Ways to compute $sumlimits_{i=1}^{sqrt n}sqrt i$ [duplicate]












0












$begingroup$



This question already has an answer here:




  • How closely can we estimate $sum_{i=0}^n sqrt{i}$

    7 answers




I have the following sum $sumlimits_{i=1}^{lceil sqrt n rceil}sqrt i$.



This sum is $leq n$, but what is a good bound and what is the method to compute this type of sums?










share|cite|improve this question











$endgroup$



marked as duplicate by Aryabhata, Cesareo, José Carlos Santos sequences-and-series
Users with the  sequences-and-series badge can single-handedly close sequences-and-series questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Feb 1 at 9:26


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • 2




    $begingroup$
    There is no general closed formula for these sums. (But what is a sum up to $sqrt n$ when $sqrt n$ is not an integer?)
    $endgroup$
    – Did
    Jan 30 at 10:08










  • $begingroup$
    @Did Thank you Did. I put the ceiling function.
    $endgroup$
    – Dingo13
    Jan 30 at 10:10








  • 1




    $begingroup$
    "Good bounds": $$int_0^{lceilsqrt nrceil}sqrt xdxleqslant S_nleqslantint_1^{lceilsqrt nrceil+1}sqrt xdx$$ hence $$frac23lceilsqrt nrceilsqrt{lceilsqrt nrceil}leqslant S_nleqslantfrac23(lceilsqrt nrceil+1)left(sqrt{lceilsqrt nrceil+1}-1right)$$ which can be simplified into $$frac23n^{3/4}leqslant S_nleqslantfrac23(sqrt n+2)^{3/2}$$ in particular, $$S_n=frac23n^{3/4}+O(n^{1/4})$$
    $endgroup$
    – Did
    Jan 30 at 10:19












  • $begingroup$
    @Did Thank you very much for your detailed comment.
    $endgroup$
    – Dingo13
    Jan 30 at 10:21










  • $begingroup$
    @Did, please make that comment an answer.
    $endgroup$
    – lhf
    Jan 30 at 10:53
















0












$begingroup$



This question already has an answer here:




  • How closely can we estimate $sum_{i=0}^n sqrt{i}$

    7 answers




I have the following sum $sumlimits_{i=1}^{lceil sqrt n rceil}sqrt i$.



This sum is $leq n$, but what is a good bound and what is the method to compute this type of sums?










share|cite|improve this question











$endgroup$



marked as duplicate by Aryabhata, Cesareo, José Carlos Santos sequences-and-series
Users with the  sequences-and-series badge can single-handedly close sequences-and-series questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Feb 1 at 9:26


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • 2




    $begingroup$
    There is no general closed formula for these sums. (But what is a sum up to $sqrt n$ when $sqrt n$ is not an integer?)
    $endgroup$
    – Did
    Jan 30 at 10:08










  • $begingroup$
    @Did Thank you Did. I put the ceiling function.
    $endgroup$
    – Dingo13
    Jan 30 at 10:10








  • 1




    $begingroup$
    "Good bounds": $$int_0^{lceilsqrt nrceil}sqrt xdxleqslant S_nleqslantint_1^{lceilsqrt nrceil+1}sqrt xdx$$ hence $$frac23lceilsqrt nrceilsqrt{lceilsqrt nrceil}leqslant S_nleqslantfrac23(lceilsqrt nrceil+1)left(sqrt{lceilsqrt nrceil+1}-1right)$$ which can be simplified into $$frac23n^{3/4}leqslant S_nleqslantfrac23(sqrt n+2)^{3/2}$$ in particular, $$S_n=frac23n^{3/4}+O(n^{1/4})$$
    $endgroup$
    – Did
    Jan 30 at 10:19












  • $begingroup$
    @Did Thank you very much for your detailed comment.
    $endgroup$
    – Dingo13
    Jan 30 at 10:21










  • $begingroup$
    @Did, please make that comment an answer.
    $endgroup$
    – lhf
    Jan 30 at 10:53














0












0








0





$begingroup$



This question already has an answer here:




  • How closely can we estimate $sum_{i=0}^n sqrt{i}$

    7 answers




I have the following sum $sumlimits_{i=1}^{lceil sqrt n rceil}sqrt i$.



This sum is $leq n$, but what is a good bound and what is the method to compute this type of sums?










share|cite|improve this question











$endgroup$





This question already has an answer here:




  • How closely can we estimate $sum_{i=0}^n sqrt{i}$

    7 answers




I have the following sum $sumlimits_{i=1}^{lceil sqrt n rceil}sqrt i$.



This sum is $leq n$, but what is a good bound and what is the method to compute this type of sums?





This question already has an answer here:




  • How closely can we estimate $sum_{i=0}^n sqrt{i}$

    7 answers








sequences-and-series summation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 30 at 10:11







Dingo13

















asked Jan 30 at 10:05









Dingo13Dingo13

85113




85113




marked as duplicate by Aryabhata, Cesareo, José Carlos Santos sequences-and-series
Users with the  sequences-and-series badge can single-handedly close sequences-and-series questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Feb 1 at 9:26


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by Aryabhata, Cesareo, José Carlos Santos sequences-and-series
Users with the  sequences-and-series badge can single-handedly close sequences-and-series questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Feb 1 at 9:26


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.










  • 2




    $begingroup$
    There is no general closed formula for these sums. (But what is a sum up to $sqrt n$ when $sqrt n$ is not an integer?)
    $endgroup$
    – Did
    Jan 30 at 10:08










  • $begingroup$
    @Did Thank you Did. I put the ceiling function.
    $endgroup$
    – Dingo13
    Jan 30 at 10:10








  • 1




    $begingroup$
    "Good bounds": $$int_0^{lceilsqrt nrceil}sqrt xdxleqslant S_nleqslantint_1^{lceilsqrt nrceil+1}sqrt xdx$$ hence $$frac23lceilsqrt nrceilsqrt{lceilsqrt nrceil}leqslant S_nleqslantfrac23(lceilsqrt nrceil+1)left(sqrt{lceilsqrt nrceil+1}-1right)$$ which can be simplified into $$frac23n^{3/4}leqslant S_nleqslantfrac23(sqrt n+2)^{3/2}$$ in particular, $$S_n=frac23n^{3/4}+O(n^{1/4})$$
    $endgroup$
    – Did
    Jan 30 at 10:19












  • $begingroup$
    @Did Thank you very much for your detailed comment.
    $endgroup$
    – Dingo13
    Jan 30 at 10:21










  • $begingroup$
    @Did, please make that comment an answer.
    $endgroup$
    – lhf
    Jan 30 at 10:53














  • 2




    $begingroup$
    There is no general closed formula for these sums. (But what is a sum up to $sqrt n$ when $sqrt n$ is not an integer?)
    $endgroup$
    – Did
    Jan 30 at 10:08










  • $begingroup$
    @Did Thank you Did. I put the ceiling function.
    $endgroup$
    – Dingo13
    Jan 30 at 10:10








  • 1




    $begingroup$
    "Good bounds": $$int_0^{lceilsqrt nrceil}sqrt xdxleqslant S_nleqslantint_1^{lceilsqrt nrceil+1}sqrt xdx$$ hence $$frac23lceilsqrt nrceilsqrt{lceilsqrt nrceil}leqslant S_nleqslantfrac23(lceilsqrt nrceil+1)left(sqrt{lceilsqrt nrceil+1}-1right)$$ which can be simplified into $$frac23n^{3/4}leqslant S_nleqslantfrac23(sqrt n+2)^{3/2}$$ in particular, $$S_n=frac23n^{3/4}+O(n^{1/4})$$
    $endgroup$
    – Did
    Jan 30 at 10:19












  • $begingroup$
    @Did Thank you very much for your detailed comment.
    $endgroup$
    – Dingo13
    Jan 30 at 10:21










  • $begingroup$
    @Did, please make that comment an answer.
    $endgroup$
    – lhf
    Jan 30 at 10:53








2




2




$begingroup$
There is no general closed formula for these sums. (But what is a sum up to $sqrt n$ when $sqrt n$ is not an integer?)
$endgroup$
– Did
Jan 30 at 10:08




$begingroup$
There is no general closed formula for these sums. (But what is a sum up to $sqrt n$ when $sqrt n$ is not an integer?)
$endgroup$
– Did
Jan 30 at 10:08












$begingroup$
@Did Thank you Did. I put the ceiling function.
$endgroup$
– Dingo13
Jan 30 at 10:10






$begingroup$
@Did Thank you Did. I put the ceiling function.
$endgroup$
– Dingo13
Jan 30 at 10:10






1




1




$begingroup$
"Good bounds": $$int_0^{lceilsqrt nrceil}sqrt xdxleqslant S_nleqslantint_1^{lceilsqrt nrceil+1}sqrt xdx$$ hence $$frac23lceilsqrt nrceilsqrt{lceilsqrt nrceil}leqslant S_nleqslantfrac23(lceilsqrt nrceil+1)left(sqrt{lceilsqrt nrceil+1}-1right)$$ which can be simplified into $$frac23n^{3/4}leqslant S_nleqslantfrac23(sqrt n+2)^{3/2}$$ in particular, $$S_n=frac23n^{3/4}+O(n^{1/4})$$
$endgroup$
– Did
Jan 30 at 10:19






$begingroup$
"Good bounds": $$int_0^{lceilsqrt nrceil}sqrt xdxleqslant S_nleqslantint_1^{lceilsqrt nrceil+1}sqrt xdx$$ hence $$frac23lceilsqrt nrceilsqrt{lceilsqrt nrceil}leqslant S_nleqslantfrac23(lceilsqrt nrceil+1)left(sqrt{lceilsqrt nrceil+1}-1right)$$ which can be simplified into $$frac23n^{3/4}leqslant S_nleqslantfrac23(sqrt n+2)^{3/2}$$ in particular, $$S_n=frac23n^{3/4}+O(n^{1/4})$$
$endgroup$
– Did
Jan 30 at 10:19














$begingroup$
@Did Thank you very much for your detailed comment.
$endgroup$
– Dingo13
Jan 30 at 10:21




$begingroup$
@Did Thank you very much for your detailed comment.
$endgroup$
– Dingo13
Jan 30 at 10:21












$begingroup$
@Did, please make that comment an answer.
$endgroup$
– lhf
Jan 30 at 10:53




$begingroup$
@Did, please make that comment an answer.
$endgroup$
– lhf
Jan 30 at 10:53










1 Answer
1






active

oldest

votes


















2












$begingroup$

Assuming that the upper limit for the sum is $m$, then
$$
sumlimits_{i=1}^{m}sqrt i le int_1^{m+1} ! ! sqrt{x} , dx = frac23 ((m + 1)^{3/2} - 1)
$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you lhf. So a bound for the sum when $m=sqrt{n}$ is $c cdot n^{3/4}$ for a constant $c$?
    $endgroup$
    – Dingo13
    Jan 30 at 10:16




















1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

Assuming that the upper limit for the sum is $m$, then
$$
sumlimits_{i=1}^{m}sqrt i le int_1^{m+1} ! ! sqrt{x} , dx = frac23 ((m + 1)^{3/2} - 1)
$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you lhf. So a bound for the sum when $m=sqrt{n}$ is $c cdot n^{3/4}$ for a constant $c$?
    $endgroup$
    – Dingo13
    Jan 30 at 10:16


















2












$begingroup$

Assuming that the upper limit for the sum is $m$, then
$$
sumlimits_{i=1}^{m}sqrt i le int_1^{m+1} ! ! sqrt{x} , dx = frac23 ((m + 1)^{3/2} - 1)
$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank you lhf. So a bound for the sum when $m=sqrt{n}$ is $c cdot n^{3/4}$ for a constant $c$?
    $endgroup$
    – Dingo13
    Jan 30 at 10:16
















2












2








2





$begingroup$

Assuming that the upper limit for the sum is $m$, then
$$
sumlimits_{i=1}^{m}sqrt i le int_1^{m+1} ! ! sqrt{x} , dx = frac23 ((m + 1)^{3/2} - 1)
$$






share|cite|improve this answer









$endgroup$



Assuming that the upper limit for the sum is $m$, then
$$
sumlimits_{i=1}^{m}sqrt i le int_1^{m+1} ! ! sqrt{x} , dx = frac23 ((m + 1)^{3/2} - 1)
$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 30 at 10:10









lhflhf

167k11172404




167k11172404












  • $begingroup$
    Thank you lhf. So a bound for the sum when $m=sqrt{n}$ is $c cdot n^{3/4}$ for a constant $c$?
    $endgroup$
    – Dingo13
    Jan 30 at 10:16




















  • $begingroup$
    Thank you lhf. So a bound for the sum when $m=sqrt{n}$ is $c cdot n^{3/4}$ for a constant $c$?
    $endgroup$
    – Dingo13
    Jan 30 at 10:16


















$begingroup$
Thank you lhf. So a bound for the sum when $m=sqrt{n}$ is $c cdot n^{3/4}$ for a constant $c$?
$endgroup$
– Dingo13
Jan 30 at 10:16






$begingroup$
Thank you lhf. So a bound for the sum when $m=sqrt{n}$ is $c cdot n^{3/4}$ for a constant $c$?
$endgroup$
– Dingo13
Jan 30 at 10:16





Popular posts from this blog

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

SQL update select statement

WPF add header to Image with URL pettitions [duplicate]