$limsup_{ntoinfty}{a_n}^{b_n}= limsup_{ntoinfty}{a_n}^{limlimits_{ntoinfty}b_n}$ under certian conditions.












0












$begingroup$


I have a proof that requires the following justification. So, I decided to recast it in the following form:




If $limlimits_{ntoinfty}b_n$ exists and $limsup_{ntoinfty}{a_n}=a>0$, then $limsup_{ntoinfty}{a_n}^{b_n}= limsup_{ntoinfty}{a_n}^{limlimits_{ntoinfty}b_n}$




My proof



begin{align} limsup_{ntoinfty}{a_n}^{b_n}&=limsup_{ntoinfty}e^{ln{a_n}^{b_n}}\&=limsup_{ntoinfty}e^{b_nln{a_n}}\&=e^{limsup_{ntoinfty}(b_nln{a_n})}\&=e^{limlimits_{ntoinfty}b_nlimsup_{ntoinfty}ln{a_n}}\&=e^{limlimits_{ntoinfty}b_nln{(limsup_{ntoinfty}a_n)}}\&=e^{limlimits_{ntoinfty}b_nln{a}}\&=e^{ln{a}^{limlimits_{ntoinfty}b_n}}\&={a}^{limlimits_{ntoinfty}b_n}\&={limsup_{ntoinfty}{a_n}}^{limlimits_{ntoinfty}b_n}end{align}
Please, is this correct? And is there any other proof?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Proofs shouldn't just be equations, they should be sentences. For example, a sentence about why line $2$ and line $3$ are equal...
    $endgroup$
    – 5xum
    Jan 30 at 9:39










  • $begingroup$
    @5xum: Sorry, it was a typo.
    $endgroup$
    – Micheal
    Jan 30 at 9:45










  • $begingroup$
    @5xum: I edited it.
    $endgroup$
    – Micheal
    Jan 30 at 11:37
















0












$begingroup$


I have a proof that requires the following justification. So, I decided to recast it in the following form:




If $limlimits_{ntoinfty}b_n$ exists and $limsup_{ntoinfty}{a_n}=a>0$, then $limsup_{ntoinfty}{a_n}^{b_n}= limsup_{ntoinfty}{a_n}^{limlimits_{ntoinfty}b_n}$




My proof



begin{align} limsup_{ntoinfty}{a_n}^{b_n}&=limsup_{ntoinfty}e^{ln{a_n}^{b_n}}\&=limsup_{ntoinfty}e^{b_nln{a_n}}\&=e^{limsup_{ntoinfty}(b_nln{a_n})}\&=e^{limlimits_{ntoinfty}b_nlimsup_{ntoinfty}ln{a_n}}\&=e^{limlimits_{ntoinfty}b_nln{(limsup_{ntoinfty}a_n)}}\&=e^{limlimits_{ntoinfty}b_nln{a}}\&=e^{ln{a}^{limlimits_{ntoinfty}b_n}}\&={a}^{limlimits_{ntoinfty}b_n}\&={limsup_{ntoinfty}{a_n}}^{limlimits_{ntoinfty}b_n}end{align}
Please, is this correct? And is there any other proof?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Proofs shouldn't just be equations, they should be sentences. For example, a sentence about why line $2$ and line $3$ are equal...
    $endgroup$
    – 5xum
    Jan 30 at 9:39










  • $begingroup$
    @5xum: Sorry, it was a typo.
    $endgroup$
    – Micheal
    Jan 30 at 9:45










  • $begingroup$
    @5xum: I edited it.
    $endgroup$
    – Micheal
    Jan 30 at 11:37














0












0








0


1



$begingroup$


I have a proof that requires the following justification. So, I decided to recast it in the following form:




If $limlimits_{ntoinfty}b_n$ exists and $limsup_{ntoinfty}{a_n}=a>0$, then $limsup_{ntoinfty}{a_n}^{b_n}= limsup_{ntoinfty}{a_n}^{limlimits_{ntoinfty}b_n}$




My proof



begin{align} limsup_{ntoinfty}{a_n}^{b_n}&=limsup_{ntoinfty}e^{ln{a_n}^{b_n}}\&=limsup_{ntoinfty}e^{b_nln{a_n}}\&=e^{limsup_{ntoinfty}(b_nln{a_n})}\&=e^{limlimits_{ntoinfty}b_nlimsup_{ntoinfty}ln{a_n}}\&=e^{limlimits_{ntoinfty}b_nln{(limsup_{ntoinfty}a_n)}}\&=e^{limlimits_{ntoinfty}b_nln{a}}\&=e^{ln{a}^{limlimits_{ntoinfty}b_n}}\&={a}^{limlimits_{ntoinfty}b_n}\&={limsup_{ntoinfty}{a_n}}^{limlimits_{ntoinfty}b_n}end{align}
Please, is this correct? And is there any other proof?










share|cite|improve this question











$endgroup$




I have a proof that requires the following justification. So, I decided to recast it in the following form:




If $limlimits_{ntoinfty}b_n$ exists and $limsup_{ntoinfty}{a_n}=a>0$, then $limsup_{ntoinfty}{a_n}^{b_n}= limsup_{ntoinfty}{a_n}^{limlimits_{ntoinfty}b_n}$




My proof



begin{align} limsup_{ntoinfty}{a_n}^{b_n}&=limsup_{ntoinfty}e^{ln{a_n}^{b_n}}\&=limsup_{ntoinfty}e^{b_nln{a_n}}\&=e^{limsup_{ntoinfty}(b_nln{a_n})}\&=e^{limlimits_{ntoinfty}b_nlimsup_{ntoinfty}ln{a_n}}\&=e^{limlimits_{ntoinfty}b_nln{(limsup_{ntoinfty}a_n)}}\&=e^{limlimits_{ntoinfty}b_nln{a}}\&=e^{ln{a}^{limlimits_{ntoinfty}b_n}}\&={a}^{limlimits_{ntoinfty}b_n}\&={limsup_{ntoinfty}{a_n}}^{limlimits_{ntoinfty}b_n}end{align}
Please, is this correct? And is there any other proof?







real-analysis limsup-and-liminf






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 30 at 9:51







Micheal

















asked Jan 30 at 9:38









MichealMicheal

26511




26511












  • $begingroup$
    Proofs shouldn't just be equations, they should be sentences. For example, a sentence about why line $2$ and line $3$ are equal...
    $endgroup$
    – 5xum
    Jan 30 at 9:39










  • $begingroup$
    @5xum: Sorry, it was a typo.
    $endgroup$
    – Micheal
    Jan 30 at 9:45










  • $begingroup$
    @5xum: I edited it.
    $endgroup$
    – Micheal
    Jan 30 at 11:37


















  • $begingroup$
    Proofs shouldn't just be equations, they should be sentences. For example, a sentence about why line $2$ and line $3$ are equal...
    $endgroup$
    – 5xum
    Jan 30 at 9:39










  • $begingroup$
    @5xum: Sorry, it was a typo.
    $endgroup$
    – Micheal
    Jan 30 at 9:45










  • $begingroup$
    @5xum: I edited it.
    $endgroup$
    – Micheal
    Jan 30 at 11:37
















$begingroup$
Proofs shouldn't just be equations, they should be sentences. For example, a sentence about why line $2$ and line $3$ are equal...
$endgroup$
– 5xum
Jan 30 at 9:39




$begingroup$
Proofs shouldn't just be equations, they should be sentences. For example, a sentence about why line $2$ and line $3$ are equal...
$endgroup$
– 5xum
Jan 30 at 9:39












$begingroup$
@5xum: Sorry, it was a typo.
$endgroup$
– Micheal
Jan 30 at 9:45




$begingroup$
@5xum: Sorry, it was a typo.
$endgroup$
– Micheal
Jan 30 at 9:45












$begingroup$
@5xum: I edited it.
$endgroup$
– Micheal
Jan 30 at 11:37




$begingroup$
@5xum: I edited it.
$endgroup$
– Micheal
Jan 30 at 11:37










2 Answers
2






active

oldest

votes


















1












$begingroup$

It's correct because $f(x)=e^x$ and $ln$ are continuous functions.



For all continuous in $a$ function $f$ if $limlimits_{nrightarrow+infty}a_n=a$ then:
$$lim_{nrightarrow+infty}f(a_n)=fleft(lim_{nrightarrow+infty}a_nright)=f(a).$$






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    Your proof seems a bit more complicated than it should be. Since $a^b$ is continuous for all $a,bin mathbb{R}$, we have that $limsup_{nrightarrowinfty}a_n^{b_n} = limsup_{nrightarrowinfty}a_n^{limsup_{nrightarrowinfty} b_n} $. However, since $lim_{nrightarrowinfty} b_n$ exists, we have $limsup_{nrightarrowinfty}b_n=lim_{nrightarrowinfty}b_n$, from which your claim follows.






    share|cite|improve this answer











    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093301%2flimsup-n-to-inftya-nb-n-limsup-n-to-inftya-n-lim-limits-n-to-i%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      It's correct because $f(x)=e^x$ and $ln$ are continuous functions.



      For all continuous in $a$ function $f$ if $limlimits_{nrightarrow+infty}a_n=a$ then:
      $$lim_{nrightarrow+infty}f(a_n)=fleft(lim_{nrightarrow+infty}a_nright)=f(a).$$






      share|cite|improve this answer











      $endgroup$


















        1












        $begingroup$

        It's correct because $f(x)=e^x$ and $ln$ are continuous functions.



        For all continuous in $a$ function $f$ if $limlimits_{nrightarrow+infty}a_n=a$ then:
        $$lim_{nrightarrow+infty}f(a_n)=fleft(lim_{nrightarrow+infty}a_nright)=f(a).$$






        share|cite|improve this answer











        $endgroup$
















          1












          1








          1





          $begingroup$

          It's correct because $f(x)=e^x$ and $ln$ are continuous functions.



          For all continuous in $a$ function $f$ if $limlimits_{nrightarrow+infty}a_n=a$ then:
          $$lim_{nrightarrow+infty}f(a_n)=fleft(lim_{nrightarrow+infty}a_nright)=f(a).$$






          share|cite|improve this answer











          $endgroup$



          It's correct because $f(x)=e^x$ and $ln$ are continuous functions.



          For all continuous in $a$ function $f$ if $limlimits_{nrightarrow+infty}a_n=a$ then:
          $$lim_{nrightarrow+infty}f(a_n)=fleft(lim_{nrightarrow+infty}a_nright)=f(a).$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 30 at 9:57

























          answered Jan 30 at 9:49









          Michael RozenbergMichael Rozenberg

          109k1896201




          109k1896201























              1












              $begingroup$

              Your proof seems a bit more complicated than it should be. Since $a^b$ is continuous for all $a,bin mathbb{R}$, we have that $limsup_{nrightarrowinfty}a_n^{b_n} = limsup_{nrightarrowinfty}a_n^{limsup_{nrightarrowinfty} b_n} $. However, since $lim_{nrightarrowinfty} b_n$ exists, we have $limsup_{nrightarrowinfty}b_n=lim_{nrightarrowinfty}b_n$, from which your claim follows.






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                Your proof seems a bit more complicated than it should be. Since $a^b$ is continuous for all $a,bin mathbb{R}$, we have that $limsup_{nrightarrowinfty}a_n^{b_n} = limsup_{nrightarrowinfty}a_n^{limsup_{nrightarrowinfty} b_n} $. However, since $lim_{nrightarrowinfty} b_n$ exists, we have $limsup_{nrightarrowinfty}b_n=lim_{nrightarrowinfty}b_n$, from which your claim follows.






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Your proof seems a bit more complicated than it should be. Since $a^b$ is continuous for all $a,bin mathbb{R}$, we have that $limsup_{nrightarrowinfty}a_n^{b_n} = limsup_{nrightarrowinfty}a_n^{limsup_{nrightarrowinfty} b_n} $. However, since $lim_{nrightarrowinfty} b_n$ exists, we have $limsup_{nrightarrowinfty}b_n=lim_{nrightarrowinfty}b_n$, from which your claim follows.






                  share|cite|improve this answer











                  $endgroup$



                  Your proof seems a bit more complicated than it should be. Since $a^b$ is continuous for all $a,bin mathbb{R}$, we have that $limsup_{nrightarrowinfty}a_n^{b_n} = limsup_{nrightarrowinfty}a_n^{limsup_{nrightarrowinfty} b_n} $. However, since $lim_{nrightarrowinfty} b_n$ exists, we have $limsup_{nrightarrowinfty}b_n=lim_{nrightarrowinfty}b_n$, from which your claim follows.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 30 at 9:57









                  Mark

                  10.4k1622




                  10.4k1622










                  answered Jan 30 at 9:55









                  UnexpectedExpectationUnexpectedExpectation

                  739




                  739






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093301%2flimsup-n-to-inftya-nb-n-limsup-n-to-inftya-n-lim-limits-n-to-i%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                      SQL update select statement

                      WPF add header to Image with URL pettitions [duplicate]