can proceed?
real-analysis summation
$endgroup$
add a comment |
$begingroup$
$$
sum_{k=0}^{infty}{3k choose k}dfrac{9k^2-3k-1}{(3k-1)(3k-2)}left(dfrac{2}{27}right)^k=dfrac{1}{4}
$$
After some simplification, I got the following result:
$$
sum_{k=0}^{infty}left{{3k choose k}+dfrac{27}{2k}{3k-4 choose 2k-3}right}left(dfrac{2}{27}right)^k.
$$
Now, how I can proceed?
real-analysis summation
$endgroup$
$$
sum_{k=0}^{infty}{3k choose k}dfrac{9k^2-3k-1}{(3k-1)(3k-2)}left(dfrac{2}{27}right)^k=dfrac{1}{4}
$$
After some simplification, I got the following result:
$$
sum_{k=0}^{infty}left{{3k choose k}+dfrac{27}{2k}{3k-4 choose 2k-3}right}left(dfrac{2}{27}right)^k.
$$
Now, how I can proceed?
real-analysis summation
real-analysis summation
edited Jan 20 at 18:27


Blue
48.7k870156
48.7k870156
asked Jan 20 at 11:52
J.DoeJ.Doe
311
311
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Starting with
$$
eqalign{
& S = sumlimits_{k = 0}^infty {
binom{3k}{k}{{9k^2 - 3k - 1} over {left( {3k - 1} right)left( {3k - 2} right)}}left( {{2 over {27}}} right)^{,k} } = cr
& = sumlimits_{k = 0}^infty {
binom{3k}{k} left( {1 + {1 over {left( {3k - 1} right)}} + {1 over {left( {3k - 2} right)}}} right)left( {{2 over {27}}} right)^{,k} } cr}
$$
we have that
$$
binom{3k}{k} = {{Gamma left( {3k + 1} right)} over {Gamma left( {2k + 1} right)}}{1 over {k!}}
$$
Using the $n$-plication formula for the Gamma function
$$
Gamma left( {n,z + 1} right) = Gamma left( {n,left( {z + 1/n} right)} right)quad =
{{n^{,n,z + 1/2} } over {left( {2,pi } right)^{left( {n - 1} right)/2} }}prodlimits_{1, le ,j, le ,n} {Gamma left( {z + {j over n}} right)}
$$
we get
$$
eqalign{
& {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)}}quad
= {{3^{,3,k + 1/2} } over {2^{,2,k + 1/2} sqrt {2,pi } ^, }}{{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)
Gamma left( {k + 1} right)} over {Gamma left( {k + {1 over 2}} right)Gamma left( {k + 1} right)}} = cr
& = sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr
& {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)left( {3k - 1} right)}}
= sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {3Gamma left( {k + {1 over 2}} right)left( {k - 1/3} right)}}left( {{27 over 4}} right)^{,k} = cr
& = sqrt {{3 over {4pi }}} {1 over 3}{{Gamma left( {k + {1 over 3}} right)Gamma left( {k - {1 over 3}} right)}
over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr
& {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)left( {3k - 2} right)}}
= sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {3Gamma left( {k + {1 over 2}} right)left( {k - 2/3} right)}}left( {{27 over 4}} right)^{,k} = cr
& = sqrt {{3 over {4pi }}} {1 over 3}{{Gamma left( {k - {2 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr}
$$
So
$$
eqalign{
& S = cr
& = sumlimits_{k = 0}^infty {binom{3k}{k}
left( {1 + {1 over {left( {3k - 1} right)}} + {1 over {left( {3k - 2} right)}}} right)left( {{2 over {27}}} right)^{,k} } = cr
& = {1 over 2}sqrt {{1 over {3pi }}} sumlimits_{k = 0}^infty {
left( {3{{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)} over {Gamma left( {k + {1 over 2}} right)}}
+ {{Gamma left( {k + {1 over 3}} right)Gamma left( {k - {1 over 3}} right)} over {Gamma left( {k + {1 over 2}} right)}}
+ {{Gamma left( {k - {2 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {Gamma left( {k + {1 over 2}} right)}}} right){{left( {1/2} right)^{,k} } over {k!}}} cr}
$$
Using the Hypergeometric function that becomes
$$
eqalign{
& S = cr
& = {1 over 2}sqrt {{1 over {3pi }}} left( matrix{
3{{Gamma left( {1/3} right)Gamma left( {2/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
{1/3,;2/3} cr {1/2} cr
} ,} right|;{1 over 2}} right) + hfill cr
+ {{Gamma left( {1/3} right)Gamma left( { - 1/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
{1/3,; - 1/3} cr {1/2} cr
} ,} right|;{1 over 2}} right) + hfill cr
+ {{Gamma left( {2/3} right)Gamma left( { - 2/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
{2/3,; - 2/3} cr {1/2} cr
} ,} right|;{1 over 2}} right) hfill cr} right) = cr
& = {}_2F_1 left( {left. {matrix{ {1/3,;2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
- {}_2F_1 left( {left. {matrix{ {1/3,; - 1/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
- {1 over 2}{}_2F_1 left( {left. {matrix{ {2/3,; - 2/3} cr {1/2} cr } ,} right|;{1 over 2}} right) cr}
$$
Since the hypergeometric for the variable $z=1/2$
follows the following formulas (see e.g. this link)
$$
eqalign{
& {}_2F_1 left( {left. {matrix{ {a,;b} cr {{{a + b} over 2}} cr } ,} right|;{1 over 2}} right)
= sqrt pi ;Gamma left( {{{a + b} over 2}} right)left( {{1 over {Gamma left( {{{a + 1} over 2}} right)Gamma left( {{b over 2}} right)}}
+ {1 over {Gamma left( {{a over 2}} right)Gamma left( {{{b + 1} over 2}} right)}}} right) cr
& {}_2F_1 left( {left. {matrix{ {a,;b} cr {{{a + b + 1} over 2}} cr } ,} right|;{1 over 2}} right)
= sqrt pi ;Gamma left( {{{a + b + 1} over 2}} right){1 over {Gamma left( {{{a + 1} over 2}} right)Gamma left( {{{b + 1} over 2}} right)}} cr}
$$
then
$$
eqalign{
& {}_2F_1 left( {left. {matrix{ {1/3,;2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
= pi left( {{1 over {Gamma left( {2/3} right)Gamma left( {1/3} right)}}
+ {1 over {Gamma left( {1/6} right)Gamma left( {1 - 1/6} right)}}} right) = cr
& = left( {{3 over {2sqrt 3 }} + {1 over 2}} right) = {{sqrt 3 + 1} over 2} cr
& {}_2F_1 left( {left. {matrix{ {1/3,; - 1/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
= pi {1 over {Gamma left( {2/3} right)Gamma left( {1/3} right)}} = {{sqrt 3 } over 2} cr
& {}_2F_1 left( {left. {matrix{ {2/3,; - 2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
= pi {1 over {Gamma left( {1 - {1 over 6}} right)Gamma left( {{1 over 6}} right)}} = {1 over 2} cr}
$$
And $S= 1/4$ follows.
$endgroup$
add a comment |
$begingroup$
By Lagrange's inversion theorem (see Bring radical for the quintic analogue)
$$ sum_{kgeq 0}binom{3k}{k}left(frac{4}{27}right)^k x^{2k} = frac{cosleft(frac{1}{3}arcsin xright)}{sqrt{1-x^2}} tag{1}$$
and by partial fraction decomposition
$$ frac{9k^2-3k-1}{(3k-1)(3k-2)} = 1+frac{1}{3k-1}+frac{1}{3k-2}tag{2} $$
hence by evaluating $(1)$ at $x=frac{1}{sqrt{2}}$ we immediately get
$$ sum_{kgeq 0}binom{3k}{k}left(frac{2}{27}right)^k = frac{1+sqrt{3}}{2}. tag{3}$$
By reindexing the original series equals
$$-frac{1}{2}+sum_{kgeq 0}binom{3k}{k}frac{3(3k+2)(3k+1)}{(2k+2)(2k+1)}left[1+frac{1}{3k+1}+frac{1}{3k+2}right]left(frac{2}{27}right)^k tag{4}$$
hence it is enough to compute the integrals over $(0,1/sqrt{2})$ of the RHS of $(1)$ and of the RHS of $(1)$ multiplied by $x$. They are $frac{3}{2sqrt{2}}(sqrt{3}-1)$ and $frac{3}{16}(5-2sqrt{3})$ by the substitution $xmapstosintheta$. By re-combining these pieces the claim is proved.
$endgroup$
1
$begingroup$
@J.Doe: An application of the Lagrange inversion theorem to calculate $sum_{k}binom{3k}{k}x^k$ can be found for instance at this post.
$endgroup$
– Markus Scheuer
Jan 20 at 19:21
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080486%2fverifying-sum-k-0-infty3k-choose-k-frac9k2-3k-13k-13k-2-left%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Starting with
$$
eqalign{
& S = sumlimits_{k = 0}^infty {
binom{3k}{k}{{9k^2 - 3k - 1} over {left( {3k - 1} right)left( {3k - 2} right)}}left( {{2 over {27}}} right)^{,k} } = cr
& = sumlimits_{k = 0}^infty {
binom{3k}{k} left( {1 + {1 over {left( {3k - 1} right)}} + {1 over {left( {3k - 2} right)}}} right)left( {{2 over {27}}} right)^{,k} } cr}
$$
we have that
$$
binom{3k}{k} = {{Gamma left( {3k + 1} right)} over {Gamma left( {2k + 1} right)}}{1 over {k!}}
$$
Using the $n$-plication formula for the Gamma function
$$
Gamma left( {n,z + 1} right) = Gamma left( {n,left( {z + 1/n} right)} right)quad =
{{n^{,n,z + 1/2} } over {left( {2,pi } right)^{left( {n - 1} right)/2} }}prodlimits_{1, le ,j, le ,n} {Gamma left( {z + {j over n}} right)}
$$
we get
$$
eqalign{
& {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)}}quad
= {{3^{,3,k + 1/2} } over {2^{,2,k + 1/2} sqrt {2,pi } ^, }}{{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)
Gamma left( {k + 1} right)} over {Gamma left( {k + {1 over 2}} right)Gamma left( {k + 1} right)}} = cr
& = sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr
& {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)left( {3k - 1} right)}}
= sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {3Gamma left( {k + {1 over 2}} right)left( {k - 1/3} right)}}left( {{27 over 4}} right)^{,k} = cr
& = sqrt {{3 over {4pi }}} {1 over 3}{{Gamma left( {k + {1 over 3}} right)Gamma left( {k - {1 over 3}} right)}
over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr
& {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)left( {3k - 2} right)}}
= sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {3Gamma left( {k + {1 over 2}} right)left( {k - 2/3} right)}}left( {{27 over 4}} right)^{,k} = cr
& = sqrt {{3 over {4pi }}} {1 over 3}{{Gamma left( {k - {2 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr}
$$
So
$$
eqalign{
& S = cr
& = sumlimits_{k = 0}^infty {binom{3k}{k}
left( {1 + {1 over {left( {3k - 1} right)}} + {1 over {left( {3k - 2} right)}}} right)left( {{2 over {27}}} right)^{,k} } = cr
& = {1 over 2}sqrt {{1 over {3pi }}} sumlimits_{k = 0}^infty {
left( {3{{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)} over {Gamma left( {k + {1 over 2}} right)}}
+ {{Gamma left( {k + {1 over 3}} right)Gamma left( {k - {1 over 3}} right)} over {Gamma left( {k + {1 over 2}} right)}}
+ {{Gamma left( {k - {2 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {Gamma left( {k + {1 over 2}} right)}}} right){{left( {1/2} right)^{,k} } over {k!}}} cr}
$$
Using the Hypergeometric function that becomes
$$
eqalign{
& S = cr
& = {1 over 2}sqrt {{1 over {3pi }}} left( matrix{
3{{Gamma left( {1/3} right)Gamma left( {2/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
{1/3,;2/3} cr {1/2} cr
} ,} right|;{1 over 2}} right) + hfill cr
+ {{Gamma left( {1/3} right)Gamma left( { - 1/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
{1/3,; - 1/3} cr {1/2} cr
} ,} right|;{1 over 2}} right) + hfill cr
+ {{Gamma left( {2/3} right)Gamma left( { - 2/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
{2/3,; - 2/3} cr {1/2} cr
} ,} right|;{1 over 2}} right) hfill cr} right) = cr
& = {}_2F_1 left( {left. {matrix{ {1/3,;2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
- {}_2F_1 left( {left. {matrix{ {1/3,; - 1/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
- {1 over 2}{}_2F_1 left( {left. {matrix{ {2/3,; - 2/3} cr {1/2} cr } ,} right|;{1 over 2}} right) cr}
$$
Since the hypergeometric for the variable $z=1/2$
follows the following formulas (see e.g. this link)
$$
eqalign{
& {}_2F_1 left( {left. {matrix{ {a,;b} cr {{{a + b} over 2}} cr } ,} right|;{1 over 2}} right)
= sqrt pi ;Gamma left( {{{a + b} over 2}} right)left( {{1 over {Gamma left( {{{a + 1} over 2}} right)Gamma left( {{b over 2}} right)}}
+ {1 over {Gamma left( {{a over 2}} right)Gamma left( {{{b + 1} over 2}} right)}}} right) cr
& {}_2F_1 left( {left. {matrix{ {a,;b} cr {{{a + b + 1} over 2}} cr } ,} right|;{1 over 2}} right)
= sqrt pi ;Gamma left( {{{a + b + 1} over 2}} right){1 over {Gamma left( {{{a + 1} over 2}} right)Gamma left( {{{b + 1} over 2}} right)}} cr}
$$
then
$$
eqalign{
& {}_2F_1 left( {left. {matrix{ {1/3,;2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
= pi left( {{1 over {Gamma left( {2/3} right)Gamma left( {1/3} right)}}
+ {1 over {Gamma left( {1/6} right)Gamma left( {1 - 1/6} right)}}} right) = cr
& = left( {{3 over {2sqrt 3 }} + {1 over 2}} right) = {{sqrt 3 + 1} over 2} cr
& {}_2F_1 left( {left. {matrix{ {1/3,; - 1/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
= pi {1 over {Gamma left( {2/3} right)Gamma left( {1/3} right)}} = {{sqrt 3 } over 2} cr
& {}_2F_1 left( {left. {matrix{ {2/3,; - 2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
= pi {1 over {Gamma left( {1 - {1 over 6}} right)Gamma left( {{1 over 6}} right)}} = {1 over 2} cr}
$$
And $S= 1/4$ follows.
$endgroup$
add a comment |
$begingroup$
Starting with
$$
eqalign{
& S = sumlimits_{k = 0}^infty {
binom{3k}{k}{{9k^2 - 3k - 1} over {left( {3k - 1} right)left( {3k - 2} right)}}left( {{2 over {27}}} right)^{,k} } = cr
& = sumlimits_{k = 0}^infty {
binom{3k}{k} left( {1 + {1 over {left( {3k - 1} right)}} + {1 over {left( {3k - 2} right)}}} right)left( {{2 over {27}}} right)^{,k} } cr}
$$
we have that
$$
binom{3k}{k} = {{Gamma left( {3k + 1} right)} over {Gamma left( {2k + 1} right)}}{1 over {k!}}
$$
Using the $n$-plication formula for the Gamma function
$$
Gamma left( {n,z + 1} right) = Gamma left( {n,left( {z + 1/n} right)} right)quad =
{{n^{,n,z + 1/2} } over {left( {2,pi } right)^{left( {n - 1} right)/2} }}prodlimits_{1, le ,j, le ,n} {Gamma left( {z + {j over n}} right)}
$$
we get
$$
eqalign{
& {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)}}quad
= {{3^{,3,k + 1/2} } over {2^{,2,k + 1/2} sqrt {2,pi } ^, }}{{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)
Gamma left( {k + 1} right)} over {Gamma left( {k + {1 over 2}} right)Gamma left( {k + 1} right)}} = cr
& = sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr
& {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)left( {3k - 1} right)}}
= sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {3Gamma left( {k + {1 over 2}} right)left( {k - 1/3} right)}}left( {{27 over 4}} right)^{,k} = cr
& = sqrt {{3 over {4pi }}} {1 over 3}{{Gamma left( {k + {1 over 3}} right)Gamma left( {k - {1 over 3}} right)}
over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr
& {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)left( {3k - 2} right)}}
= sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {3Gamma left( {k + {1 over 2}} right)left( {k - 2/3} right)}}left( {{27 over 4}} right)^{,k} = cr
& = sqrt {{3 over {4pi }}} {1 over 3}{{Gamma left( {k - {2 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr}
$$
So
$$
eqalign{
& S = cr
& = sumlimits_{k = 0}^infty {binom{3k}{k}
left( {1 + {1 over {left( {3k - 1} right)}} + {1 over {left( {3k - 2} right)}}} right)left( {{2 over {27}}} right)^{,k} } = cr
& = {1 over 2}sqrt {{1 over {3pi }}} sumlimits_{k = 0}^infty {
left( {3{{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)} over {Gamma left( {k + {1 over 2}} right)}}
+ {{Gamma left( {k + {1 over 3}} right)Gamma left( {k - {1 over 3}} right)} over {Gamma left( {k + {1 over 2}} right)}}
+ {{Gamma left( {k - {2 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {Gamma left( {k + {1 over 2}} right)}}} right){{left( {1/2} right)^{,k} } over {k!}}} cr}
$$
Using the Hypergeometric function that becomes
$$
eqalign{
& S = cr
& = {1 over 2}sqrt {{1 over {3pi }}} left( matrix{
3{{Gamma left( {1/3} right)Gamma left( {2/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
{1/3,;2/3} cr {1/2} cr
} ,} right|;{1 over 2}} right) + hfill cr
+ {{Gamma left( {1/3} right)Gamma left( { - 1/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
{1/3,; - 1/3} cr {1/2} cr
} ,} right|;{1 over 2}} right) + hfill cr
+ {{Gamma left( {2/3} right)Gamma left( { - 2/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
{2/3,; - 2/3} cr {1/2} cr
} ,} right|;{1 over 2}} right) hfill cr} right) = cr
& = {}_2F_1 left( {left. {matrix{ {1/3,;2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
- {}_2F_1 left( {left. {matrix{ {1/3,; - 1/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
- {1 over 2}{}_2F_1 left( {left. {matrix{ {2/3,; - 2/3} cr {1/2} cr } ,} right|;{1 over 2}} right) cr}
$$
Since the hypergeometric for the variable $z=1/2$
follows the following formulas (see e.g. this link)
$$
eqalign{
& {}_2F_1 left( {left. {matrix{ {a,;b} cr {{{a + b} over 2}} cr } ,} right|;{1 over 2}} right)
= sqrt pi ;Gamma left( {{{a + b} over 2}} right)left( {{1 over {Gamma left( {{{a + 1} over 2}} right)Gamma left( {{b over 2}} right)}}
+ {1 over {Gamma left( {{a over 2}} right)Gamma left( {{{b + 1} over 2}} right)}}} right) cr
& {}_2F_1 left( {left. {matrix{ {a,;b} cr {{{a + b + 1} over 2}} cr } ,} right|;{1 over 2}} right)
= sqrt pi ;Gamma left( {{{a + b + 1} over 2}} right){1 over {Gamma left( {{{a + 1} over 2}} right)Gamma left( {{{b + 1} over 2}} right)}} cr}
$$
then
$$
eqalign{
& {}_2F_1 left( {left. {matrix{ {1/3,;2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
= pi left( {{1 over {Gamma left( {2/3} right)Gamma left( {1/3} right)}}
+ {1 over {Gamma left( {1/6} right)Gamma left( {1 - 1/6} right)}}} right) = cr
& = left( {{3 over {2sqrt 3 }} + {1 over 2}} right) = {{sqrt 3 + 1} over 2} cr
& {}_2F_1 left( {left. {matrix{ {1/3,; - 1/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
= pi {1 over {Gamma left( {2/3} right)Gamma left( {1/3} right)}} = {{sqrt 3 } over 2} cr
& {}_2F_1 left( {left. {matrix{ {2/3,; - 2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
= pi {1 over {Gamma left( {1 - {1 over 6}} right)Gamma left( {{1 over 6}} right)}} = {1 over 2} cr}
$$
And $S= 1/4$ follows.
$endgroup$
add a comment |
$begingroup$
Starting with
$$
eqalign{
& S = sumlimits_{k = 0}^infty {
binom{3k}{k}{{9k^2 - 3k - 1} over {left( {3k - 1} right)left( {3k - 2} right)}}left( {{2 over {27}}} right)^{,k} } = cr
& = sumlimits_{k = 0}^infty {
binom{3k}{k} left( {1 + {1 over {left( {3k - 1} right)}} + {1 over {left( {3k - 2} right)}}} right)left( {{2 over {27}}} right)^{,k} } cr}
$$
we have that
$$
binom{3k}{k} = {{Gamma left( {3k + 1} right)} over {Gamma left( {2k + 1} right)}}{1 over {k!}}
$$
Using the $n$-plication formula for the Gamma function
$$
Gamma left( {n,z + 1} right) = Gamma left( {n,left( {z + 1/n} right)} right)quad =
{{n^{,n,z + 1/2} } over {left( {2,pi } right)^{left( {n - 1} right)/2} }}prodlimits_{1, le ,j, le ,n} {Gamma left( {z + {j over n}} right)}
$$
we get
$$
eqalign{
& {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)}}quad
= {{3^{,3,k + 1/2} } over {2^{,2,k + 1/2} sqrt {2,pi } ^, }}{{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)
Gamma left( {k + 1} right)} over {Gamma left( {k + {1 over 2}} right)Gamma left( {k + 1} right)}} = cr
& = sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr
& {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)left( {3k - 1} right)}}
= sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {3Gamma left( {k + {1 over 2}} right)left( {k - 1/3} right)}}left( {{27 over 4}} right)^{,k} = cr
& = sqrt {{3 over {4pi }}} {1 over 3}{{Gamma left( {k + {1 over 3}} right)Gamma left( {k - {1 over 3}} right)}
over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr
& {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)left( {3k - 2} right)}}
= sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {3Gamma left( {k + {1 over 2}} right)left( {k - 2/3} right)}}left( {{27 over 4}} right)^{,k} = cr
& = sqrt {{3 over {4pi }}} {1 over 3}{{Gamma left( {k - {2 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr}
$$
So
$$
eqalign{
& S = cr
& = sumlimits_{k = 0}^infty {binom{3k}{k}
left( {1 + {1 over {left( {3k - 1} right)}} + {1 over {left( {3k - 2} right)}}} right)left( {{2 over {27}}} right)^{,k} } = cr
& = {1 over 2}sqrt {{1 over {3pi }}} sumlimits_{k = 0}^infty {
left( {3{{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)} over {Gamma left( {k + {1 over 2}} right)}}
+ {{Gamma left( {k + {1 over 3}} right)Gamma left( {k - {1 over 3}} right)} over {Gamma left( {k + {1 over 2}} right)}}
+ {{Gamma left( {k - {2 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {Gamma left( {k + {1 over 2}} right)}}} right){{left( {1/2} right)^{,k} } over {k!}}} cr}
$$
Using the Hypergeometric function that becomes
$$
eqalign{
& S = cr
& = {1 over 2}sqrt {{1 over {3pi }}} left( matrix{
3{{Gamma left( {1/3} right)Gamma left( {2/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
{1/3,;2/3} cr {1/2} cr
} ,} right|;{1 over 2}} right) + hfill cr
+ {{Gamma left( {1/3} right)Gamma left( { - 1/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
{1/3,; - 1/3} cr {1/2} cr
} ,} right|;{1 over 2}} right) + hfill cr
+ {{Gamma left( {2/3} right)Gamma left( { - 2/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
{2/3,; - 2/3} cr {1/2} cr
} ,} right|;{1 over 2}} right) hfill cr} right) = cr
& = {}_2F_1 left( {left. {matrix{ {1/3,;2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
- {}_2F_1 left( {left. {matrix{ {1/3,; - 1/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
- {1 over 2}{}_2F_1 left( {left. {matrix{ {2/3,; - 2/3} cr {1/2} cr } ,} right|;{1 over 2}} right) cr}
$$
Since the hypergeometric for the variable $z=1/2$
follows the following formulas (see e.g. this link)
$$
eqalign{
& {}_2F_1 left( {left. {matrix{ {a,;b} cr {{{a + b} over 2}} cr } ,} right|;{1 over 2}} right)
= sqrt pi ;Gamma left( {{{a + b} over 2}} right)left( {{1 over {Gamma left( {{{a + 1} over 2}} right)Gamma left( {{b over 2}} right)}}
+ {1 over {Gamma left( {{a over 2}} right)Gamma left( {{{b + 1} over 2}} right)}}} right) cr
& {}_2F_1 left( {left. {matrix{ {a,;b} cr {{{a + b + 1} over 2}} cr } ,} right|;{1 over 2}} right)
= sqrt pi ;Gamma left( {{{a + b + 1} over 2}} right){1 over {Gamma left( {{{a + 1} over 2}} right)Gamma left( {{{b + 1} over 2}} right)}} cr}
$$
then
$$
eqalign{
& {}_2F_1 left( {left. {matrix{ {1/3,;2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
= pi left( {{1 over {Gamma left( {2/3} right)Gamma left( {1/3} right)}}
+ {1 over {Gamma left( {1/6} right)Gamma left( {1 - 1/6} right)}}} right) = cr
& = left( {{3 over {2sqrt 3 }} + {1 over 2}} right) = {{sqrt 3 + 1} over 2} cr
& {}_2F_1 left( {left. {matrix{ {1/3,; - 1/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
= pi {1 over {Gamma left( {2/3} right)Gamma left( {1/3} right)}} = {{sqrt 3 } over 2} cr
& {}_2F_1 left( {left. {matrix{ {2/3,; - 2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
= pi {1 over {Gamma left( {1 - {1 over 6}} right)Gamma left( {{1 over 6}} right)}} = {1 over 2} cr}
$$
And $S= 1/4$ follows.
$endgroup$
Starting with
$$
eqalign{
& S = sumlimits_{k = 0}^infty {
binom{3k}{k}{{9k^2 - 3k - 1} over {left( {3k - 1} right)left( {3k - 2} right)}}left( {{2 over {27}}} right)^{,k} } = cr
& = sumlimits_{k = 0}^infty {
binom{3k}{k} left( {1 + {1 over {left( {3k - 1} right)}} + {1 over {left( {3k - 2} right)}}} right)left( {{2 over {27}}} right)^{,k} } cr}
$$
we have that
$$
binom{3k}{k} = {{Gamma left( {3k + 1} right)} over {Gamma left( {2k + 1} right)}}{1 over {k!}}
$$
Using the $n$-plication formula for the Gamma function
$$
Gamma left( {n,z + 1} right) = Gamma left( {n,left( {z + 1/n} right)} right)quad =
{{n^{,n,z + 1/2} } over {left( {2,pi } right)^{left( {n - 1} right)/2} }}prodlimits_{1, le ,j, le ,n} {Gamma left( {z + {j over n}} right)}
$$
we get
$$
eqalign{
& {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)}}quad
= {{3^{,3,k + 1/2} } over {2^{,2,k + 1/2} sqrt {2,pi } ^, }}{{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)
Gamma left( {k + 1} right)} over {Gamma left( {k + {1 over 2}} right)Gamma left( {k + 1} right)}} = cr
& = sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr
& {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)left( {3k - 1} right)}}
= sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {3Gamma left( {k + {1 over 2}} right)left( {k - 1/3} right)}}left( {{27 over 4}} right)^{,k} = cr
& = sqrt {{3 over {4pi }}} {1 over 3}{{Gamma left( {k + {1 over 3}} right)Gamma left( {k - {1 over 3}} right)}
over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr
& {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)left( {3k - 2} right)}}
= sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {3Gamma left( {k + {1 over 2}} right)left( {k - 2/3} right)}}left( {{27 over 4}} right)^{,k} = cr
& = sqrt {{3 over {4pi }}} {1 over 3}{{Gamma left( {k - {2 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr}
$$
So
$$
eqalign{
& S = cr
& = sumlimits_{k = 0}^infty {binom{3k}{k}
left( {1 + {1 over {left( {3k - 1} right)}} + {1 over {left( {3k - 2} right)}}} right)left( {{2 over {27}}} right)^{,k} } = cr
& = {1 over 2}sqrt {{1 over {3pi }}} sumlimits_{k = 0}^infty {
left( {3{{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)} over {Gamma left( {k + {1 over 2}} right)}}
+ {{Gamma left( {k + {1 over 3}} right)Gamma left( {k - {1 over 3}} right)} over {Gamma left( {k + {1 over 2}} right)}}
+ {{Gamma left( {k - {2 over 3}} right)Gamma left( {k + {2 over 3}} right)}
over {Gamma left( {k + {1 over 2}} right)}}} right){{left( {1/2} right)^{,k} } over {k!}}} cr}
$$
Using the Hypergeometric function that becomes
$$
eqalign{
& S = cr
& = {1 over 2}sqrt {{1 over {3pi }}} left( matrix{
3{{Gamma left( {1/3} right)Gamma left( {2/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
{1/3,;2/3} cr {1/2} cr
} ,} right|;{1 over 2}} right) + hfill cr
+ {{Gamma left( {1/3} right)Gamma left( { - 1/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
{1/3,; - 1/3} cr {1/2} cr
} ,} right|;{1 over 2}} right) + hfill cr
+ {{Gamma left( {2/3} right)Gamma left( { - 2/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
{2/3,; - 2/3} cr {1/2} cr
} ,} right|;{1 over 2}} right) hfill cr} right) = cr
& = {}_2F_1 left( {left. {matrix{ {1/3,;2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
- {}_2F_1 left( {left. {matrix{ {1/3,; - 1/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
- {1 over 2}{}_2F_1 left( {left. {matrix{ {2/3,; - 2/3} cr {1/2} cr } ,} right|;{1 over 2}} right) cr}
$$
Since the hypergeometric for the variable $z=1/2$
follows the following formulas (see e.g. this link)
$$
eqalign{
& {}_2F_1 left( {left. {matrix{ {a,;b} cr {{{a + b} over 2}} cr } ,} right|;{1 over 2}} right)
= sqrt pi ;Gamma left( {{{a + b} over 2}} right)left( {{1 over {Gamma left( {{{a + 1} over 2}} right)Gamma left( {{b over 2}} right)}}
+ {1 over {Gamma left( {{a over 2}} right)Gamma left( {{{b + 1} over 2}} right)}}} right) cr
& {}_2F_1 left( {left. {matrix{ {a,;b} cr {{{a + b + 1} over 2}} cr } ,} right|;{1 over 2}} right)
= sqrt pi ;Gamma left( {{{a + b + 1} over 2}} right){1 over {Gamma left( {{{a + 1} over 2}} right)Gamma left( {{{b + 1} over 2}} right)}} cr}
$$
then
$$
eqalign{
& {}_2F_1 left( {left. {matrix{ {1/3,;2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
= pi left( {{1 over {Gamma left( {2/3} right)Gamma left( {1/3} right)}}
+ {1 over {Gamma left( {1/6} right)Gamma left( {1 - 1/6} right)}}} right) = cr
& = left( {{3 over {2sqrt 3 }} + {1 over 2}} right) = {{sqrt 3 + 1} over 2} cr
& {}_2F_1 left( {left. {matrix{ {1/3,; - 1/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
= pi {1 over {Gamma left( {2/3} right)Gamma left( {1/3} right)}} = {{sqrt 3 } over 2} cr
& {}_2F_1 left( {left. {matrix{ {2/3,; - 2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
= pi {1 over {Gamma left( {1 - {1 over 6}} right)Gamma left( {{1 over 6}} right)}} = {1 over 2} cr}
$$
And $S= 1/4$ follows.
edited Jan 20 at 22:45
answered Jan 20 at 18:24
G CabG Cab
19.8k31340
19.8k31340
add a comment |
add a comment |
$begingroup$
By Lagrange's inversion theorem (see Bring radical for the quintic analogue)
$$ sum_{kgeq 0}binom{3k}{k}left(frac{4}{27}right)^k x^{2k} = frac{cosleft(frac{1}{3}arcsin xright)}{sqrt{1-x^2}} tag{1}$$
and by partial fraction decomposition
$$ frac{9k^2-3k-1}{(3k-1)(3k-2)} = 1+frac{1}{3k-1}+frac{1}{3k-2}tag{2} $$
hence by evaluating $(1)$ at $x=frac{1}{sqrt{2}}$ we immediately get
$$ sum_{kgeq 0}binom{3k}{k}left(frac{2}{27}right)^k = frac{1+sqrt{3}}{2}. tag{3}$$
By reindexing the original series equals
$$-frac{1}{2}+sum_{kgeq 0}binom{3k}{k}frac{3(3k+2)(3k+1)}{(2k+2)(2k+1)}left[1+frac{1}{3k+1}+frac{1}{3k+2}right]left(frac{2}{27}right)^k tag{4}$$
hence it is enough to compute the integrals over $(0,1/sqrt{2})$ of the RHS of $(1)$ and of the RHS of $(1)$ multiplied by $x$. They are $frac{3}{2sqrt{2}}(sqrt{3}-1)$ and $frac{3}{16}(5-2sqrt{3})$ by the substitution $xmapstosintheta$. By re-combining these pieces the claim is proved.
$endgroup$
1
$begingroup$
@J.Doe: An application of the Lagrange inversion theorem to calculate $sum_{k}binom{3k}{k}x^k$ can be found for instance at this post.
$endgroup$
– Markus Scheuer
Jan 20 at 19:21
add a comment |
$begingroup$
By Lagrange's inversion theorem (see Bring radical for the quintic analogue)
$$ sum_{kgeq 0}binom{3k}{k}left(frac{4}{27}right)^k x^{2k} = frac{cosleft(frac{1}{3}arcsin xright)}{sqrt{1-x^2}} tag{1}$$
and by partial fraction decomposition
$$ frac{9k^2-3k-1}{(3k-1)(3k-2)} = 1+frac{1}{3k-1}+frac{1}{3k-2}tag{2} $$
hence by evaluating $(1)$ at $x=frac{1}{sqrt{2}}$ we immediately get
$$ sum_{kgeq 0}binom{3k}{k}left(frac{2}{27}right)^k = frac{1+sqrt{3}}{2}. tag{3}$$
By reindexing the original series equals
$$-frac{1}{2}+sum_{kgeq 0}binom{3k}{k}frac{3(3k+2)(3k+1)}{(2k+2)(2k+1)}left[1+frac{1}{3k+1}+frac{1}{3k+2}right]left(frac{2}{27}right)^k tag{4}$$
hence it is enough to compute the integrals over $(0,1/sqrt{2})$ of the RHS of $(1)$ and of the RHS of $(1)$ multiplied by $x$. They are $frac{3}{2sqrt{2}}(sqrt{3}-1)$ and $frac{3}{16}(5-2sqrt{3})$ by the substitution $xmapstosintheta$. By re-combining these pieces the claim is proved.
$endgroup$
1
$begingroup$
@J.Doe: An application of the Lagrange inversion theorem to calculate $sum_{k}binom{3k}{k}x^k$ can be found for instance at this post.
$endgroup$
– Markus Scheuer
Jan 20 at 19:21
add a comment |
$begingroup$
By Lagrange's inversion theorem (see Bring radical for the quintic analogue)
$$ sum_{kgeq 0}binom{3k}{k}left(frac{4}{27}right)^k x^{2k} = frac{cosleft(frac{1}{3}arcsin xright)}{sqrt{1-x^2}} tag{1}$$
and by partial fraction decomposition
$$ frac{9k^2-3k-1}{(3k-1)(3k-2)} = 1+frac{1}{3k-1}+frac{1}{3k-2}tag{2} $$
hence by evaluating $(1)$ at $x=frac{1}{sqrt{2}}$ we immediately get
$$ sum_{kgeq 0}binom{3k}{k}left(frac{2}{27}right)^k = frac{1+sqrt{3}}{2}. tag{3}$$
By reindexing the original series equals
$$-frac{1}{2}+sum_{kgeq 0}binom{3k}{k}frac{3(3k+2)(3k+1)}{(2k+2)(2k+1)}left[1+frac{1}{3k+1}+frac{1}{3k+2}right]left(frac{2}{27}right)^k tag{4}$$
hence it is enough to compute the integrals over $(0,1/sqrt{2})$ of the RHS of $(1)$ and of the RHS of $(1)$ multiplied by $x$. They are $frac{3}{2sqrt{2}}(sqrt{3}-1)$ and $frac{3}{16}(5-2sqrt{3})$ by the substitution $xmapstosintheta$. By re-combining these pieces the claim is proved.
$endgroup$
By Lagrange's inversion theorem (see Bring radical for the quintic analogue)
$$ sum_{kgeq 0}binom{3k}{k}left(frac{4}{27}right)^k x^{2k} = frac{cosleft(frac{1}{3}arcsin xright)}{sqrt{1-x^2}} tag{1}$$
and by partial fraction decomposition
$$ frac{9k^2-3k-1}{(3k-1)(3k-2)} = 1+frac{1}{3k-1}+frac{1}{3k-2}tag{2} $$
hence by evaluating $(1)$ at $x=frac{1}{sqrt{2}}$ we immediately get
$$ sum_{kgeq 0}binom{3k}{k}left(frac{2}{27}right)^k = frac{1+sqrt{3}}{2}. tag{3}$$
By reindexing the original series equals
$$-frac{1}{2}+sum_{kgeq 0}binom{3k}{k}frac{3(3k+2)(3k+1)}{(2k+2)(2k+1)}left[1+frac{1}{3k+1}+frac{1}{3k+2}right]left(frac{2}{27}right)^k tag{4}$$
hence it is enough to compute the integrals over $(0,1/sqrt{2})$ of the RHS of $(1)$ and of the RHS of $(1)$ multiplied by $x$. They are $frac{3}{2sqrt{2}}(sqrt{3}-1)$ and $frac{3}{16}(5-2sqrt{3})$ by the substitution $xmapstosintheta$. By re-combining these pieces the claim is proved.
answered Jan 20 at 18:35


Jack D'AurizioJack D'Aurizio
290k33284666
290k33284666
1
$begingroup$
@J.Doe: An application of the Lagrange inversion theorem to calculate $sum_{k}binom{3k}{k}x^k$ can be found for instance at this post.
$endgroup$
– Markus Scheuer
Jan 20 at 19:21
add a comment |
1
$begingroup$
@J.Doe: An application of the Lagrange inversion theorem to calculate $sum_{k}binom{3k}{k}x^k$ can be found for instance at this post.
$endgroup$
– Markus Scheuer
Jan 20 at 19:21
1
1
$begingroup$
@J.Doe: An application of the Lagrange inversion theorem to calculate $sum_{k}binom{3k}{k}x^k$ can be found for instance at this post.
$endgroup$
– Markus Scheuer
Jan 20 at 19:21
$begingroup$
@J.Doe: An application of the Lagrange inversion theorem to calculate $sum_{k}binom{3k}{k}x^k$ can be found for instance at this post.
$endgroup$
– Markus Scheuer
Jan 20 at 19:21
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080486%2fverifying-sum-k-0-infty3k-choose-k-frac9k2-3k-13k-13k-2-left%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown