Verifying $ sum_{k=0}^{infty}{3k choose k}frac{9k^2-3k-1}{(3k-1)(3k-2)}left(frac{2}{27}right)^k=frac{1}{4}$












6












$begingroup$


$$
sum_{k=0}^{infty}{3k choose k}dfrac{9k^2-3k-1}{(3k-1)(3k-2)}left(dfrac{2}{27}right)^k=dfrac{1}{4}
$$

After some simplification, I got the following result:
$$
sum_{k=0}^{infty}left{{3k choose k}+dfrac{27}{2k}{3k-4 choose 2k-3}right}left(dfrac{2}{27}right)^k.
$$

Now, how I can proceed?










share|cite|improve this question











$endgroup$

















    6












    $begingroup$


    $$
    sum_{k=0}^{infty}{3k choose k}dfrac{9k^2-3k-1}{(3k-1)(3k-2)}left(dfrac{2}{27}right)^k=dfrac{1}{4}
    $$

    After some simplification, I got the following result:
    $$
    sum_{k=0}^{infty}left{{3k choose k}+dfrac{27}{2k}{3k-4 choose 2k-3}right}left(dfrac{2}{27}right)^k.
    $$

    Now, how I can proceed?










    share|cite|improve this question











    $endgroup$















      6












      6








      6


      3



      $begingroup$


      $$
      sum_{k=0}^{infty}{3k choose k}dfrac{9k^2-3k-1}{(3k-1)(3k-2)}left(dfrac{2}{27}right)^k=dfrac{1}{4}
      $$

      After some simplification, I got the following result:
      $$
      sum_{k=0}^{infty}left{{3k choose k}+dfrac{27}{2k}{3k-4 choose 2k-3}right}left(dfrac{2}{27}right)^k.
      $$

      Now, how I can proceed?










      share|cite|improve this question











      $endgroup$




      $$
      sum_{k=0}^{infty}{3k choose k}dfrac{9k^2-3k-1}{(3k-1)(3k-2)}left(dfrac{2}{27}right)^k=dfrac{1}{4}
      $$

      After some simplification, I got the following result:
      $$
      sum_{k=0}^{infty}left{{3k choose k}+dfrac{27}{2k}{3k-4 choose 2k-3}right}left(dfrac{2}{27}right)^k.
      $$

      Now, how I can proceed?







      real-analysis summation






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 20 at 18:27









      Blue

      48.7k870156




      48.7k870156










      asked Jan 20 at 11:52









      J.DoeJ.Doe

      311




      311






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          Starting with
          $$
          eqalign{
          & S = sumlimits_{k = 0}^infty {
          binom{3k}{k}{{9k^2 - 3k - 1} over {left( {3k - 1} right)left( {3k - 2} right)}}left( {{2 over {27}}} right)^{,k} } = cr
          & = sumlimits_{k = 0}^infty {
          binom{3k}{k} left( {1 + {1 over {left( {3k - 1} right)}} + {1 over {left( {3k - 2} right)}}} right)left( {{2 over {27}}} right)^{,k} } cr}
          $$

          we have that
          $$
          binom{3k}{k} = {{Gamma left( {3k + 1} right)} over {Gamma left( {2k + 1} right)}}{1 over {k!}}
          $$



          Using the $n$-plication formula for the Gamma function
          $$
          Gamma left( {n,z + 1} right) = Gamma left( {n,left( {z + 1/n} right)} right)quad =
          {{n^{,n,z + 1/2} } over {left( {2,pi } right)^{left( {n - 1} right)/2} }}prodlimits_{1, le ,j, le ,n} {Gamma left( {z + {j over n}} right)}
          $$

          we get
          $$
          eqalign{
          & {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)}}quad
          = {{3^{,3,k + 1/2} } over {2^{,2,k + 1/2} sqrt {2,pi } ^, }}{{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)
          Gamma left( {k + 1} right)} over {Gamma left( {k + {1 over 2}} right)Gamma left( {k + 1} right)}} = cr
          & = sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
          over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr
          & {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)left( {3k - 1} right)}}
          = sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
          over {3Gamma left( {k + {1 over 2}} right)left( {k - 1/3} right)}}left( {{27 over 4}} right)^{,k} = cr
          & = sqrt {{3 over {4pi }}} {1 over 3}{{Gamma left( {k + {1 over 3}} right)Gamma left( {k - {1 over 3}} right)}
          over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr
          & {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)left( {3k - 2} right)}}
          = sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
          over {3Gamma left( {k + {1 over 2}} right)left( {k - 2/3} right)}}left( {{27 over 4}} right)^{,k} = cr
          & = sqrt {{3 over {4pi }}} {1 over 3}{{Gamma left( {k - {2 over 3}} right)Gamma left( {k + {2 over 3}} right)}
          over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr}
          $$



          So
          $$
          eqalign{
          & S = cr
          & = sumlimits_{k = 0}^infty {binom{3k}{k}
          left( {1 + {1 over {left( {3k - 1} right)}} + {1 over {left( {3k - 2} right)}}} right)left( {{2 over {27}}} right)^{,k} } = cr
          & = {1 over 2}sqrt {{1 over {3pi }}} sumlimits_{k = 0}^infty {
          left( {3{{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)} over {Gamma left( {k + {1 over 2}} right)}}
          + {{Gamma left( {k + {1 over 3}} right)Gamma left( {k - {1 over 3}} right)} over {Gamma left( {k + {1 over 2}} right)}}
          + {{Gamma left( {k - {2 over 3}} right)Gamma left( {k + {2 over 3}} right)}
          over {Gamma left( {k + {1 over 2}} right)}}} right){{left( {1/2} right)^{,k} } over {k!}}} cr}
          $$



          Using the Hypergeometric function that becomes
          $$
          eqalign{
          & S = cr
          & = {1 over 2}sqrt {{1 over {3pi }}} left( matrix{
          3{{Gamma left( {1/3} right)Gamma left( {2/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
          {1/3,;2/3} cr {1/2} cr
          } ,} right|;{1 over 2}} right) + hfill cr
          + {{Gamma left( {1/3} right)Gamma left( { - 1/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
          {1/3,; - 1/3} cr {1/2} cr
          } ,} right|;{1 over 2}} right) + hfill cr
          + {{Gamma left( {2/3} right)Gamma left( { - 2/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
          {2/3,; - 2/3} cr {1/2} cr
          } ,} right|;{1 over 2}} right) hfill cr} right) = cr
          & = {}_2F_1 left( {left. {matrix{ {1/3,;2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
          - {}_2F_1 left( {left. {matrix{ {1/3,; - 1/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
          - {1 over 2}{}_2F_1 left( {left. {matrix{ {2/3,; - 2/3} cr {1/2} cr } ,} right|;{1 over 2}} right) cr}
          $$



          Since the hypergeometric for the variable $z=1/2$
          follows the following formulas (see e.g. this link)
          $$
          eqalign{
          & {}_2F_1 left( {left. {matrix{ {a,;b} cr {{{a + b} over 2}} cr } ,} right|;{1 over 2}} right)
          = sqrt pi ;Gamma left( {{{a + b} over 2}} right)left( {{1 over {Gamma left( {{{a + 1} over 2}} right)Gamma left( {{b over 2}} right)}}
          + {1 over {Gamma left( {{a over 2}} right)Gamma left( {{{b + 1} over 2}} right)}}} right) cr
          & {}_2F_1 left( {left. {matrix{ {a,;b} cr {{{a + b + 1} over 2}} cr } ,} right|;{1 over 2}} right)
          = sqrt pi ;Gamma left( {{{a + b + 1} over 2}} right){1 over {Gamma left( {{{a + 1} over 2}} right)Gamma left( {{{b + 1} over 2}} right)}} cr}
          $$

          then
          $$
          eqalign{
          & {}_2F_1 left( {left. {matrix{ {1/3,;2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
          = pi left( {{1 over {Gamma left( {2/3} right)Gamma left( {1/3} right)}}
          + {1 over {Gamma left( {1/6} right)Gamma left( {1 - 1/6} right)}}} right) = cr
          & = left( {{3 over {2sqrt 3 }} + {1 over 2}} right) = {{sqrt 3 + 1} over 2} cr
          & {}_2F_1 left( {left. {matrix{ {1/3,; - 1/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
          = pi {1 over {Gamma left( {2/3} right)Gamma left( {1/3} right)}} = {{sqrt 3 } over 2} cr
          & {}_2F_1 left( {left. {matrix{ {2/3,; - 2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
          = pi {1 over {Gamma left( {1 - {1 over 6}} right)Gamma left( {{1 over 6}} right)}} = {1 over 2} cr}
          $$



          And $S= 1/4$ follows.






          share|cite|improve this answer











          $endgroup$





















            0












            $begingroup$

            By Lagrange's inversion theorem (see Bring radical for the quintic analogue)
            $$ sum_{kgeq 0}binom{3k}{k}left(frac{4}{27}right)^k x^{2k} = frac{cosleft(frac{1}{3}arcsin xright)}{sqrt{1-x^2}} tag{1}$$
            and by partial fraction decomposition
            $$ frac{9k^2-3k-1}{(3k-1)(3k-2)} = 1+frac{1}{3k-1}+frac{1}{3k-2}tag{2} $$
            hence by evaluating $(1)$ at $x=frac{1}{sqrt{2}}$ we immediately get
            $$ sum_{kgeq 0}binom{3k}{k}left(frac{2}{27}right)^k = frac{1+sqrt{3}}{2}. tag{3}$$
            By reindexing the original series equals
            $$-frac{1}{2}+sum_{kgeq 0}binom{3k}{k}frac{3(3k+2)(3k+1)}{(2k+2)(2k+1)}left[1+frac{1}{3k+1}+frac{1}{3k+2}right]left(frac{2}{27}right)^k tag{4}$$
            hence it is enough to compute the integrals over $(0,1/sqrt{2})$ of the RHS of $(1)$ and of the RHS of $(1)$ multiplied by $x$. They are $frac{3}{2sqrt{2}}(sqrt{3}-1)$ and $frac{3}{16}(5-2sqrt{3})$ by the substitution $xmapstosintheta$. By re-combining these pieces the claim is proved.






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              @J.Doe: An application of the Lagrange inversion theorem to calculate $sum_{k}binom{3k}{k}x^k$ can be found for instance at this post.
              $endgroup$
              – Markus Scheuer
              Jan 20 at 19:21











            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080486%2fverifying-sum-k-0-infty3k-choose-k-frac9k2-3k-13k-13k-2-left%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Starting with
            $$
            eqalign{
            & S = sumlimits_{k = 0}^infty {
            binom{3k}{k}{{9k^2 - 3k - 1} over {left( {3k - 1} right)left( {3k - 2} right)}}left( {{2 over {27}}} right)^{,k} } = cr
            & = sumlimits_{k = 0}^infty {
            binom{3k}{k} left( {1 + {1 over {left( {3k - 1} right)}} + {1 over {left( {3k - 2} right)}}} right)left( {{2 over {27}}} right)^{,k} } cr}
            $$

            we have that
            $$
            binom{3k}{k} = {{Gamma left( {3k + 1} right)} over {Gamma left( {2k + 1} right)}}{1 over {k!}}
            $$



            Using the $n$-plication formula for the Gamma function
            $$
            Gamma left( {n,z + 1} right) = Gamma left( {n,left( {z + 1/n} right)} right)quad =
            {{n^{,n,z + 1/2} } over {left( {2,pi } right)^{left( {n - 1} right)/2} }}prodlimits_{1, le ,j, le ,n} {Gamma left( {z + {j over n}} right)}
            $$

            we get
            $$
            eqalign{
            & {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)}}quad
            = {{3^{,3,k + 1/2} } over {2^{,2,k + 1/2} sqrt {2,pi } ^, }}{{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)
            Gamma left( {k + 1} right)} over {Gamma left( {k + {1 over 2}} right)Gamma left( {k + 1} right)}} = cr
            & = sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
            over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr
            & {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)left( {3k - 1} right)}}
            = sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
            over {3Gamma left( {k + {1 over 2}} right)left( {k - 1/3} right)}}left( {{27 over 4}} right)^{,k} = cr
            & = sqrt {{3 over {4pi }}} {1 over 3}{{Gamma left( {k + {1 over 3}} right)Gamma left( {k - {1 over 3}} right)}
            over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr
            & {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)left( {3k - 2} right)}}
            = sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
            over {3Gamma left( {k + {1 over 2}} right)left( {k - 2/3} right)}}left( {{27 over 4}} right)^{,k} = cr
            & = sqrt {{3 over {4pi }}} {1 over 3}{{Gamma left( {k - {2 over 3}} right)Gamma left( {k + {2 over 3}} right)}
            over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr}
            $$



            So
            $$
            eqalign{
            & S = cr
            & = sumlimits_{k = 0}^infty {binom{3k}{k}
            left( {1 + {1 over {left( {3k - 1} right)}} + {1 over {left( {3k - 2} right)}}} right)left( {{2 over {27}}} right)^{,k} } = cr
            & = {1 over 2}sqrt {{1 over {3pi }}} sumlimits_{k = 0}^infty {
            left( {3{{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)} over {Gamma left( {k + {1 over 2}} right)}}
            + {{Gamma left( {k + {1 over 3}} right)Gamma left( {k - {1 over 3}} right)} over {Gamma left( {k + {1 over 2}} right)}}
            + {{Gamma left( {k - {2 over 3}} right)Gamma left( {k + {2 over 3}} right)}
            over {Gamma left( {k + {1 over 2}} right)}}} right){{left( {1/2} right)^{,k} } over {k!}}} cr}
            $$



            Using the Hypergeometric function that becomes
            $$
            eqalign{
            & S = cr
            & = {1 over 2}sqrt {{1 over {3pi }}} left( matrix{
            3{{Gamma left( {1/3} right)Gamma left( {2/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
            {1/3,;2/3} cr {1/2} cr
            } ,} right|;{1 over 2}} right) + hfill cr
            + {{Gamma left( {1/3} right)Gamma left( { - 1/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
            {1/3,; - 1/3} cr {1/2} cr
            } ,} right|;{1 over 2}} right) + hfill cr
            + {{Gamma left( {2/3} right)Gamma left( { - 2/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
            {2/3,; - 2/3} cr {1/2} cr
            } ,} right|;{1 over 2}} right) hfill cr} right) = cr
            & = {}_2F_1 left( {left. {matrix{ {1/3,;2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
            - {}_2F_1 left( {left. {matrix{ {1/3,; - 1/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
            - {1 over 2}{}_2F_1 left( {left. {matrix{ {2/3,; - 2/3} cr {1/2} cr } ,} right|;{1 over 2}} right) cr}
            $$



            Since the hypergeometric for the variable $z=1/2$
            follows the following formulas (see e.g. this link)
            $$
            eqalign{
            & {}_2F_1 left( {left. {matrix{ {a,;b} cr {{{a + b} over 2}} cr } ,} right|;{1 over 2}} right)
            = sqrt pi ;Gamma left( {{{a + b} over 2}} right)left( {{1 over {Gamma left( {{{a + 1} over 2}} right)Gamma left( {{b over 2}} right)}}
            + {1 over {Gamma left( {{a over 2}} right)Gamma left( {{{b + 1} over 2}} right)}}} right) cr
            & {}_2F_1 left( {left. {matrix{ {a,;b} cr {{{a + b + 1} over 2}} cr } ,} right|;{1 over 2}} right)
            = sqrt pi ;Gamma left( {{{a + b + 1} over 2}} right){1 over {Gamma left( {{{a + 1} over 2}} right)Gamma left( {{{b + 1} over 2}} right)}} cr}
            $$

            then
            $$
            eqalign{
            & {}_2F_1 left( {left. {matrix{ {1/3,;2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
            = pi left( {{1 over {Gamma left( {2/3} right)Gamma left( {1/3} right)}}
            + {1 over {Gamma left( {1/6} right)Gamma left( {1 - 1/6} right)}}} right) = cr
            & = left( {{3 over {2sqrt 3 }} + {1 over 2}} right) = {{sqrt 3 + 1} over 2} cr
            & {}_2F_1 left( {left. {matrix{ {1/3,; - 1/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
            = pi {1 over {Gamma left( {2/3} right)Gamma left( {1/3} right)}} = {{sqrt 3 } over 2} cr
            & {}_2F_1 left( {left. {matrix{ {2/3,; - 2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
            = pi {1 over {Gamma left( {1 - {1 over 6}} right)Gamma left( {{1 over 6}} right)}} = {1 over 2} cr}
            $$



            And $S= 1/4$ follows.






            share|cite|improve this answer











            $endgroup$


















              2












              $begingroup$

              Starting with
              $$
              eqalign{
              & S = sumlimits_{k = 0}^infty {
              binom{3k}{k}{{9k^2 - 3k - 1} over {left( {3k - 1} right)left( {3k - 2} right)}}left( {{2 over {27}}} right)^{,k} } = cr
              & = sumlimits_{k = 0}^infty {
              binom{3k}{k} left( {1 + {1 over {left( {3k - 1} right)}} + {1 over {left( {3k - 2} right)}}} right)left( {{2 over {27}}} right)^{,k} } cr}
              $$

              we have that
              $$
              binom{3k}{k} = {{Gamma left( {3k + 1} right)} over {Gamma left( {2k + 1} right)}}{1 over {k!}}
              $$



              Using the $n$-plication formula for the Gamma function
              $$
              Gamma left( {n,z + 1} right) = Gamma left( {n,left( {z + 1/n} right)} right)quad =
              {{n^{,n,z + 1/2} } over {left( {2,pi } right)^{left( {n - 1} right)/2} }}prodlimits_{1, le ,j, le ,n} {Gamma left( {z + {j over n}} right)}
              $$

              we get
              $$
              eqalign{
              & {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)}}quad
              = {{3^{,3,k + 1/2} } over {2^{,2,k + 1/2} sqrt {2,pi } ^, }}{{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)
              Gamma left( {k + 1} right)} over {Gamma left( {k + {1 over 2}} right)Gamma left( {k + 1} right)}} = cr
              & = sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
              over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr
              & {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)left( {3k - 1} right)}}
              = sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
              over {3Gamma left( {k + {1 over 2}} right)left( {k - 1/3} right)}}left( {{27 over 4}} right)^{,k} = cr
              & = sqrt {{3 over {4pi }}} {1 over 3}{{Gamma left( {k + {1 over 3}} right)Gamma left( {k - {1 over 3}} right)}
              over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr
              & {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)left( {3k - 2} right)}}
              = sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
              over {3Gamma left( {k + {1 over 2}} right)left( {k - 2/3} right)}}left( {{27 over 4}} right)^{,k} = cr
              & = sqrt {{3 over {4pi }}} {1 over 3}{{Gamma left( {k - {2 over 3}} right)Gamma left( {k + {2 over 3}} right)}
              over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr}
              $$



              So
              $$
              eqalign{
              & S = cr
              & = sumlimits_{k = 0}^infty {binom{3k}{k}
              left( {1 + {1 over {left( {3k - 1} right)}} + {1 over {left( {3k - 2} right)}}} right)left( {{2 over {27}}} right)^{,k} } = cr
              & = {1 over 2}sqrt {{1 over {3pi }}} sumlimits_{k = 0}^infty {
              left( {3{{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)} over {Gamma left( {k + {1 over 2}} right)}}
              + {{Gamma left( {k + {1 over 3}} right)Gamma left( {k - {1 over 3}} right)} over {Gamma left( {k + {1 over 2}} right)}}
              + {{Gamma left( {k - {2 over 3}} right)Gamma left( {k + {2 over 3}} right)}
              over {Gamma left( {k + {1 over 2}} right)}}} right){{left( {1/2} right)^{,k} } over {k!}}} cr}
              $$



              Using the Hypergeometric function that becomes
              $$
              eqalign{
              & S = cr
              & = {1 over 2}sqrt {{1 over {3pi }}} left( matrix{
              3{{Gamma left( {1/3} right)Gamma left( {2/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
              {1/3,;2/3} cr {1/2} cr
              } ,} right|;{1 over 2}} right) + hfill cr
              + {{Gamma left( {1/3} right)Gamma left( { - 1/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
              {1/3,; - 1/3} cr {1/2} cr
              } ,} right|;{1 over 2}} right) + hfill cr
              + {{Gamma left( {2/3} right)Gamma left( { - 2/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
              {2/3,; - 2/3} cr {1/2} cr
              } ,} right|;{1 over 2}} right) hfill cr} right) = cr
              & = {}_2F_1 left( {left. {matrix{ {1/3,;2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
              - {}_2F_1 left( {left. {matrix{ {1/3,; - 1/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
              - {1 over 2}{}_2F_1 left( {left. {matrix{ {2/3,; - 2/3} cr {1/2} cr } ,} right|;{1 over 2}} right) cr}
              $$



              Since the hypergeometric for the variable $z=1/2$
              follows the following formulas (see e.g. this link)
              $$
              eqalign{
              & {}_2F_1 left( {left. {matrix{ {a,;b} cr {{{a + b} over 2}} cr } ,} right|;{1 over 2}} right)
              = sqrt pi ;Gamma left( {{{a + b} over 2}} right)left( {{1 over {Gamma left( {{{a + 1} over 2}} right)Gamma left( {{b over 2}} right)}}
              + {1 over {Gamma left( {{a over 2}} right)Gamma left( {{{b + 1} over 2}} right)}}} right) cr
              & {}_2F_1 left( {left. {matrix{ {a,;b} cr {{{a + b + 1} over 2}} cr } ,} right|;{1 over 2}} right)
              = sqrt pi ;Gamma left( {{{a + b + 1} over 2}} right){1 over {Gamma left( {{{a + 1} over 2}} right)Gamma left( {{{b + 1} over 2}} right)}} cr}
              $$

              then
              $$
              eqalign{
              & {}_2F_1 left( {left. {matrix{ {1/3,;2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
              = pi left( {{1 over {Gamma left( {2/3} right)Gamma left( {1/3} right)}}
              + {1 over {Gamma left( {1/6} right)Gamma left( {1 - 1/6} right)}}} right) = cr
              & = left( {{3 over {2sqrt 3 }} + {1 over 2}} right) = {{sqrt 3 + 1} over 2} cr
              & {}_2F_1 left( {left. {matrix{ {1/3,; - 1/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
              = pi {1 over {Gamma left( {2/3} right)Gamma left( {1/3} right)}} = {{sqrt 3 } over 2} cr
              & {}_2F_1 left( {left. {matrix{ {2/3,; - 2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
              = pi {1 over {Gamma left( {1 - {1 over 6}} right)Gamma left( {{1 over 6}} right)}} = {1 over 2} cr}
              $$



              And $S= 1/4$ follows.






              share|cite|improve this answer











              $endgroup$
















                2












                2








                2





                $begingroup$

                Starting with
                $$
                eqalign{
                & S = sumlimits_{k = 0}^infty {
                binom{3k}{k}{{9k^2 - 3k - 1} over {left( {3k - 1} right)left( {3k - 2} right)}}left( {{2 over {27}}} right)^{,k} } = cr
                & = sumlimits_{k = 0}^infty {
                binom{3k}{k} left( {1 + {1 over {left( {3k - 1} right)}} + {1 over {left( {3k - 2} right)}}} right)left( {{2 over {27}}} right)^{,k} } cr}
                $$

                we have that
                $$
                binom{3k}{k} = {{Gamma left( {3k + 1} right)} over {Gamma left( {2k + 1} right)}}{1 over {k!}}
                $$



                Using the $n$-plication formula for the Gamma function
                $$
                Gamma left( {n,z + 1} right) = Gamma left( {n,left( {z + 1/n} right)} right)quad =
                {{n^{,n,z + 1/2} } over {left( {2,pi } right)^{left( {n - 1} right)/2} }}prodlimits_{1, le ,j, le ,n} {Gamma left( {z + {j over n}} right)}
                $$

                we get
                $$
                eqalign{
                & {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)}}quad
                = {{3^{,3,k + 1/2} } over {2^{,2,k + 1/2} sqrt {2,pi } ^, }}{{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)
                Gamma left( {k + 1} right)} over {Gamma left( {k + {1 over 2}} right)Gamma left( {k + 1} right)}} = cr
                & = sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
                over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr
                & {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)left( {3k - 1} right)}}
                = sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
                over {3Gamma left( {k + {1 over 2}} right)left( {k - 1/3} right)}}left( {{27 over 4}} right)^{,k} = cr
                & = sqrt {{3 over {4pi }}} {1 over 3}{{Gamma left( {k + {1 over 3}} right)Gamma left( {k - {1 over 3}} right)}
                over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr
                & {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)left( {3k - 2} right)}}
                = sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
                over {3Gamma left( {k + {1 over 2}} right)left( {k - 2/3} right)}}left( {{27 over 4}} right)^{,k} = cr
                & = sqrt {{3 over {4pi }}} {1 over 3}{{Gamma left( {k - {2 over 3}} right)Gamma left( {k + {2 over 3}} right)}
                over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr}
                $$



                So
                $$
                eqalign{
                & S = cr
                & = sumlimits_{k = 0}^infty {binom{3k}{k}
                left( {1 + {1 over {left( {3k - 1} right)}} + {1 over {left( {3k - 2} right)}}} right)left( {{2 over {27}}} right)^{,k} } = cr
                & = {1 over 2}sqrt {{1 over {3pi }}} sumlimits_{k = 0}^infty {
                left( {3{{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)} over {Gamma left( {k + {1 over 2}} right)}}
                + {{Gamma left( {k + {1 over 3}} right)Gamma left( {k - {1 over 3}} right)} over {Gamma left( {k + {1 over 2}} right)}}
                + {{Gamma left( {k - {2 over 3}} right)Gamma left( {k + {2 over 3}} right)}
                over {Gamma left( {k + {1 over 2}} right)}}} right){{left( {1/2} right)^{,k} } over {k!}}} cr}
                $$



                Using the Hypergeometric function that becomes
                $$
                eqalign{
                & S = cr
                & = {1 over 2}sqrt {{1 over {3pi }}} left( matrix{
                3{{Gamma left( {1/3} right)Gamma left( {2/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
                {1/3,;2/3} cr {1/2} cr
                } ,} right|;{1 over 2}} right) + hfill cr
                + {{Gamma left( {1/3} right)Gamma left( { - 1/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
                {1/3,; - 1/3} cr {1/2} cr
                } ,} right|;{1 over 2}} right) + hfill cr
                + {{Gamma left( {2/3} right)Gamma left( { - 2/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
                {2/3,; - 2/3} cr {1/2} cr
                } ,} right|;{1 over 2}} right) hfill cr} right) = cr
                & = {}_2F_1 left( {left. {matrix{ {1/3,;2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
                - {}_2F_1 left( {left. {matrix{ {1/3,; - 1/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
                - {1 over 2}{}_2F_1 left( {left. {matrix{ {2/3,; - 2/3} cr {1/2} cr } ,} right|;{1 over 2}} right) cr}
                $$



                Since the hypergeometric for the variable $z=1/2$
                follows the following formulas (see e.g. this link)
                $$
                eqalign{
                & {}_2F_1 left( {left. {matrix{ {a,;b} cr {{{a + b} over 2}} cr } ,} right|;{1 over 2}} right)
                = sqrt pi ;Gamma left( {{{a + b} over 2}} right)left( {{1 over {Gamma left( {{{a + 1} over 2}} right)Gamma left( {{b over 2}} right)}}
                + {1 over {Gamma left( {{a over 2}} right)Gamma left( {{{b + 1} over 2}} right)}}} right) cr
                & {}_2F_1 left( {left. {matrix{ {a,;b} cr {{{a + b + 1} over 2}} cr } ,} right|;{1 over 2}} right)
                = sqrt pi ;Gamma left( {{{a + b + 1} over 2}} right){1 over {Gamma left( {{{a + 1} over 2}} right)Gamma left( {{{b + 1} over 2}} right)}} cr}
                $$

                then
                $$
                eqalign{
                & {}_2F_1 left( {left. {matrix{ {1/3,;2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
                = pi left( {{1 over {Gamma left( {2/3} right)Gamma left( {1/3} right)}}
                + {1 over {Gamma left( {1/6} right)Gamma left( {1 - 1/6} right)}}} right) = cr
                & = left( {{3 over {2sqrt 3 }} + {1 over 2}} right) = {{sqrt 3 + 1} over 2} cr
                & {}_2F_1 left( {left. {matrix{ {1/3,; - 1/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
                = pi {1 over {Gamma left( {2/3} right)Gamma left( {1/3} right)}} = {{sqrt 3 } over 2} cr
                & {}_2F_1 left( {left. {matrix{ {2/3,; - 2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
                = pi {1 over {Gamma left( {1 - {1 over 6}} right)Gamma left( {{1 over 6}} right)}} = {1 over 2} cr}
                $$



                And $S= 1/4$ follows.






                share|cite|improve this answer











                $endgroup$



                Starting with
                $$
                eqalign{
                & S = sumlimits_{k = 0}^infty {
                binom{3k}{k}{{9k^2 - 3k - 1} over {left( {3k - 1} right)left( {3k - 2} right)}}left( {{2 over {27}}} right)^{,k} } = cr
                & = sumlimits_{k = 0}^infty {
                binom{3k}{k} left( {1 + {1 over {left( {3k - 1} right)}} + {1 over {left( {3k - 2} right)}}} right)left( {{2 over {27}}} right)^{,k} } cr}
                $$

                we have that
                $$
                binom{3k}{k} = {{Gamma left( {3k + 1} right)} over {Gamma left( {2k + 1} right)}}{1 over {k!}}
                $$



                Using the $n$-plication formula for the Gamma function
                $$
                Gamma left( {n,z + 1} right) = Gamma left( {n,left( {z + 1/n} right)} right)quad =
                {{n^{,n,z + 1/2} } over {left( {2,pi } right)^{left( {n - 1} right)/2} }}prodlimits_{1, le ,j, le ,n} {Gamma left( {z + {j over n}} right)}
                $$

                we get
                $$
                eqalign{
                & {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)}}quad
                = {{3^{,3,k + 1/2} } over {2^{,2,k + 1/2} sqrt {2,pi } ^, }}{{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)
                Gamma left( {k + 1} right)} over {Gamma left( {k + {1 over 2}} right)Gamma left( {k + 1} right)}} = cr
                & = sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
                over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr
                & {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)left( {3k - 1} right)}}
                = sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
                over {3Gamma left( {k + {1 over 2}} right)left( {k - 1/3} right)}}left( {{27 over 4}} right)^{,k} = cr
                & = sqrt {{3 over {4pi }}} {1 over 3}{{Gamma left( {k + {1 over 3}} right)Gamma left( {k - {1 over 3}} right)}
                over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr
                & {{Gamma left( {3,k + 1} right)} over {Gamma left( {2,k + 1} right)left( {3k - 2} right)}}
                = sqrt {{3 over {4pi }}} {{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)}
                over {3Gamma left( {k + {1 over 2}} right)left( {k - 2/3} right)}}left( {{27 over 4}} right)^{,k} = cr
                & = sqrt {{3 over {4pi }}} {1 over 3}{{Gamma left( {k - {2 over 3}} right)Gamma left( {k + {2 over 3}} right)}
                over {Gamma left( {k + {1 over 2}} right)}}left( {{27 over 4}} right)^{,k} cr}
                $$



                So
                $$
                eqalign{
                & S = cr
                & = sumlimits_{k = 0}^infty {binom{3k}{k}
                left( {1 + {1 over {left( {3k - 1} right)}} + {1 over {left( {3k - 2} right)}}} right)left( {{2 over {27}}} right)^{,k} } = cr
                & = {1 over 2}sqrt {{1 over {3pi }}} sumlimits_{k = 0}^infty {
                left( {3{{Gamma left( {k + {1 over 3}} right)Gamma left( {k + {2 over 3}} right)} over {Gamma left( {k + {1 over 2}} right)}}
                + {{Gamma left( {k + {1 over 3}} right)Gamma left( {k - {1 over 3}} right)} over {Gamma left( {k + {1 over 2}} right)}}
                + {{Gamma left( {k - {2 over 3}} right)Gamma left( {k + {2 over 3}} right)}
                over {Gamma left( {k + {1 over 2}} right)}}} right){{left( {1/2} right)^{,k} } over {k!}}} cr}
                $$



                Using the Hypergeometric function that becomes
                $$
                eqalign{
                & S = cr
                & = {1 over 2}sqrt {{1 over {3pi }}} left( matrix{
                3{{Gamma left( {1/3} right)Gamma left( {2/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
                {1/3,;2/3} cr {1/2} cr
                } ,} right|;{1 over 2}} right) + hfill cr
                + {{Gamma left( {1/3} right)Gamma left( { - 1/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
                {1/3,; - 1/3} cr {1/2} cr
                } ,} right|;{1 over 2}} right) + hfill cr
                + {{Gamma left( {2/3} right)Gamma left( { - 2/3} right)} over {Gamma left( {1/2} right)}}{}_2F_1 left( {left. {matrix{
                {2/3,; - 2/3} cr {1/2} cr
                } ,} right|;{1 over 2}} right) hfill cr} right) = cr
                & = {}_2F_1 left( {left. {matrix{ {1/3,;2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
                - {}_2F_1 left( {left. {matrix{ {1/3,; - 1/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
                - {1 over 2}{}_2F_1 left( {left. {matrix{ {2/3,; - 2/3} cr {1/2} cr } ,} right|;{1 over 2}} right) cr}
                $$



                Since the hypergeometric for the variable $z=1/2$
                follows the following formulas (see e.g. this link)
                $$
                eqalign{
                & {}_2F_1 left( {left. {matrix{ {a,;b} cr {{{a + b} over 2}} cr } ,} right|;{1 over 2}} right)
                = sqrt pi ;Gamma left( {{{a + b} over 2}} right)left( {{1 over {Gamma left( {{{a + 1} over 2}} right)Gamma left( {{b over 2}} right)}}
                + {1 over {Gamma left( {{a over 2}} right)Gamma left( {{{b + 1} over 2}} right)}}} right) cr
                & {}_2F_1 left( {left. {matrix{ {a,;b} cr {{{a + b + 1} over 2}} cr } ,} right|;{1 over 2}} right)
                = sqrt pi ;Gamma left( {{{a + b + 1} over 2}} right){1 over {Gamma left( {{{a + 1} over 2}} right)Gamma left( {{{b + 1} over 2}} right)}} cr}
                $$

                then
                $$
                eqalign{
                & {}_2F_1 left( {left. {matrix{ {1/3,;2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
                = pi left( {{1 over {Gamma left( {2/3} right)Gamma left( {1/3} right)}}
                + {1 over {Gamma left( {1/6} right)Gamma left( {1 - 1/6} right)}}} right) = cr
                & = left( {{3 over {2sqrt 3 }} + {1 over 2}} right) = {{sqrt 3 + 1} over 2} cr
                & {}_2F_1 left( {left. {matrix{ {1/3,; - 1/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
                = pi {1 over {Gamma left( {2/3} right)Gamma left( {1/3} right)}} = {{sqrt 3 } over 2} cr
                & {}_2F_1 left( {left. {matrix{ {2/3,; - 2/3} cr {1/2} cr } ,} right|;{1 over 2}} right)
                = pi {1 over {Gamma left( {1 - {1 over 6}} right)Gamma left( {{1 over 6}} right)}} = {1 over 2} cr}
                $$



                And $S= 1/4$ follows.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 20 at 22:45

























                answered Jan 20 at 18:24









                G CabG Cab

                19.8k31340




                19.8k31340























                    0












                    $begingroup$

                    By Lagrange's inversion theorem (see Bring radical for the quintic analogue)
                    $$ sum_{kgeq 0}binom{3k}{k}left(frac{4}{27}right)^k x^{2k} = frac{cosleft(frac{1}{3}arcsin xright)}{sqrt{1-x^2}} tag{1}$$
                    and by partial fraction decomposition
                    $$ frac{9k^2-3k-1}{(3k-1)(3k-2)} = 1+frac{1}{3k-1}+frac{1}{3k-2}tag{2} $$
                    hence by evaluating $(1)$ at $x=frac{1}{sqrt{2}}$ we immediately get
                    $$ sum_{kgeq 0}binom{3k}{k}left(frac{2}{27}right)^k = frac{1+sqrt{3}}{2}. tag{3}$$
                    By reindexing the original series equals
                    $$-frac{1}{2}+sum_{kgeq 0}binom{3k}{k}frac{3(3k+2)(3k+1)}{(2k+2)(2k+1)}left[1+frac{1}{3k+1}+frac{1}{3k+2}right]left(frac{2}{27}right)^k tag{4}$$
                    hence it is enough to compute the integrals over $(0,1/sqrt{2})$ of the RHS of $(1)$ and of the RHS of $(1)$ multiplied by $x$. They are $frac{3}{2sqrt{2}}(sqrt{3}-1)$ and $frac{3}{16}(5-2sqrt{3})$ by the substitution $xmapstosintheta$. By re-combining these pieces the claim is proved.






                    share|cite|improve this answer









                    $endgroup$









                    • 1




                      $begingroup$
                      @J.Doe: An application of the Lagrange inversion theorem to calculate $sum_{k}binom{3k}{k}x^k$ can be found for instance at this post.
                      $endgroup$
                      – Markus Scheuer
                      Jan 20 at 19:21
















                    0












                    $begingroup$

                    By Lagrange's inversion theorem (see Bring radical for the quintic analogue)
                    $$ sum_{kgeq 0}binom{3k}{k}left(frac{4}{27}right)^k x^{2k} = frac{cosleft(frac{1}{3}arcsin xright)}{sqrt{1-x^2}} tag{1}$$
                    and by partial fraction decomposition
                    $$ frac{9k^2-3k-1}{(3k-1)(3k-2)} = 1+frac{1}{3k-1}+frac{1}{3k-2}tag{2} $$
                    hence by evaluating $(1)$ at $x=frac{1}{sqrt{2}}$ we immediately get
                    $$ sum_{kgeq 0}binom{3k}{k}left(frac{2}{27}right)^k = frac{1+sqrt{3}}{2}. tag{3}$$
                    By reindexing the original series equals
                    $$-frac{1}{2}+sum_{kgeq 0}binom{3k}{k}frac{3(3k+2)(3k+1)}{(2k+2)(2k+1)}left[1+frac{1}{3k+1}+frac{1}{3k+2}right]left(frac{2}{27}right)^k tag{4}$$
                    hence it is enough to compute the integrals over $(0,1/sqrt{2})$ of the RHS of $(1)$ and of the RHS of $(1)$ multiplied by $x$. They are $frac{3}{2sqrt{2}}(sqrt{3}-1)$ and $frac{3}{16}(5-2sqrt{3})$ by the substitution $xmapstosintheta$. By re-combining these pieces the claim is proved.






                    share|cite|improve this answer









                    $endgroup$









                    • 1




                      $begingroup$
                      @J.Doe: An application of the Lagrange inversion theorem to calculate $sum_{k}binom{3k}{k}x^k$ can be found for instance at this post.
                      $endgroup$
                      – Markus Scheuer
                      Jan 20 at 19:21














                    0












                    0








                    0





                    $begingroup$

                    By Lagrange's inversion theorem (see Bring radical for the quintic analogue)
                    $$ sum_{kgeq 0}binom{3k}{k}left(frac{4}{27}right)^k x^{2k} = frac{cosleft(frac{1}{3}arcsin xright)}{sqrt{1-x^2}} tag{1}$$
                    and by partial fraction decomposition
                    $$ frac{9k^2-3k-1}{(3k-1)(3k-2)} = 1+frac{1}{3k-1}+frac{1}{3k-2}tag{2} $$
                    hence by evaluating $(1)$ at $x=frac{1}{sqrt{2}}$ we immediately get
                    $$ sum_{kgeq 0}binom{3k}{k}left(frac{2}{27}right)^k = frac{1+sqrt{3}}{2}. tag{3}$$
                    By reindexing the original series equals
                    $$-frac{1}{2}+sum_{kgeq 0}binom{3k}{k}frac{3(3k+2)(3k+1)}{(2k+2)(2k+1)}left[1+frac{1}{3k+1}+frac{1}{3k+2}right]left(frac{2}{27}right)^k tag{4}$$
                    hence it is enough to compute the integrals over $(0,1/sqrt{2})$ of the RHS of $(1)$ and of the RHS of $(1)$ multiplied by $x$. They are $frac{3}{2sqrt{2}}(sqrt{3}-1)$ and $frac{3}{16}(5-2sqrt{3})$ by the substitution $xmapstosintheta$. By re-combining these pieces the claim is proved.






                    share|cite|improve this answer









                    $endgroup$



                    By Lagrange's inversion theorem (see Bring radical for the quintic analogue)
                    $$ sum_{kgeq 0}binom{3k}{k}left(frac{4}{27}right)^k x^{2k} = frac{cosleft(frac{1}{3}arcsin xright)}{sqrt{1-x^2}} tag{1}$$
                    and by partial fraction decomposition
                    $$ frac{9k^2-3k-1}{(3k-1)(3k-2)} = 1+frac{1}{3k-1}+frac{1}{3k-2}tag{2} $$
                    hence by evaluating $(1)$ at $x=frac{1}{sqrt{2}}$ we immediately get
                    $$ sum_{kgeq 0}binom{3k}{k}left(frac{2}{27}right)^k = frac{1+sqrt{3}}{2}. tag{3}$$
                    By reindexing the original series equals
                    $$-frac{1}{2}+sum_{kgeq 0}binom{3k}{k}frac{3(3k+2)(3k+1)}{(2k+2)(2k+1)}left[1+frac{1}{3k+1}+frac{1}{3k+2}right]left(frac{2}{27}right)^k tag{4}$$
                    hence it is enough to compute the integrals over $(0,1/sqrt{2})$ of the RHS of $(1)$ and of the RHS of $(1)$ multiplied by $x$. They are $frac{3}{2sqrt{2}}(sqrt{3}-1)$ and $frac{3}{16}(5-2sqrt{3})$ by the substitution $xmapstosintheta$. By re-combining these pieces the claim is proved.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 20 at 18:35









                    Jack D'AurizioJack D'Aurizio

                    290k33284666




                    290k33284666








                    • 1




                      $begingroup$
                      @J.Doe: An application of the Lagrange inversion theorem to calculate $sum_{k}binom{3k}{k}x^k$ can be found for instance at this post.
                      $endgroup$
                      – Markus Scheuer
                      Jan 20 at 19:21














                    • 1




                      $begingroup$
                      @J.Doe: An application of the Lagrange inversion theorem to calculate $sum_{k}binom{3k}{k}x^k$ can be found for instance at this post.
                      $endgroup$
                      – Markus Scheuer
                      Jan 20 at 19:21








                    1




                    1




                    $begingroup$
                    @J.Doe: An application of the Lagrange inversion theorem to calculate $sum_{k}binom{3k}{k}x^k$ can be found for instance at this post.
                    $endgroup$
                    – Markus Scheuer
                    Jan 20 at 19:21




                    $begingroup$
                    @J.Doe: An application of the Lagrange inversion theorem to calculate $sum_{k}binom{3k}{k}x^k$ can be found for instance at this post.
                    $endgroup$
                    – Markus Scheuer
                    Jan 20 at 19:21


















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3080486%2fverifying-sum-k-0-infty3k-choose-k-frac9k2-3k-13k-13k-2-left%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith