do we have $:leftVert Q^{n+1}xrightVert leq varepsilon leftVert Q^{n}xrightVert $ for all $xin mathcal{H}$...
$begingroup$
Let $mathcal{H}$ be a Hilbert space and let $Q$ be a bounded
quasi-nilpotent operator on $mathcal{H}$.
I'm trying to prove that for every$ varepsilon >0,$ there is some $nin
%TCIMACRO{U{2115} }%
%BeginExpansion
mathbb{N}
%EndExpansion
,$ such that $:leftVert Q^{n+1}xrightVert leq varepsilon leftVert
Q^{n}xrightVert $ for all $xin mathcal{H}$.
Thank you !
functional-analysis limits operator-theory hilbert-spaces norm
$endgroup$
add a comment |
$begingroup$
Let $mathcal{H}$ be a Hilbert space and let $Q$ be a bounded
quasi-nilpotent operator on $mathcal{H}$.
I'm trying to prove that for every$ varepsilon >0,$ there is some $nin
%TCIMACRO{U{2115} }%
%BeginExpansion
mathbb{N}
%EndExpansion
,$ such that $:leftVert Q^{n+1}xrightVert leq varepsilon leftVert
Q^{n}xrightVert $ for all $xin mathcal{H}$.
Thank you !
functional-analysis limits operator-theory hilbert-spaces norm
$endgroup$
add a comment |
$begingroup$
Let $mathcal{H}$ be a Hilbert space and let $Q$ be a bounded
quasi-nilpotent operator on $mathcal{H}$.
I'm trying to prove that for every$ varepsilon >0,$ there is some $nin
%TCIMACRO{U{2115} }%
%BeginExpansion
mathbb{N}
%EndExpansion
,$ such that $:leftVert Q^{n+1}xrightVert leq varepsilon leftVert
Q^{n}xrightVert $ for all $xin mathcal{H}$.
Thank you !
functional-analysis limits operator-theory hilbert-spaces norm
$endgroup$
Let $mathcal{H}$ be a Hilbert space and let $Q$ be a bounded
quasi-nilpotent operator on $mathcal{H}$.
I'm trying to prove that for every$ varepsilon >0,$ there is some $nin
%TCIMACRO{U{2115} }%
%BeginExpansion
mathbb{N}
%EndExpansion
,$ such that $:leftVert Q^{n+1}xrightVert leq varepsilon leftVert
Q^{n}xrightVert $ for all $xin mathcal{H}$.
Thank you !
functional-analysis limits operator-theory hilbert-spaces norm
functional-analysis limits operator-theory hilbert-spaces norm
asked Feb 1 at 14:41


Djalal OunadjelaDjalal Ounadjela
29818
29818
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Could this operator be a counter example? Define $T$ on $H=l^2$ as
$$
Tx =(0, frac{x_1}{2^1}, x_2, frac{x_3}{2^3}, x_4, dots ).
$$
$endgroup$
$begingroup$
I will see, thank you.
$endgroup$
– Djalal Ounadjela
Feb 3 at 15:07
$begingroup$
I think it is, I will check it. Thank you
$endgroup$
– Djalal Ounadjela
Feb 3 at 15:20
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096297%2fdo-we-have-left-vert-qn1x-right-vert-leq-varepsilon-left-vert-qnx-r%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Could this operator be a counter example? Define $T$ on $H=l^2$ as
$$
Tx =(0, frac{x_1}{2^1}, x_2, frac{x_3}{2^3}, x_4, dots ).
$$
$endgroup$
$begingroup$
I will see, thank you.
$endgroup$
– Djalal Ounadjela
Feb 3 at 15:07
$begingroup$
I think it is, I will check it. Thank you
$endgroup$
– Djalal Ounadjela
Feb 3 at 15:20
add a comment |
$begingroup$
Could this operator be a counter example? Define $T$ on $H=l^2$ as
$$
Tx =(0, frac{x_1}{2^1}, x_2, frac{x_3}{2^3}, x_4, dots ).
$$
$endgroup$
$begingroup$
I will see, thank you.
$endgroup$
– Djalal Ounadjela
Feb 3 at 15:07
$begingroup$
I think it is, I will check it. Thank you
$endgroup$
– Djalal Ounadjela
Feb 3 at 15:20
add a comment |
$begingroup$
Could this operator be a counter example? Define $T$ on $H=l^2$ as
$$
Tx =(0, frac{x_1}{2^1}, x_2, frac{x_3}{2^3}, x_4, dots ).
$$
$endgroup$
Could this operator be a counter example? Define $T$ on $H=l^2$ as
$$
Tx =(0, frac{x_1}{2^1}, x_2, frac{x_3}{2^3}, x_4, dots ).
$$
answered Feb 3 at 12:44
dawdaw
25.1k1745
25.1k1745
$begingroup$
I will see, thank you.
$endgroup$
– Djalal Ounadjela
Feb 3 at 15:07
$begingroup$
I think it is, I will check it. Thank you
$endgroup$
– Djalal Ounadjela
Feb 3 at 15:20
add a comment |
$begingroup$
I will see, thank you.
$endgroup$
– Djalal Ounadjela
Feb 3 at 15:07
$begingroup$
I think it is, I will check it. Thank you
$endgroup$
– Djalal Ounadjela
Feb 3 at 15:20
$begingroup$
I will see, thank you.
$endgroup$
– Djalal Ounadjela
Feb 3 at 15:07
$begingroup$
I will see, thank you.
$endgroup$
– Djalal Ounadjela
Feb 3 at 15:07
$begingroup$
I think it is, I will check it. Thank you
$endgroup$
– Djalal Ounadjela
Feb 3 at 15:20
$begingroup$
I think it is, I will check it. Thank you
$endgroup$
– Djalal Ounadjela
Feb 3 at 15:20
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096297%2fdo-we-have-left-vert-qn1x-right-vert-leq-varepsilon-left-vert-qnx-r%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown