Relation $(a_n)0$, $a_n-b_n<epsilon$ for all $n$ large enough, defines a total order $<$ on Cauchy...












1












$begingroup$


Honestly, I figured out the idea to prove this theorem without much difficulty. But I found very hard to formalize it into a rigorous proof and it takes me three days to do it.



Could you please have a check on my attempt? Thank you so much!





A sequence $langle a_n rangle_{n=0}^{infty}$ of rational numbers is a Cauchy sequence if for every rational $epsilon>0$ there exists an integer $N$ such that $|a_m - a_n| < epsilon$ for all $m,n > N$. Let $mathfrak{C}$ be the set of all Cauchy sequences of rational numbers. We define a relation $preccurlyeq$ on $mathfrak{C}$ by $langle a_n rangle_{n=0}^{infty} preccurlyeq langle b_n rangle_{n=0}^{infty}$ if and only if for every rational $epsilon>0$ there exists an integer $N$ such that $a_n - b_n < epsilon$ for all $n > N$.




Theorem: Any two elements of $mathfrak{C}$ are comparable w.r.t $preccurlyeq$.






My attempt:



Assume the contrary that there exist $langle a_n rangle_{n=0}^{infty}$, $langle b_n rangle_{n=0}^{infty} in mathfrak{C}$ that are incomparable. Then $langle a_n rangle_{n=0}^{infty} not preccurlyeq langle b_n rangle_{n=0}^{infty}$ and $langle b_n rangle_{n=0}^{infty} not preccurlyeq langle a_n rangle_{n=0}^{infty}$. As a result, $exists epsilon >0,forall N,exists n>N:a_n - b_n ge epsilon$ and $exists epsilon >0,forall N,exists m>N:b_m - a_m ge epsilon$.



Then $exists epsilon >0,forall N,exists (n>N wedge m>N):a_n - b_n ge epsilon wedge b_m - a_m ge epsilon$. By Axiom of Choice, there exist functions $f:Bbb N to Bbb N$ and $h:Bbb N to Bbb N$ such that $f(N)>N$, $h(N)>N$, $a_{f(N)} - b_{f(N)} ge epsilon$, and $b_{h(N)} - a_{h(N)} ge epsilon$.



Moreover, $langle b_n rangle_{n=0}^{infty}$ is a Cauchy sequence $implies$ $exists N_0,forall m,n > N_0:|b_m - b_n| < epsilon$.



We define functions $f':Bbb N to Bbb N$ and $h':Bbb N to Bbb N$ by $f'(N)=f(N_0)$, $h'(N)=h(N_0)$ for all $N<N_0$ and $f'(N)=f(N)$, $h'(N)=h(N)$ for all $N ge N_0$.



It follows that $f'(N)>N$, $h'(N)>N$, $a_{f'(N)} - b_{f'(N)} ge epsilon$, $b_{h'(N)} - a_{h'(N)} ge epsilon$, and $|b_{h'(N)} - b_{f'(N)}| < epsilon$ for all $N in Bbb N$. As a result,



$begin{align}|a_{f’(N)} - a_{h’(N)}| &= |(a_{f’(N)} - b_{f’(N)}) + (b_{h’(N)} - a_{h’(N)} ) + (b_{f’(N)} - b_{h’(N)})|\ &ge |(a_{f’(N)} - b_{f’(N)}) + (b_{h’(N)} - a_{h’(N)} )| - |b_{f’(N)} - b_{h’(N)}|\ &= |a_{f’(N)} - b_{f’(N)}| + |b_{h’(N)} - a_{h’(N)} | - |b_{f’(N)} - b_{h’(N)}|\ &> epsilon + epsilon - epsilon =epsilonend{align}$



Hence $exists epsilon>0, forall N, exists(f’(N)>N wedge h’(N)>N):a_{f’(N)} - a_{h’(N)}>epsilon$. This contradicts the fact that $langle a_n rangle_{n=0}^{infty}$ is a Cauchy sequence.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Honestly, I figured out the idea to prove this theorem without much difficulty. But I found very hard to formalize it into a rigorous proof and it takes me three days to do it.



    Could you please have a check on my attempt? Thank you so much!





    A sequence $langle a_n rangle_{n=0}^{infty}$ of rational numbers is a Cauchy sequence if for every rational $epsilon>0$ there exists an integer $N$ such that $|a_m - a_n| < epsilon$ for all $m,n > N$. Let $mathfrak{C}$ be the set of all Cauchy sequences of rational numbers. We define a relation $preccurlyeq$ on $mathfrak{C}$ by $langle a_n rangle_{n=0}^{infty} preccurlyeq langle b_n rangle_{n=0}^{infty}$ if and only if for every rational $epsilon>0$ there exists an integer $N$ such that $a_n - b_n < epsilon$ for all $n > N$.




    Theorem: Any two elements of $mathfrak{C}$ are comparable w.r.t $preccurlyeq$.






    My attempt:



    Assume the contrary that there exist $langle a_n rangle_{n=0}^{infty}$, $langle b_n rangle_{n=0}^{infty} in mathfrak{C}$ that are incomparable. Then $langle a_n rangle_{n=0}^{infty} not preccurlyeq langle b_n rangle_{n=0}^{infty}$ and $langle b_n rangle_{n=0}^{infty} not preccurlyeq langle a_n rangle_{n=0}^{infty}$. As a result, $exists epsilon >0,forall N,exists n>N:a_n - b_n ge epsilon$ and $exists epsilon >0,forall N,exists m>N:b_m - a_m ge epsilon$.



    Then $exists epsilon >0,forall N,exists (n>N wedge m>N):a_n - b_n ge epsilon wedge b_m - a_m ge epsilon$. By Axiom of Choice, there exist functions $f:Bbb N to Bbb N$ and $h:Bbb N to Bbb N$ such that $f(N)>N$, $h(N)>N$, $a_{f(N)} - b_{f(N)} ge epsilon$, and $b_{h(N)} - a_{h(N)} ge epsilon$.



    Moreover, $langle b_n rangle_{n=0}^{infty}$ is a Cauchy sequence $implies$ $exists N_0,forall m,n > N_0:|b_m - b_n| < epsilon$.



    We define functions $f':Bbb N to Bbb N$ and $h':Bbb N to Bbb N$ by $f'(N)=f(N_0)$, $h'(N)=h(N_0)$ for all $N<N_0$ and $f'(N)=f(N)$, $h'(N)=h(N)$ for all $N ge N_0$.



    It follows that $f'(N)>N$, $h'(N)>N$, $a_{f'(N)} - b_{f'(N)} ge epsilon$, $b_{h'(N)} - a_{h'(N)} ge epsilon$, and $|b_{h'(N)} - b_{f'(N)}| < epsilon$ for all $N in Bbb N$. As a result,



    $begin{align}|a_{f’(N)} - a_{h’(N)}| &= |(a_{f’(N)} - b_{f’(N)}) + (b_{h’(N)} - a_{h’(N)} ) + (b_{f’(N)} - b_{h’(N)})|\ &ge |(a_{f’(N)} - b_{f’(N)}) + (b_{h’(N)} - a_{h’(N)} )| - |b_{f’(N)} - b_{h’(N)}|\ &= |a_{f’(N)} - b_{f’(N)}| + |b_{h’(N)} - a_{h’(N)} | - |b_{f’(N)} - b_{h’(N)}|\ &> epsilon + epsilon - epsilon =epsilonend{align}$



    Hence $exists epsilon>0, forall N, exists(f’(N)>N wedge h’(N)>N):a_{f’(N)} - a_{h’(N)}>epsilon$. This contradicts the fact that $langle a_n rangle_{n=0}^{infty}$ is a Cauchy sequence.










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Honestly, I figured out the idea to prove this theorem without much difficulty. But I found very hard to formalize it into a rigorous proof and it takes me three days to do it.



      Could you please have a check on my attempt? Thank you so much!





      A sequence $langle a_n rangle_{n=0}^{infty}$ of rational numbers is a Cauchy sequence if for every rational $epsilon>0$ there exists an integer $N$ such that $|a_m - a_n| < epsilon$ for all $m,n > N$. Let $mathfrak{C}$ be the set of all Cauchy sequences of rational numbers. We define a relation $preccurlyeq$ on $mathfrak{C}$ by $langle a_n rangle_{n=0}^{infty} preccurlyeq langle b_n rangle_{n=0}^{infty}$ if and only if for every rational $epsilon>0$ there exists an integer $N$ such that $a_n - b_n < epsilon$ for all $n > N$.




      Theorem: Any two elements of $mathfrak{C}$ are comparable w.r.t $preccurlyeq$.






      My attempt:



      Assume the contrary that there exist $langle a_n rangle_{n=0}^{infty}$, $langle b_n rangle_{n=0}^{infty} in mathfrak{C}$ that are incomparable. Then $langle a_n rangle_{n=0}^{infty} not preccurlyeq langle b_n rangle_{n=0}^{infty}$ and $langle b_n rangle_{n=0}^{infty} not preccurlyeq langle a_n rangle_{n=0}^{infty}$. As a result, $exists epsilon >0,forall N,exists n>N:a_n - b_n ge epsilon$ and $exists epsilon >0,forall N,exists m>N:b_m - a_m ge epsilon$.



      Then $exists epsilon >0,forall N,exists (n>N wedge m>N):a_n - b_n ge epsilon wedge b_m - a_m ge epsilon$. By Axiom of Choice, there exist functions $f:Bbb N to Bbb N$ and $h:Bbb N to Bbb N$ such that $f(N)>N$, $h(N)>N$, $a_{f(N)} - b_{f(N)} ge epsilon$, and $b_{h(N)} - a_{h(N)} ge epsilon$.



      Moreover, $langle b_n rangle_{n=0}^{infty}$ is a Cauchy sequence $implies$ $exists N_0,forall m,n > N_0:|b_m - b_n| < epsilon$.



      We define functions $f':Bbb N to Bbb N$ and $h':Bbb N to Bbb N$ by $f'(N)=f(N_0)$, $h'(N)=h(N_0)$ for all $N<N_0$ and $f'(N)=f(N)$, $h'(N)=h(N)$ for all $N ge N_0$.



      It follows that $f'(N)>N$, $h'(N)>N$, $a_{f'(N)} - b_{f'(N)} ge epsilon$, $b_{h'(N)} - a_{h'(N)} ge epsilon$, and $|b_{h'(N)} - b_{f'(N)}| < epsilon$ for all $N in Bbb N$. As a result,



      $begin{align}|a_{f’(N)} - a_{h’(N)}| &= |(a_{f’(N)} - b_{f’(N)}) + (b_{h’(N)} - a_{h’(N)} ) + (b_{f’(N)} - b_{h’(N)})|\ &ge |(a_{f’(N)} - b_{f’(N)}) + (b_{h’(N)} - a_{h’(N)} )| - |b_{f’(N)} - b_{h’(N)}|\ &= |a_{f’(N)} - b_{f’(N)}| + |b_{h’(N)} - a_{h’(N)} | - |b_{f’(N)} - b_{h’(N)}|\ &> epsilon + epsilon - epsilon =epsilonend{align}$



      Hence $exists epsilon>0, forall N, exists(f’(N)>N wedge h’(N)>N):a_{f’(N)} - a_{h’(N)}>epsilon$. This contradicts the fact that $langle a_n rangle_{n=0}^{infty}$ is a Cauchy sequence.










      share|cite|improve this question











      $endgroup$




      Honestly, I figured out the idea to prove this theorem without much difficulty. But I found very hard to formalize it into a rigorous proof and it takes me three days to do it.



      Could you please have a check on my attempt? Thank you so much!





      A sequence $langle a_n rangle_{n=0}^{infty}$ of rational numbers is a Cauchy sequence if for every rational $epsilon>0$ there exists an integer $N$ such that $|a_m - a_n| < epsilon$ for all $m,n > N$. Let $mathfrak{C}$ be the set of all Cauchy sequences of rational numbers. We define a relation $preccurlyeq$ on $mathfrak{C}$ by $langle a_n rangle_{n=0}^{infty} preccurlyeq langle b_n rangle_{n=0}^{infty}$ if and only if for every rational $epsilon>0$ there exists an integer $N$ such that $a_n - b_n < epsilon$ for all $n > N$.




      Theorem: Any two elements of $mathfrak{C}$ are comparable w.r.t $preccurlyeq$.






      My attempt:



      Assume the contrary that there exist $langle a_n rangle_{n=0}^{infty}$, $langle b_n rangle_{n=0}^{infty} in mathfrak{C}$ that are incomparable. Then $langle a_n rangle_{n=0}^{infty} not preccurlyeq langle b_n rangle_{n=0}^{infty}$ and $langle b_n rangle_{n=0}^{infty} not preccurlyeq langle a_n rangle_{n=0}^{infty}$. As a result, $exists epsilon >0,forall N,exists n>N:a_n - b_n ge epsilon$ and $exists epsilon >0,forall N,exists m>N:b_m - a_m ge epsilon$.



      Then $exists epsilon >0,forall N,exists (n>N wedge m>N):a_n - b_n ge epsilon wedge b_m - a_m ge epsilon$. By Axiom of Choice, there exist functions $f:Bbb N to Bbb N$ and $h:Bbb N to Bbb N$ such that $f(N)>N$, $h(N)>N$, $a_{f(N)} - b_{f(N)} ge epsilon$, and $b_{h(N)} - a_{h(N)} ge epsilon$.



      Moreover, $langle b_n rangle_{n=0}^{infty}$ is a Cauchy sequence $implies$ $exists N_0,forall m,n > N_0:|b_m - b_n| < epsilon$.



      We define functions $f':Bbb N to Bbb N$ and $h':Bbb N to Bbb N$ by $f'(N)=f(N_0)$, $h'(N)=h(N_0)$ for all $N<N_0$ and $f'(N)=f(N)$, $h'(N)=h(N)$ for all $N ge N_0$.



      It follows that $f'(N)>N$, $h'(N)>N$, $a_{f'(N)} - b_{f'(N)} ge epsilon$, $b_{h'(N)} - a_{h'(N)} ge epsilon$, and $|b_{h'(N)} - b_{f'(N)}| < epsilon$ for all $N in Bbb N$. As a result,



      $begin{align}|a_{f’(N)} - a_{h’(N)}| &= |(a_{f’(N)} - b_{f’(N)}) + (b_{h’(N)} - a_{h’(N)} ) + (b_{f’(N)} - b_{h’(N)})|\ &ge |(a_{f’(N)} - b_{f’(N)}) + (b_{h’(N)} - a_{h’(N)} )| - |b_{f’(N)} - b_{h’(N)}|\ &= |a_{f’(N)} - b_{f’(N)}| + |b_{h’(N)} - a_{h’(N)} | - |b_{f’(N)} - b_{h’(N)}|\ &> epsilon + epsilon - epsilon =epsilonend{align}$



      Hence $exists epsilon>0, forall N, exists(f’(N)>N wedge h’(N)>N):a_{f’(N)} - a_{h’(N)}>epsilon$. This contradicts the fact that $langle a_n rangle_{n=0}^{infty}$ is a Cauchy sequence.







      real-analysis proof-verification cauchy-sequences






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 30 at 10:34









      Did

      249k23227466




      249k23227466










      asked Jan 30 at 10:22









      Le Anh DungLe Anh Dung

      1,4511621




      1,4511621






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          I see only a (minor) problem with your attempt: at the first paragraph, those $varepsilon$'s should be two distinct numbers a priori. But that's not a serious problem.



          On the other hand, the axiom of choice is not needed for the proof, but using it is not an error.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you so much for your verification! Please confirm if my understanding is correct. 1. Although @Did edited my title into ... a total order, I think $preccurlyeq$ is NOT an order relation. This is because $preccurlyeq$ is NOT antisymmetric, i.e there exist $langle a_n rangle_{n=0}^{infty} neq langle b_n rangle_{n=0}^{infty}$ such that $langle a_n rangle_{n=0}^{infty} preccurlyeq langle b_n rangle_{n=0}^{infty}$ and $langle b_n rangle_{n=0}^{infty} preccurlyeq langle a_n rangle_{n=0}^{infty}$.[...]
            $endgroup$
            – Le Anh Dung
            Jan 30 at 11:03










          • $begingroup$
            [...] 2. To avoid the use of Axiom of Choice, we can define $f:Bbb N to Bbb N$ by $f(N)=min {ninBbb N mid n>N wedge a_n - b_n ge epsilon }$ for all $NinBbb N$.
            $endgroup$
            – Le Anh Dung
            Jan 30 at 11:03










          • $begingroup$
            Right: it is not an order relation. While thinking about your attempt, I only cared about the specific claim that you were trying to prove.
            $endgroup$
            – José Carlos Santos
            Jan 30 at 11:04










          • $begingroup$
            Please have a check on my Claim 2. too!
            $endgroup$
            – Le Anh Dung
            Jan 30 at 11:05










          • $begingroup$
            It looks correct to me.
            $endgroup$
            – José Carlos Santos
            Jan 30 at 11:28












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093344%2frelation-a-nb-n-iff-for-every-epsilon0-a-n-b-n-epsilon-for-all-n%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          I see only a (minor) problem with your attempt: at the first paragraph, those $varepsilon$'s should be two distinct numbers a priori. But that's not a serious problem.



          On the other hand, the axiom of choice is not needed for the proof, but using it is not an error.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you so much for your verification! Please confirm if my understanding is correct. 1. Although @Did edited my title into ... a total order, I think $preccurlyeq$ is NOT an order relation. This is because $preccurlyeq$ is NOT antisymmetric, i.e there exist $langle a_n rangle_{n=0}^{infty} neq langle b_n rangle_{n=0}^{infty}$ such that $langle a_n rangle_{n=0}^{infty} preccurlyeq langle b_n rangle_{n=0}^{infty}$ and $langle b_n rangle_{n=0}^{infty} preccurlyeq langle a_n rangle_{n=0}^{infty}$.[...]
            $endgroup$
            – Le Anh Dung
            Jan 30 at 11:03










          • $begingroup$
            [...] 2. To avoid the use of Axiom of Choice, we can define $f:Bbb N to Bbb N$ by $f(N)=min {ninBbb N mid n>N wedge a_n - b_n ge epsilon }$ for all $NinBbb N$.
            $endgroup$
            – Le Anh Dung
            Jan 30 at 11:03










          • $begingroup$
            Right: it is not an order relation. While thinking about your attempt, I only cared about the specific claim that you were trying to prove.
            $endgroup$
            – José Carlos Santos
            Jan 30 at 11:04










          • $begingroup$
            Please have a check on my Claim 2. too!
            $endgroup$
            – Le Anh Dung
            Jan 30 at 11:05










          • $begingroup$
            It looks correct to me.
            $endgroup$
            – José Carlos Santos
            Jan 30 at 11:28
















          1












          $begingroup$

          I see only a (minor) problem with your attempt: at the first paragraph, those $varepsilon$'s should be two distinct numbers a priori. But that's not a serious problem.



          On the other hand, the axiom of choice is not needed for the proof, but using it is not an error.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you so much for your verification! Please confirm if my understanding is correct. 1. Although @Did edited my title into ... a total order, I think $preccurlyeq$ is NOT an order relation. This is because $preccurlyeq$ is NOT antisymmetric, i.e there exist $langle a_n rangle_{n=0}^{infty} neq langle b_n rangle_{n=0}^{infty}$ such that $langle a_n rangle_{n=0}^{infty} preccurlyeq langle b_n rangle_{n=0}^{infty}$ and $langle b_n rangle_{n=0}^{infty} preccurlyeq langle a_n rangle_{n=0}^{infty}$.[...]
            $endgroup$
            – Le Anh Dung
            Jan 30 at 11:03










          • $begingroup$
            [...] 2. To avoid the use of Axiom of Choice, we can define $f:Bbb N to Bbb N$ by $f(N)=min {ninBbb N mid n>N wedge a_n - b_n ge epsilon }$ for all $NinBbb N$.
            $endgroup$
            – Le Anh Dung
            Jan 30 at 11:03










          • $begingroup$
            Right: it is not an order relation. While thinking about your attempt, I only cared about the specific claim that you were trying to prove.
            $endgroup$
            – José Carlos Santos
            Jan 30 at 11:04










          • $begingroup$
            Please have a check on my Claim 2. too!
            $endgroup$
            – Le Anh Dung
            Jan 30 at 11:05










          • $begingroup$
            It looks correct to me.
            $endgroup$
            – José Carlos Santos
            Jan 30 at 11:28














          1












          1








          1





          $begingroup$

          I see only a (minor) problem with your attempt: at the first paragraph, those $varepsilon$'s should be two distinct numbers a priori. But that's not a serious problem.



          On the other hand, the axiom of choice is not needed for the proof, but using it is not an error.






          share|cite|improve this answer









          $endgroup$



          I see only a (minor) problem with your attempt: at the first paragraph, those $varepsilon$'s should be two distinct numbers a priori. But that's not a serious problem.



          On the other hand, the axiom of choice is not needed for the proof, but using it is not an error.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 30 at 10:50









          José Carlos SantosJosé Carlos Santos

          172k22132239




          172k22132239












          • $begingroup$
            Thank you so much for your verification! Please confirm if my understanding is correct. 1. Although @Did edited my title into ... a total order, I think $preccurlyeq$ is NOT an order relation. This is because $preccurlyeq$ is NOT antisymmetric, i.e there exist $langle a_n rangle_{n=0}^{infty} neq langle b_n rangle_{n=0}^{infty}$ such that $langle a_n rangle_{n=0}^{infty} preccurlyeq langle b_n rangle_{n=0}^{infty}$ and $langle b_n rangle_{n=0}^{infty} preccurlyeq langle a_n rangle_{n=0}^{infty}$.[...]
            $endgroup$
            – Le Anh Dung
            Jan 30 at 11:03










          • $begingroup$
            [...] 2. To avoid the use of Axiom of Choice, we can define $f:Bbb N to Bbb N$ by $f(N)=min {ninBbb N mid n>N wedge a_n - b_n ge epsilon }$ for all $NinBbb N$.
            $endgroup$
            – Le Anh Dung
            Jan 30 at 11:03










          • $begingroup$
            Right: it is not an order relation. While thinking about your attempt, I only cared about the specific claim that you were trying to prove.
            $endgroup$
            – José Carlos Santos
            Jan 30 at 11:04










          • $begingroup$
            Please have a check on my Claim 2. too!
            $endgroup$
            – Le Anh Dung
            Jan 30 at 11:05










          • $begingroup$
            It looks correct to me.
            $endgroup$
            – José Carlos Santos
            Jan 30 at 11:28


















          • $begingroup$
            Thank you so much for your verification! Please confirm if my understanding is correct. 1. Although @Did edited my title into ... a total order, I think $preccurlyeq$ is NOT an order relation. This is because $preccurlyeq$ is NOT antisymmetric, i.e there exist $langle a_n rangle_{n=0}^{infty} neq langle b_n rangle_{n=0}^{infty}$ such that $langle a_n rangle_{n=0}^{infty} preccurlyeq langle b_n rangle_{n=0}^{infty}$ and $langle b_n rangle_{n=0}^{infty} preccurlyeq langle a_n rangle_{n=0}^{infty}$.[...]
            $endgroup$
            – Le Anh Dung
            Jan 30 at 11:03










          • $begingroup$
            [...] 2. To avoid the use of Axiom of Choice, we can define $f:Bbb N to Bbb N$ by $f(N)=min {ninBbb N mid n>N wedge a_n - b_n ge epsilon }$ for all $NinBbb N$.
            $endgroup$
            – Le Anh Dung
            Jan 30 at 11:03










          • $begingroup$
            Right: it is not an order relation. While thinking about your attempt, I only cared about the specific claim that you were trying to prove.
            $endgroup$
            – José Carlos Santos
            Jan 30 at 11:04










          • $begingroup$
            Please have a check on my Claim 2. too!
            $endgroup$
            – Le Anh Dung
            Jan 30 at 11:05










          • $begingroup$
            It looks correct to me.
            $endgroup$
            – José Carlos Santos
            Jan 30 at 11:28
















          $begingroup$
          Thank you so much for your verification! Please confirm if my understanding is correct. 1. Although @Did edited my title into ... a total order, I think $preccurlyeq$ is NOT an order relation. This is because $preccurlyeq$ is NOT antisymmetric, i.e there exist $langle a_n rangle_{n=0}^{infty} neq langle b_n rangle_{n=0}^{infty}$ such that $langle a_n rangle_{n=0}^{infty} preccurlyeq langle b_n rangle_{n=0}^{infty}$ and $langle b_n rangle_{n=0}^{infty} preccurlyeq langle a_n rangle_{n=0}^{infty}$.[...]
          $endgroup$
          – Le Anh Dung
          Jan 30 at 11:03




          $begingroup$
          Thank you so much for your verification! Please confirm if my understanding is correct. 1. Although @Did edited my title into ... a total order, I think $preccurlyeq$ is NOT an order relation. This is because $preccurlyeq$ is NOT antisymmetric, i.e there exist $langle a_n rangle_{n=0}^{infty} neq langle b_n rangle_{n=0}^{infty}$ such that $langle a_n rangle_{n=0}^{infty} preccurlyeq langle b_n rangle_{n=0}^{infty}$ and $langle b_n rangle_{n=0}^{infty} preccurlyeq langle a_n rangle_{n=0}^{infty}$.[...]
          $endgroup$
          – Le Anh Dung
          Jan 30 at 11:03












          $begingroup$
          [...] 2. To avoid the use of Axiom of Choice, we can define $f:Bbb N to Bbb N$ by $f(N)=min {ninBbb N mid n>N wedge a_n - b_n ge epsilon }$ for all $NinBbb N$.
          $endgroup$
          – Le Anh Dung
          Jan 30 at 11:03




          $begingroup$
          [...] 2. To avoid the use of Axiom of Choice, we can define $f:Bbb N to Bbb N$ by $f(N)=min {ninBbb N mid n>N wedge a_n - b_n ge epsilon }$ for all $NinBbb N$.
          $endgroup$
          – Le Anh Dung
          Jan 30 at 11:03












          $begingroup$
          Right: it is not an order relation. While thinking about your attempt, I only cared about the specific claim that you were trying to prove.
          $endgroup$
          – José Carlos Santos
          Jan 30 at 11:04




          $begingroup$
          Right: it is not an order relation. While thinking about your attempt, I only cared about the specific claim that you were trying to prove.
          $endgroup$
          – José Carlos Santos
          Jan 30 at 11:04












          $begingroup$
          Please have a check on my Claim 2. too!
          $endgroup$
          – Le Anh Dung
          Jan 30 at 11:05




          $begingroup$
          Please have a check on my Claim 2. too!
          $endgroup$
          – Le Anh Dung
          Jan 30 at 11:05












          $begingroup$
          It looks correct to me.
          $endgroup$
          – José Carlos Santos
          Jan 30 at 11:28




          $begingroup$
          It looks correct to me.
          $endgroup$
          – José Carlos Santos
          Jan 30 at 11:28


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093344%2frelation-a-nb-n-iff-for-every-epsilon0-a-n-b-n-epsilon-for-all-n%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          'app-layout' is not a known element: how to share Component with different Modules

          android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

          WPF add header to Image with URL pettitions [duplicate]