$limsup_{ntoinfty}{a_n}^{b_n}= limsup_{ntoinfty}{a_n}^{limlimits_{ntoinfty}b_n}$ under certian conditions.
$begingroup$
I have a proof that requires the following justification. So, I decided to recast it in the following form:
If $limlimits_{ntoinfty}b_n$ exists and $limsup_{ntoinfty}{a_n}=a>0$, then $limsup_{ntoinfty}{a_n}^{b_n}= limsup_{ntoinfty}{a_n}^{limlimits_{ntoinfty}b_n}$
My proof
begin{align} limsup_{ntoinfty}{a_n}^{b_n}&=limsup_{ntoinfty}e^{ln{a_n}^{b_n}}\&=limsup_{ntoinfty}e^{b_nln{a_n}}\&=e^{limsup_{ntoinfty}(b_nln{a_n})}\&=e^{limlimits_{ntoinfty}b_nlimsup_{ntoinfty}ln{a_n}}\&=e^{limlimits_{ntoinfty}b_nln{(limsup_{ntoinfty}a_n)}}\&=e^{limlimits_{ntoinfty}b_nln{a}}\&=e^{ln{a}^{limlimits_{ntoinfty}b_n}}\&={a}^{limlimits_{ntoinfty}b_n}\&={limsup_{ntoinfty}{a_n}}^{limlimits_{ntoinfty}b_n}end{align}
Please, is this correct? And is there any other proof?
real-analysis limsup-and-liminf
$endgroup$
add a comment |
$begingroup$
I have a proof that requires the following justification. So, I decided to recast it in the following form:
If $limlimits_{ntoinfty}b_n$ exists and $limsup_{ntoinfty}{a_n}=a>0$, then $limsup_{ntoinfty}{a_n}^{b_n}= limsup_{ntoinfty}{a_n}^{limlimits_{ntoinfty}b_n}$
My proof
begin{align} limsup_{ntoinfty}{a_n}^{b_n}&=limsup_{ntoinfty}e^{ln{a_n}^{b_n}}\&=limsup_{ntoinfty}e^{b_nln{a_n}}\&=e^{limsup_{ntoinfty}(b_nln{a_n})}\&=e^{limlimits_{ntoinfty}b_nlimsup_{ntoinfty}ln{a_n}}\&=e^{limlimits_{ntoinfty}b_nln{(limsup_{ntoinfty}a_n)}}\&=e^{limlimits_{ntoinfty}b_nln{a}}\&=e^{ln{a}^{limlimits_{ntoinfty}b_n}}\&={a}^{limlimits_{ntoinfty}b_n}\&={limsup_{ntoinfty}{a_n}}^{limlimits_{ntoinfty}b_n}end{align}
Please, is this correct? And is there any other proof?
real-analysis limsup-and-liminf
$endgroup$
$begingroup$
Proofs shouldn't just be equations, they should be sentences. For example, a sentence about why line $2$ and line $3$ are equal...
$endgroup$
– 5xum
Jan 30 at 9:39
$begingroup$
@5xum: Sorry, it was a typo.
$endgroup$
– Micheal
Jan 30 at 9:45
$begingroup$
@5xum: I edited it.
$endgroup$
– Micheal
Jan 30 at 11:37
add a comment |
$begingroup$
I have a proof that requires the following justification. So, I decided to recast it in the following form:
If $limlimits_{ntoinfty}b_n$ exists and $limsup_{ntoinfty}{a_n}=a>0$, then $limsup_{ntoinfty}{a_n}^{b_n}= limsup_{ntoinfty}{a_n}^{limlimits_{ntoinfty}b_n}$
My proof
begin{align} limsup_{ntoinfty}{a_n}^{b_n}&=limsup_{ntoinfty}e^{ln{a_n}^{b_n}}\&=limsup_{ntoinfty}e^{b_nln{a_n}}\&=e^{limsup_{ntoinfty}(b_nln{a_n})}\&=e^{limlimits_{ntoinfty}b_nlimsup_{ntoinfty}ln{a_n}}\&=e^{limlimits_{ntoinfty}b_nln{(limsup_{ntoinfty}a_n)}}\&=e^{limlimits_{ntoinfty}b_nln{a}}\&=e^{ln{a}^{limlimits_{ntoinfty}b_n}}\&={a}^{limlimits_{ntoinfty}b_n}\&={limsup_{ntoinfty}{a_n}}^{limlimits_{ntoinfty}b_n}end{align}
Please, is this correct? And is there any other proof?
real-analysis limsup-and-liminf
$endgroup$
I have a proof that requires the following justification. So, I decided to recast it in the following form:
If $limlimits_{ntoinfty}b_n$ exists and $limsup_{ntoinfty}{a_n}=a>0$, then $limsup_{ntoinfty}{a_n}^{b_n}= limsup_{ntoinfty}{a_n}^{limlimits_{ntoinfty}b_n}$
My proof
begin{align} limsup_{ntoinfty}{a_n}^{b_n}&=limsup_{ntoinfty}e^{ln{a_n}^{b_n}}\&=limsup_{ntoinfty}e^{b_nln{a_n}}\&=e^{limsup_{ntoinfty}(b_nln{a_n})}\&=e^{limlimits_{ntoinfty}b_nlimsup_{ntoinfty}ln{a_n}}\&=e^{limlimits_{ntoinfty}b_nln{(limsup_{ntoinfty}a_n)}}\&=e^{limlimits_{ntoinfty}b_nln{a}}\&=e^{ln{a}^{limlimits_{ntoinfty}b_n}}\&={a}^{limlimits_{ntoinfty}b_n}\&={limsup_{ntoinfty}{a_n}}^{limlimits_{ntoinfty}b_n}end{align}
Please, is this correct? And is there any other proof?
real-analysis limsup-and-liminf
real-analysis limsup-and-liminf
edited Jan 30 at 9:51
Micheal
asked Jan 30 at 9:38
MichealMicheal
26511
26511
$begingroup$
Proofs shouldn't just be equations, they should be sentences. For example, a sentence about why line $2$ and line $3$ are equal...
$endgroup$
– 5xum
Jan 30 at 9:39
$begingroup$
@5xum: Sorry, it was a typo.
$endgroup$
– Micheal
Jan 30 at 9:45
$begingroup$
@5xum: I edited it.
$endgroup$
– Micheal
Jan 30 at 11:37
add a comment |
$begingroup$
Proofs shouldn't just be equations, they should be sentences. For example, a sentence about why line $2$ and line $3$ are equal...
$endgroup$
– 5xum
Jan 30 at 9:39
$begingroup$
@5xum: Sorry, it was a typo.
$endgroup$
– Micheal
Jan 30 at 9:45
$begingroup$
@5xum: I edited it.
$endgroup$
– Micheal
Jan 30 at 11:37
$begingroup$
Proofs shouldn't just be equations, they should be sentences. For example, a sentence about why line $2$ and line $3$ are equal...
$endgroup$
– 5xum
Jan 30 at 9:39
$begingroup$
Proofs shouldn't just be equations, they should be sentences. For example, a sentence about why line $2$ and line $3$ are equal...
$endgroup$
– 5xum
Jan 30 at 9:39
$begingroup$
@5xum: Sorry, it was a typo.
$endgroup$
– Micheal
Jan 30 at 9:45
$begingroup$
@5xum: Sorry, it was a typo.
$endgroup$
– Micheal
Jan 30 at 9:45
$begingroup$
@5xum: I edited it.
$endgroup$
– Micheal
Jan 30 at 11:37
$begingroup$
@5xum: I edited it.
$endgroup$
– Micheal
Jan 30 at 11:37
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
It's correct because $f(x)=e^x$ and $ln$ are continuous functions.
For all continuous in $a$ function $f$ if $limlimits_{nrightarrow+infty}a_n=a$ then:
$$lim_{nrightarrow+infty}f(a_n)=fleft(lim_{nrightarrow+infty}a_nright)=f(a).$$
$endgroup$
add a comment |
$begingroup$
Your proof seems a bit more complicated than it should be. Since $a^b$ is continuous for all $a,bin mathbb{R}$, we have that $limsup_{nrightarrowinfty}a_n^{b_n} = limsup_{nrightarrowinfty}a_n^{limsup_{nrightarrowinfty} b_n} $. However, since $lim_{nrightarrowinfty} b_n$ exists, we have $limsup_{nrightarrowinfty}b_n=lim_{nrightarrowinfty}b_n$, from which your claim follows.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093301%2flimsup-n-to-inftya-nb-n-limsup-n-to-inftya-n-lim-limits-n-to-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It's correct because $f(x)=e^x$ and $ln$ are continuous functions.
For all continuous in $a$ function $f$ if $limlimits_{nrightarrow+infty}a_n=a$ then:
$$lim_{nrightarrow+infty}f(a_n)=fleft(lim_{nrightarrow+infty}a_nright)=f(a).$$
$endgroup$
add a comment |
$begingroup$
It's correct because $f(x)=e^x$ and $ln$ are continuous functions.
For all continuous in $a$ function $f$ if $limlimits_{nrightarrow+infty}a_n=a$ then:
$$lim_{nrightarrow+infty}f(a_n)=fleft(lim_{nrightarrow+infty}a_nright)=f(a).$$
$endgroup$
add a comment |
$begingroup$
It's correct because $f(x)=e^x$ and $ln$ are continuous functions.
For all continuous in $a$ function $f$ if $limlimits_{nrightarrow+infty}a_n=a$ then:
$$lim_{nrightarrow+infty}f(a_n)=fleft(lim_{nrightarrow+infty}a_nright)=f(a).$$
$endgroup$
It's correct because $f(x)=e^x$ and $ln$ are continuous functions.
For all continuous in $a$ function $f$ if $limlimits_{nrightarrow+infty}a_n=a$ then:
$$lim_{nrightarrow+infty}f(a_n)=fleft(lim_{nrightarrow+infty}a_nright)=f(a).$$
edited Jan 30 at 9:57
answered Jan 30 at 9:49
Michael RozenbergMichael Rozenberg
109k1896201
109k1896201
add a comment |
add a comment |
$begingroup$
Your proof seems a bit more complicated than it should be. Since $a^b$ is continuous for all $a,bin mathbb{R}$, we have that $limsup_{nrightarrowinfty}a_n^{b_n} = limsup_{nrightarrowinfty}a_n^{limsup_{nrightarrowinfty} b_n} $. However, since $lim_{nrightarrowinfty} b_n$ exists, we have $limsup_{nrightarrowinfty}b_n=lim_{nrightarrowinfty}b_n$, from which your claim follows.
$endgroup$
add a comment |
$begingroup$
Your proof seems a bit more complicated than it should be. Since $a^b$ is continuous for all $a,bin mathbb{R}$, we have that $limsup_{nrightarrowinfty}a_n^{b_n} = limsup_{nrightarrowinfty}a_n^{limsup_{nrightarrowinfty} b_n} $. However, since $lim_{nrightarrowinfty} b_n$ exists, we have $limsup_{nrightarrowinfty}b_n=lim_{nrightarrowinfty}b_n$, from which your claim follows.
$endgroup$
add a comment |
$begingroup$
Your proof seems a bit more complicated than it should be. Since $a^b$ is continuous for all $a,bin mathbb{R}$, we have that $limsup_{nrightarrowinfty}a_n^{b_n} = limsup_{nrightarrowinfty}a_n^{limsup_{nrightarrowinfty} b_n} $. However, since $lim_{nrightarrowinfty} b_n$ exists, we have $limsup_{nrightarrowinfty}b_n=lim_{nrightarrowinfty}b_n$, from which your claim follows.
$endgroup$
Your proof seems a bit more complicated than it should be. Since $a^b$ is continuous for all $a,bin mathbb{R}$, we have that $limsup_{nrightarrowinfty}a_n^{b_n} = limsup_{nrightarrowinfty}a_n^{limsup_{nrightarrowinfty} b_n} $. However, since $lim_{nrightarrowinfty} b_n$ exists, we have $limsup_{nrightarrowinfty}b_n=lim_{nrightarrowinfty}b_n$, from which your claim follows.
edited Jan 30 at 9:57
Mark
10.4k1622
10.4k1622
answered Jan 30 at 9:55
UnexpectedExpectationUnexpectedExpectation
739
739
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093301%2flimsup-n-to-inftya-nb-n-limsup-n-to-inftya-n-lim-limits-n-to-i%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Proofs shouldn't just be equations, they should be sentences. For example, a sentence about why line $2$ and line $3$ are equal...
$endgroup$
– 5xum
Jan 30 at 9:39
$begingroup$
@5xum: Sorry, it was a typo.
$endgroup$
– Micheal
Jan 30 at 9:45
$begingroup$
@5xum: I edited it.
$endgroup$
– Micheal
Jan 30 at 11:37