Relation $(a_n)0$, $a_n-b_n<epsilon$ for all $n$ large enough, defines a total order $<$ on Cauchy...
$begingroup$
Honestly, I figured out the idea to prove this theorem without much difficulty. But I found very hard to formalize it into a rigorous proof and it takes me three days to do it.
Could you please have a check on my attempt? Thank you so much!
A sequence $langle a_n rangle_{n=0}^{infty}$ of rational numbers is a Cauchy sequence if for every rational $epsilon>0$ there exists an integer $N$ such that $|a_m - a_n| < epsilon$ for all $m,n > N$. Let $mathfrak{C}$ be the set of all Cauchy sequences of rational numbers. We define a relation $preccurlyeq$ on $mathfrak{C}$ by $langle a_n rangle_{n=0}^{infty} preccurlyeq langle b_n rangle_{n=0}^{infty}$ if and only if for every rational $epsilon>0$ there exists an integer $N$ such that $a_n - b_n < epsilon$ for all $n > N$.
Theorem: Any two elements of $mathfrak{C}$ are comparable w.r.t $preccurlyeq$.
My attempt:
Assume the contrary that there exist $langle a_n rangle_{n=0}^{infty}$, $langle b_n rangle_{n=0}^{infty} in mathfrak{C}$ that are incomparable. Then $langle a_n rangle_{n=0}^{infty} not preccurlyeq langle b_n rangle_{n=0}^{infty}$ and $langle b_n rangle_{n=0}^{infty} not preccurlyeq langle a_n rangle_{n=0}^{infty}$. As a result, $exists epsilon >0,forall N,exists n>N:a_n - b_n ge epsilon$ and $exists epsilon >0,forall N,exists m>N:b_m - a_m ge epsilon$.
Then $exists epsilon >0,forall N,exists (n>N wedge m>N):a_n - b_n ge epsilon wedge b_m - a_m ge epsilon$. By Axiom of Choice, there exist functions $f:Bbb N to Bbb N$ and $h:Bbb N to Bbb N$ such that $f(N)>N$, $h(N)>N$, $a_{f(N)} - b_{f(N)} ge epsilon$, and $b_{h(N)} - a_{h(N)} ge epsilon$.
Moreover, $langle b_n rangle_{n=0}^{infty}$ is a Cauchy sequence $implies$ $exists N_0,forall m,n > N_0:|b_m - b_n| < epsilon$.
We define functions $f':Bbb N to Bbb N$ and $h':Bbb N to Bbb N$ by $f'(N)=f(N_0)$, $h'(N)=h(N_0)$ for all $N<N_0$ and $f'(N)=f(N)$, $h'(N)=h(N)$ for all $N ge N_0$.
It follows that $f'(N)>N$, $h'(N)>N$, $a_{f'(N)} - b_{f'(N)} ge epsilon$, $b_{h'(N)} - a_{h'(N)} ge epsilon$, and $|b_{h'(N)} - b_{f'(N)}| < epsilon$ for all $N in Bbb N$. As a result,
$begin{align}|a_{f’(N)} - a_{h’(N)}| &= |(a_{f’(N)} - b_{f’(N)}) + (b_{h’(N)} - a_{h’(N)} ) + (b_{f’(N)} - b_{h’(N)})|\ &ge |(a_{f’(N)} - b_{f’(N)}) + (b_{h’(N)} - a_{h’(N)} )| - |b_{f’(N)} - b_{h’(N)}|\ &= |a_{f’(N)} - b_{f’(N)}| + |b_{h’(N)} - a_{h’(N)} | - |b_{f’(N)} - b_{h’(N)}|\ &> epsilon + epsilon - epsilon =epsilonend{align}$
Hence $exists epsilon>0, forall N, exists(f’(N)>N wedge h’(N)>N):a_{f’(N)} - a_{h’(N)}>epsilon$. This contradicts the fact that $langle a_n rangle_{n=0}^{infty}$ is a Cauchy sequence.
real-analysis proof-verification cauchy-sequences
$endgroup$
add a comment |
$begingroup$
Honestly, I figured out the idea to prove this theorem without much difficulty. But I found very hard to formalize it into a rigorous proof and it takes me three days to do it.
Could you please have a check on my attempt? Thank you so much!
A sequence $langle a_n rangle_{n=0}^{infty}$ of rational numbers is a Cauchy sequence if for every rational $epsilon>0$ there exists an integer $N$ such that $|a_m - a_n| < epsilon$ for all $m,n > N$. Let $mathfrak{C}$ be the set of all Cauchy sequences of rational numbers. We define a relation $preccurlyeq$ on $mathfrak{C}$ by $langle a_n rangle_{n=0}^{infty} preccurlyeq langle b_n rangle_{n=0}^{infty}$ if and only if for every rational $epsilon>0$ there exists an integer $N$ such that $a_n - b_n < epsilon$ for all $n > N$.
Theorem: Any two elements of $mathfrak{C}$ are comparable w.r.t $preccurlyeq$.
My attempt:
Assume the contrary that there exist $langle a_n rangle_{n=0}^{infty}$, $langle b_n rangle_{n=0}^{infty} in mathfrak{C}$ that are incomparable. Then $langle a_n rangle_{n=0}^{infty} not preccurlyeq langle b_n rangle_{n=0}^{infty}$ and $langle b_n rangle_{n=0}^{infty} not preccurlyeq langle a_n rangle_{n=0}^{infty}$. As a result, $exists epsilon >0,forall N,exists n>N:a_n - b_n ge epsilon$ and $exists epsilon >0,forall N,exists m>N:b_m - a_m ge epsilon$.
Then $exists epsilon >0,forall N,exists (n>N wedge m>N):a_n - b_n ge epsilon wedge b_m - a_m ge epsilon$. By Axiom of Choice, there exist functions $f:Bbb N to Bbb N$ and $h:Bbb N to Bbb N$ such that $f(N)>N$, $h(N)>N$, $a_{f(N)} - b_{f(N)} ge epsilon$, and $b_{h(N)} - a_{h(N)} ge epsilon$.
Moreover, $langle b_n rangle_{n=0}^{infty}$ is a Cauchy sequence $implies$ $exists N_0,forall m,n > N_0:|b_m - b_n| < epsilon$.
We define functions $f':Bbb N to Bbb N$ and $h':Bbb N to Bbb N$ by $f'(N)=f(N_0)$, $h'(N)=h(N_0)$ for all $N<N_0$ and $f'(N)=f(N)$, $h'(N)=h(N)$ for all $N ge N_0$.
It follows that $f'(N)>N$, $h'(N)>N$, $a_{f'(N)} - b_{f'(N)} ge epsilon$, $b_{h'(N)} - a_{h'(N)} ge epsilon$, and $|b_{h'(N)} - b_{f'(N)}| < epsilon$ for all $N in Bbb N$. As a result,
$begin{align}|a_{f’(N)} - a_{h’(N)}| &= |(a_{f’(N)} - b_{f’(N)}) + (b_{h’(N)} - a_{h’(N)} ) + (b_{f’(N)} - b_{h’(N)})|\ &ge |(a_{f’(N)} - b_{f’(N)}) + (b_{h’(N)} - a_{h’(N)} )| - |b_{f’(N)} - b_{h’(N)}|\ &= |a_{f’(N)} - b_{f’(N)}| + |b_{h’(N)} - a_{h’(N)} | - |b_{f’(N)} - b_{h’(N)}|\ &> epsilon + epsilon - epsilon =epsilonend{align}$
Hence $exists epsilon>0, forall N, exists(f’(N)>N wedge h’(N)>N):a_{f’(N)} - a_{h’(N)}>epsilon$. This contradicts the fact that $langle a_n rangle_{n=0}^{infty}$ is a Cauchy sequence.
real-analysis proof-verification cauchy-sequences
$endgroup$
add a comment |
$begingroup$
Honestly, I figured out the idea to prove this theorem without much difficulty. But I found very hard to formalize it into a rigorous proof and it takes me three days to do it.
Could you please have a check on my attempt? Thank you so much!
A sequence $langle a_n rangle_{n=0}^{infty}$ of rational numbers is a Cauchy sequence if for every rational $epsilon>0$ there exists an integer $N$ such that $|a_m - a_n| < epsilon$ for all $m,n > N$. Let $mathfrak{C}$ be the set of all Cauchy sequences of rational numbers. We define a relation $preccurlyeq$ on $mathfrak{C}$ by $langle a_n rangle_{n=0}^{infty} preccurlyeq langle b_n rangle_{n=0}^{infty}$ if and only if for every rational $epsilon>0$ there exists an integer $N$ such that $a_n - b_n < epsilon$ for all $n > N$.
Theorem: Any two elements of $mathfrak{C}$ are comparable w.r.t $preccurlyeq$.
My attempt:
Assume the contrary that there exist $langle a_n rangle_{n=0}^{infty}$, $langle b_n rangle_{n=0}^{infty} in mathfrak{C}$ that are incomparable. Then $langle a_n rangle_{n=0}^{infty} not preccurlyeq langle b_n rangle_{n=0}^{infty}$ and $langle b_n rangle_{n=0}^{infty} not preccurlyeq langle a_n rangle_{n=0}^{infty}$. As a result, $exists epsilon >0,forall N,exists n>N:a_n - b_n ge epsilon$ and $exists epsilon >0,forall N,exists m>N:b_m - a_m ge epsilon$.
Then $exists epsilon >0,forall N,exists (n>N wedge m>N):a_n - b_n ge epsilon wedge b_m - a_m ge epsilon$. By Axiom of Choice, there exist functions $f:Bbb N to Bbb N$ and $h:Bbb N to Bbb N$ such that $f(N)>N$, $h(N)>N$, $a_{f(N)} - b_{f(N)} ge epsilon$, and $b_{h(N)} - a_{h(N)} ge epsilon$.
Moreover, $langle b_n rangle_{n=0}^{infty}$ is a Cauchy sequence $implies$ $exists N_0,forall m,n > N_0:|b_m - b_n| < epsilon$.
We define functions $f':Bbb N to Bbb N$ and $h':Bbb N to Bbb N$ by $f'(N)=f(N_0)$, $h'(N)=h(N_0)$ for all $N<N_0$ and $f'(N)=f(N)$, $h'(N)=h(N)$ for all $N ge N_0$.
It follows that $f'(N)>N$, $h'(N)>N$, $a_{f'(N)} - b_{f'(N)} ge epsilon$, $b_{h'(N)} - a_{h'(N)} ge epsilon$, and $|b_{h'(N)} - b_{f'(N)}| < epsilon$ for all $N in Bbb N$. As a result,
$begin{align}|a_{f’(N)} - a_{h’(N)}| &= |(a_{f’(N)} - b_{f’(N)}) + (b_{h’(N)} - a_{h’(N)} ) + (b_{f’(N)} - b_{h’(N)})|\ &ge |(a_{f’(N)} - b_{f’(N)}) + (b_{h’(N)} - a_{h’(N)} )| - |b_{f’(N)} - b_{h’(N)}|\ &= |a_{f’(N)} - b_{f’(N)}| + |b_{h’(N)} - a_{h’(N)} | - |b_{f’(N)} - b_{h’(N)}|\ &> epsilon + epsilon - epsilon =epsilonend{align}$
Hence $exists epsilon>0, forall N, exists(f’(N)>N wedge h’(N)>N):a_{f’(N)} - a_{h’(N)}>epsilon$. This contradicts the fact that $langle a_n rangle_{n=0}^{infty}$ is a Cauchy sequence.
real-analysis proof-verification cauchy-sequences
$endgroup$
Honestly, I figured out the idea to prove this theorem without much difficulty. But I found very hard to formalize it into a rigorous proof and it takes me three days to do it.
Could you please have a check on my attempt? Thank you so much!
A sequence $langle a_n rangle_{n=0}^{infty}$ of rational numbers is a Cauchy sequence if for every rational $epsilon>0$ there exists an integer $N$ such that $|a_m - a_n| < epsilon$ for all $m,n > N$. Let $mathfrak{C}$ be the set of all Cauchy sequences of rational numbers. We define a relation $preccurlyeq$ on $mathfrak{C}$ by $langle a_n rangle_{n=0}^{infty} preccurlyeq langle b_n rangle_{n=0}^{infty}$ if and only if for every rational $epsilon>0$ there exists an integer $N$ such that $a_n - b_n < epsilon$ for all $n > N$.
Theorem: Any two elements of $mathfrak{C}$ are comparable w.r.t $preccurlyeq$.
My attempt:
Assume the contrary that there exist $langle a_n rangle_{n=0}^{infty}$, $langle b_n rangle_{n=0}^{infty} in mathfrak{C}$ that are incomparable. Then $langle a_n rangle_{n=0}^{infty} not preccurlyeq langle b_n rangle_{n=0}^{infty}$ and $langle b_n rangle_{n=0}^{infty} not preccurlyeq langle a_n rangle_{n=0}^{infty}$. As a result, $exists epsilon >0,forall N,exists n>N:a_n - b_n ge epsilon$ and $exists epsilon >0,forall N,exists m>N:b_m - a_m ge epsilon$.
Then $exists epsilon >0,forall N,exists (n>N wedge m>N):a_n - b_n ge epsilon wedge b_m - a_m ge epsilon$. By Axiom of Choice, there exist functions $f:Bbb N to Bbb N$ and $h:Bbb N to Bbb N$ such that $f(N)>N$, $h(N)>N$, $a_{f(N)} - b_{f(N)} ge epsilon$, and $b_{h(N)} - a_{h(N)} ge epsilon$.
Moreover, $langle b_n rangle_{n=0}^{infty}$ is a Cauchy sequence $implies$ $exists N_0,forall m,n > N_0:|b_m - b_n| < epsilon$.
We define functions $f':Bbb N to Bbb N$ and $h':Bbb N to Bbb N$ by $f'(N)=f(N_0)$, $h'(N)=h(N_0)$ for all $N<N_0$ and $f'(N)=f(N)$, $h'(N)=h(N)$ for all $N ge N_0$.
It follows that $f'(N)>N$, $h'(N)>N$, $a_{f'(N)} - b_{f'(N)} ge epsilon$, $b_{h'(N)} - a_{h'(N)} ge epsilon$, and $|b_{h'(N)} - b_{f'(N)}| < epsilon$ for all $N in Bbb N$. As a result,
$begin{align}|a_{f’(N)} - a_{h’(N)}| &= |(a_{f’(N)} - b_{f’(N)}) + (b_{h’(N)} - a_{h’(N)} ) + (b_{f’(N)} - b_{h’(N)})|\ &ge |(a_{f’(N)} - b_{f’(N)}) + (b_{h’(N)} - a_{h’(N)} )| - |b_{f’(N)} - b_{h’(N)}|\ &= |a_{f’(N)} - b_{f’(N)}| + |b_{h’(N)} - a_{h’(N)} | - |b_{f’(N)} - b_{h’(N)}|\ &> epsilon + epsilon - epsilon =epsilonend{align}$
Hence $exists epsilon>0, forall N, exists(f’(N)>N wedge h’(N)>N):a_{f’(N)} - a_{h’(N)}>epsilon$. This contradicts the fact that $langle a_n rangle_{n=0}^{infty}$ is a Cauchy sequence.
real-analysis proof-verification cauchy-sequences
real-analysis proof-verification cauchy-sequences
edited Jan 30 at 10:34
Did
249k23227466
249k23227466
asked Jan 30 at 10:22
Le Anh DungLe Anh Dung
1,4511621
1,4511621
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I see only a (minor) problem with your attempt: at the first paragraph, those $varepsilon$'s should be two distinct numbers a priori. But that's not a serious problem.
On the other hand, the axiom of choice is not needed for the proof, but using it is not an error.
$endgroup$
$begingroup$
Thank you so much for your verification! Please confirm if my understanding is correct. 1. Although @Did edited my title into ... a total order, I think $preccurlyeq$ is NOT an order relation. This is because $preccurlyeq$ is NOT antisymmetric, i.e there exist $langle a_n rangle_{n=0}^{infty} neq langle b_n rangle_{n=0}^{infty}$ such that $langle a_n rangle_{n=0}^{infty} preccurlyeq langle b_n rangle_{n=0}^{infty}$ and $langle b_n rangle_{n=0}^{infty} preccurlyeq langle a_n rangle_{n=0}^{infty}$.[...]
$endgroup$
– Le Anh Dung
Jan 30 at 11:03
$begingroup$
[...] 2. To avoid the use of Axiom of Choice, we can define $f:Bbb N to Bbb N$ by $f(N)=min {ninBbb N mid n>N wedge a_n - b_n ge epsilon }$ for all $NinBbb N$.
$endgroup$
– Le Anh Dung
Jan 30 at 11:03
$begingroup$
Right: it is not an order relation. While thinking about your attempt, I only cared about the specific claim that you were trying to prove.
$endgroup$
– José Carlos Santos
Jan 30 at 11:04
$begingroup$
Please have a check on my Claim 2. too!
$endgroup$
– Le Anh Dung
Jan 30 at 11:05
$begingroup$
It looks correct to me.
$endgroup$
– José Carlos Santos
Jan 30 at 11:28
|
show 1 more comment
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093344%2frelation-a-nb-n-iff-for-every-epsilon0-a-n-b-n-epsilon-for-all-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I see only a (minor) problem with your attempt: at the first paragraph, those $varepsilon$'s should be two distinct numbers a priori. But that's not a serious problem.
On the other hand, the axiom of choice is not needed for the proof, but using it is not an error.
$endgroup$
$begingroup$
Thank you so much for your verification! Please confirm if my understanding is correct. 1. Although @Did edited my title into ... a total order, I think $preccurlyeq$ is NOT an order relation. This is because $preccurlyeq$ is NOT antisymmetric, i.e there exist $langle a_n rangle_{n=0}^{infty} neq langle b_n rangle_{n=0}^{infty}$ such that $langle a_n rangle_{n=0}^{infty} preccurlyeq langle b_n rangle_{n=0}^{infty}$ and $langle b_n rangle_{n=0}^{infty} preccurlyeq langle a_n rangle_{n=0}^{infty}$.[...]
$endgroup$
– Le Anh Dung
Jan 30 at 11:03
$begingroup$
[...] 2. To avoid the use of Axiom of Choice, we can define $f:Bbb N to Bbb N$ by $f(N)=min {ninBbb N mid n>N wedge a_n - b_n ge epsilon }$ for all $NinBbb N$.
$endgroup$
– Le Anh Dung
Jan 30 at 11:03
$begingroup$
Right: it is not an order relation. While thinking about your attempt, I only cared about the specific claim that you were trying to prove.
$endgroup$
– José Carlos Santos
Jan 30 at 11:04
$begingroup$
Please have a check on my Claim 2. too!
$endgroup$
– Le Anh Dung
Jan 30 at 11:05
$begingroup$
It looks correct to me.
$endgroup$
– José Carlos Santos
Jan 30 at 11:28
|
show 1 more comment
$begingroup$
I see only a (minor) problem with your attempt: at the first paragraph, those $varepsilon$'s should be two distinct numbers a priori. But that's not a serious problem.
On the other hand, the axiom of choice is not needed for the proof, but using it is not an error.
$endgroup$
$begingroup$
Thank you so much for your verification! Please confirm if my understanding is correct. 1. Although @Did edited my title into ... a total order, I think $preccurlyeq$ is NOT an order relation. This is because $preccurlyeq$ is NOT antisymmetric, i.e there exist $langle a_n rangle_{n=0}^{infty} neq langle b_n rangle_{n=0}^{infty}$ such that $langle a_n rangle_{n=0}^{infty} preccurlyeq langle b_n rangle_{n=0}^{infty}$ and $langle b_n rangle_{n=0}^{infty} preccurlyeq langle a_n rangle_{n=0}^{infty}$.[...]
$endgroup$
– Le Anh Dung
Jan 30 at 11:03
$begingroup$
[...] 2. To avoid the use of Axiom of Choice, we can define $f:Bbb N to Bbb N$ by $f(N)=min {ninBbb N mid n>N wedge a_n - b_n ge epsilon }$ for all $NinBbb N$.
$endgroup$
– Le Anh Dung
Jan 30 at 11:03
$begingroup$
Right: it is not an order relation. While thinking about your attempt, I only cared about the specific claim that you were trying to prove.
$endgroup$
– José Carlos Santos
Jan 30 at 11:04
$begingroup$
Please have a check on my Claim 2. too!
$endgroup$
– Le Anh Dung
Jan 30 at 11:05
$begingroup$
It looks correct to me.
$endgroup$
– José Carlos Santos
Jan 30 at 11:28
|
show 1 more comment
$begingroup$
I see only a (minor) problem with your attempt: at the first paragraph, those $varepsilon$'s should be two distinct numbers a priori. But that's not a serious problem.
On the other hand, the axiom of choice is not needed for the proof, but using it is not an error.
$endgroup$
I see only a (minor) problem with your attempt: at the first paragraph, those $varepsilon$'s should be two distinct numbers a priori. But that's not a serious problem.
On the other hand, the axiom of choice is not needed for the proof, but using it is not an error.
answered Jan 30 at 10:50
José Carlos SantosJosé Carlos Santos
172k22132239
172k22132239
$begingroup$
Thank you so much for your verification! Please confirm if my understanding is correct. 1. Although @Did edited my title into ... a total order, I think $preccurlyeq$ is NOT an order relation. This is because $preccurlyeq$ is NOT antisymmetric, i.e there exist $langle a_n rangle_{n=0}^{infty} neq langle b_n rangle_{n=0}^{infty}$ such that $langle a_n rangle_{n=0}^{infty} preccurlyeq langle b_n rangle_{n=0}^{infty}$ and $langle b_n rangle_{n=0}^{infty} preccurlyeq langle a_n rangle_{n=0}^{infty}$.[...]
$endgroup$
– Le Anh Dung
Jan 30 at 11:03
$begingroup$
[...] 2. To avoid the use of Axiom of Choice, we can define $f:Bbb N to Bbb N$ by $f(N)=min {ninBbb N mid n>N wedge a_n - b_n ge epsilon }$ for all $NinBbb N$.
$endgroup$
– Le Anh Dung
Jan 30 at 11:03
$begingroup$
Right: it is not an order relation. While thinking about your attempt, I only cared about the specific claim that you were trying to prove.
$endgroup$
– José Carlos Santos
Jan 30 at 11:04
$begingroup$
Please have a check on my Claim 2. too!
$endgroup$
– Le Anh Dung
Jan 30 at 11:05
$begingroup$
It looks correct to me.
$endgroup$
– José Carlos Santos
Jan 30 at 11:28
|
show 1 more comment
$begingroup$
Thank you so much for your verification! Please confirm if my understanding is correct. 1. Although @Did edited my title into ... a total order, I think $preccurlyeq$ is NOT an order relation. This is because $preccurlyeq$ is NOT antisymmetric, i.e there exist $langle a_n rangle_{n=0}^{infty} neq langle b_n rangle_{n=0}^{infty}$ such that $langle a_n rangle_{n=0}^{infty} preccurlyeq langle b_n rangle_{n=0}^{infty}$ and $langle b_n rangle_{n=0}^{infty} preccurlyeq langle a_n rangle_{n=0}^{infty}$.[...]
$endgroup$
– Le Anh Dung
Jan 30 at 11:03
$begingroup$
[...] 2. To avoid the use of Axiom of Choice, we can define $f:Bbb N to Bbb N$ by $f(N)=min {ninBbb N mid n>N wedge a_n - b_n ge epsilon }$ for all $NinBbb N$.
$endgroup$
– Le Anh Dung
Jan 30 at 11:03
$begingroup$
Right: it is not an order relation. While thinking about your attempt, I only cared about the specific claim that you were trying to prove.
$endgroup$
– José Carlos Santos
Jan 30 at 11:04
$begingroup$
Please have a check on my Claim 2. too!
$endgroup$
– Le Anh Dung
Jan 30 at 11:05
$begingroup$
It looks correct to me.
$endgroup$
– José Carlos Santos
Jan 30 at 11:28
$begingroup$
Thank you so much for your verification! Please confirm if my understanding is correct. 1. Although @Did edited my title into ... a total order, I think $preccurlyeq$ is NOT an order relation. This is because $preccurlyeq$ is NOT antisymmetric, i.e there exist $langle a_n rangle_{n=0}^{infty} neq langle b_n rangle_{n=0}^{infty}$ such that $langle a_n rangle_{n=0}^{infty} preccurlyeq langle b_n rangle_{n=0}^{infty}$ and $langle b_n rangle_{n=0}^{infty} preccurlyeq langle a_n rangle_{n=0}^{infty}$.[...]
$endgroup$
– Le Anh Dung
Jan 30 at 11:03
$begingroup$
Thank you so much for your verification! Please confirm if my understanding is correct. 1. Although @Did edited my title into ... a total order, I think $preccurlyeq$ is NOT an order relation. This is because $preccurlyeq$ is NOT antisymmetric, i.e there exist $langle a_n rangle_{n=0}^{infty} neq langle b_n rangle_{n=0}^{infty}$ such that $langle a_n rangle_{n=0}^{infty} preccurlyeq langle b_n rangle_{n=0}^{infty}$ and $langle b_n rangle_{n=0}^{infty} preccurlyeq langle a_n rangle_{n=0}^{infty}$.[...]
$endgroup$
– Le Anh Dung
Jan 30 at 11:03
$begingroup$
[...] 2. To avoid the use of Axiom of Choice, we can define $f:Bbb N to Bbb N$ by $f(N)=min {ninBbb N mid n>N wedge a_n - b_n ge epsilon }$ for all $NinBbb N$.
$endgroup$
– Le Anh Dung
Jan 30 at 11:03
$begingroup$
[...] 2. To avoid the use of Axiom of Choice, we can define $f:Bbb N to Bbb N$ by $f(N)=min {ninBbb N mid n>N wedge a_n - b_n ge epsilon }$ for all $NinBbb N$.
$endgroup$
– Le Anh Dung
Jan 30 at 11:03
$begingroup$
Right: it is not an order relation. While thinking about your attempt, I only cared about the specific claim that you were trying to prove.
$endgroup$
– José Carlos Santos
Jan 30 at 11:04
$begingroup$
Right: it is not an order relation. While thinking about your attempt, I only cared about the specific claim that you were trying to prove.
$endgroup$
– José Carlos Santos
Jan 30 at 11:04
$begingroup$
Please have a check on my Claim 2. too!
$endgroup$
– Le Anh Dung
Jan 30 at 11:05
$begingroup$
Please have a check on my Claim 2. too!
$endgroup$
– Le Anh Dung
Jan 30 at 11:05
$begingroup$
It looks correct to me.
$endgroup$
– José Carlos Santos
Jan 30 at 11:28
$begingroup$
It looks correct to me.
$endgroup$
– José Carlos Santos
Jan 30 at 11:28
|
show 1 more comment
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093344%2frelation-a-nb-n-iff-for-every-epsilon0-a-n-b-n-epsilon-for-all-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown