Pandas Timegrouper on Dataframe using aggregate function count





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}







1















I'm working on Timegrouper on Data Frame from Excel and trying to do a Pviot using Date as column header and Time as row and aggregate count on Y is "Barton LLC".



Data.xls 
X Y Z D
740150 Barton LLC B1-20000 2014-01-01 02:21:51
740150 Barton LLC B1-50809 2014-01-01 02:21:51
740150 Barton LLC B1-53102 2014-01-01 02:21:51
740150 Barton LLC S2-16558 2014-01-02 21:21:01
740150 Barton LLC B1-86481 2014-01-02 21:21:01
740150 Curlis L S1-06532 2014-01-02 21:21:01
740150 Barton LLC S1-47412 2014-01-02 21:21:01
740150 Barton LLC B1-33364 2014-01-02 21:21:01
740150 Barton LLC S1-93683 2014-02-07 04:34:50
740150 Barton LLC S2-10342 2014-02-07 04:34:50


Tried using resample and pivot and timegrouper but got sequence of errors



import pandas as pd
import numpy as np
df = pd.read_excel("data.xlsx")
ndf = df[df['Type'].eq('df')].pivot_table(columns= ['Y'],values='Y',
index=pd.Grouper(key='D',freq='H'),aggfunc='count',fill_value=0)


Result



         2014-01-01,2014-01-02,2014-02-07
02:21 3,NaN,NaN
21:21 NaN,4,NaN
04:34 NaN,NaN,2









share|improve this question


















  • 1





    what's the expected result?

    – RomanPerekhrest
    Jan 3 at 11:58


















1















I'm working on Timegrouper on Data Frame from Excel and trying to do a Pviot using Date as column header and Time as row and aggregate count on Y is "Barton LLC".



Data.xls 
X Y Z D
740150 Barton LLC B1-20000 2014-01-01 02:21:51
740150 Barton LLC B1-50809 2014-01-01 02:21:51
740150 Barton LLC B1-53102 2014-01-01 02:21:51
740150 Barton LLC S2-16558 2014-01-02 21:21:01
740150 Barton LLC B1-86481 2014-01-02 21:21:01
740150 Curlis L S1-06532 2014-01-02 21:21:01
740150 Barton LLC S1-47412 2014-01-02 21:21:01
740150 Barton LLC B1-33364 2014-01-02 21:21:01
740150 Barton LLC S1-93683 2014-02-07 04:34:50
740150 Barton LLC S2-10342 2014-02-07 04:34:50


Tried using resample and pivot and timegrouper but got sequence of errors



import pandas as pd
import numpy as np
df = pd.read_excel("data.xlsx")
ndf = df[df['Type'].eq('df')].pivot_table(columns= ['Y'],values='Y',
index=pd.Grouper(key='D',freq='H'),aggfunc='count',fill_value=0)


Result



         2014-01-01,2014-01-02,2014-02-07
02:21 3,NaN,NaN
21:21 NaN,4,NaN
04:34 NaN,NaN,2









share|improve this question


















  • 1





    what's the expected result?

    – RomanPerekhrest
    Jan 3 at 11:58














1












1








1








I'm working on Timegrouper on Data Frame from Excel and trying to do a Pviot using Date as column header and Time as row and aggregate count on Y is "Barton LLC".



Data.xls 
X Y Z D
740150 Barton LLC B1-20000 2014-01-01 02:21:51
740150 Barton LLC B1-50809 2014-01-01 02:21:51
740150 Barton LLC B1-53102 2014-01-01 02:21:51
740150 Barton LLC S2-16558 2014-01-02 21:21:01
740150 Barton LLC B1-86481 2014-01-02 21:21:01
740150 Curlis L S1-06532 2014-01-02 21:21:01
740150 Barton LLC S1-47412 2014-01-02 21:21:01
740150 Barton LLC B1-33364 2014-01-02 21:21:01
740150 Barton LLC S1-93683 2014-02-07 04:34:50
740150 Barton LLC S2-10342 2014-02-07 04:34:50


Tried using resample and pivot and timegrouper but got sequence of errors



import pandas as pd
import numpy as np
df = pd.read_excel("data.xlsx")
ndf = df[df['Type'].eq('df')].pivot_table(columns= ['Y'],values='Y',
index=pd.Grouper(key='D',freq='H'),aggfunc='count',fill_value=0)


Result



         2014-01-01,2014-01-02,2014-02-07
02:21 3,NaN,NaN
21:21 NaN,4,NaN
04:34 NaN,NaN,2









share|improve this question














I'm working on Timegrouper on Data Frame from Excel and trying to do a Pviot using Date as column header and Time as row and aggregate count on Y is "Barton LLC".



Data.xls 
X Y Z D
740150 Barton LLC B1-20000 2014-01-01 02:21:51
740150 Barton LLC B1-50809 2014-01-01 02:21:51
740150 Barton LLC B1-53102 2014-01-01 02:21:51
740150 Barton LLC S2-16558 2014-01-02 21:21:01
740150 Barton LLC B1-86481 2014-01-02 21:21:01
740150 Curlis L S1-06532 2014-01-02 21:21:01
740150 Barton LLC S1-47412 2014-01-02 21:21:01
740150 Barton LLC B1-33364 2014-01-02 21:21:01
740150 Barton LLC S1-93683 2014-02-07 04:34:50
740150 Barton LLC S2-10342 2014-02-07 04:34:50


Tried using resample and pivot and timegrouper but got sequence of errors



import pandas as pd
import numpy as np
df = pd.read_excel("data.xlsx")
ndf = df[df['Type'].eq('df')].pivot_table(columns= ['Y'],values='Y',
index=pd.Grouper(key='D',freq='H'),aggfunc='count',fill_value=0)


Result



         2014-01-01,2014-01-02,2014-02-07
02:21 3,NaN,NaN
21:21 NaN,4,NaN
04:34 NaN,NaN,2






python pandas






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Jan 3 at 11:53









J.RAMJ.RAM

105




105








  • 1





    what's the expected result?

    – RomanPerekhrest
    Jan 3 at 11:58














  • 1





    what's the expected result?

    – RomanPerekhrest
    Jan 3 at 11:58








1




1





what's the expected result?

– RomanPerekhrest
Jan 3 at 11:58





what's the expected result?

– RomanPerekhrest
Jan 3 at 11:58












2 Answers
2






active

oldest

votes


















3














You could split the datetime column in date and time and use pivot_table:



df['date'] = df['D'].dt.date
df['time'] = df['D'].dt.time
pd.pivot_table(df, 'D', 'time', 'date', aggfunc='count')

date 2014-01-01 2014-01-02 2014-02-07
time
02:21:51 3.0 NaN NaN
04:34:50 NaN NaN 2.0
21:21:01 NaN 5.0 NaN


Note that you were missing one count for the date 2014-01-02 21:21:01






share|improve this answer
























  • Tried but it was error.. ~/anaconda3/lib/python3.7/site-packages/pandas/core/frame.py in __getitem__(self, key) 2686 return self._getitem_multilevel(key) 2687 else: -> 2688 return self._getitem_column(key) 2689 2690 def _getitem_column(self, key): pandas._libs.hashtable.PyObjectHashTable.get_item() pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item() KeyError: 'D'

    – J.RAM
    Jan 3 at 12:45











  • adding df.D = pd.to_datetime(df.D) in the beginning?

    – yatu
    Jan 3 at 12:45











  • @ yatu - How to use only HH:MM discarding Secs .

    – J.RAM
    Jan 3 at 13:38











  • Change the second line with df['time'] = df['D'].dt.strftime('%H:%M') `

    – yatu
    Jan 3 at 13:42













  • @ yatu , yes its working can we use cumcount in pivot like this pd.pivot_table(df, 'D', 'time', 'date', aggfunc='cumcount')

    – J.RAM
    Jan 3 at 14:03





















1














Use crosstab with strftime for convert datetimes to custom strings:



df.D = pd.to_datetime(df.D)

ndf = pd.crosstab(df['D'].dt.strftime('%H:%M').rename('H'), df['D'].dt.strftime('%Y-%m-%d'))
print (ndf)
D 2014-01-01 2014-01-02 2014-02-07
H
02:21 3 0 0
04:34 0 0 2
21:21 0 5 0




ndf = pd.crosstab(df['D'].dt.time.rename('T'), df['D'].dt.date) 
print (ndf)
D 2014-01-01 2014-01-02 2014-02-07
T
02:21:51 3 0 0
04:34:50 0 0 2
21:21:01 0 5 0





share|improve this answer


























  • no there is error when tried running .. ~/anaconda3/lib/python3.7/site-packages/pandas/core/frame.py in __getitem__(self, key) 2686 return self._getitem_multilevel(key) 2687 else: -> 2688 return self._getitem_column(key) 2689 2690 def _getitem_column(self, key): pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()

    – J.RAM
    Jan 3 at 12:47











  • @J.RAM - What is print (df.columns) ?

    – jezrael
    Jan 3 at 12:48











  • print (df.columns) Index(['X', 'Y', 'Z', 'D'], dtype='object')

    – J.RAM
    Jan 3 at 13:19











  • @J.RAM - And print (df.dtypes) ?

    – jezrael
    Jan 3 at 13:21






  • 1





    it works after adding df.D = pd.to_datetime(df.D) df['date'] = df['D'].dt.date df['time'] = df['D'].dt.time

    – J.RAM
    Jan 3 at 13:24












Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54021773%2fpandas-timegrouper-on-dataframe-using-aggregate-function-count%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









3














You could split the datetime column in date and time and use pivot_table:



df['date'] = df['D'].dt.date
df['time'] = df['D'].dt.time
pd.pivot_table(df, 'D', 'time', 'date', aggfunc='count')

date 2014-01-01 2014-01-02 2014-02-07
time
02:21:51 3.0 NaN NaN
04:34:50 NaN NaN 2.0
21:21:01 NaN 5.0 NaN


Note that you were missing one count for the date 2014-01-02 21:21:01






share|improve this answer
























  • Tried but it was error.. ~/anaconda3/lib/python3.7/site-packages/pandas/core/frame.py in __getitem__(self, key) 2686 return self._getitem_multilevel(key) 2687 else: -> 2688 return self._getitem_column(key) 2689 2690 def _getitem_column(self, key): pandas._libs.hashtable.PyObjectHashTable.get_item() pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item() KeyError: 'D'

    – J.RAM
    Jan 3 at 12:45











  • adding df.D = pd.to_datetime(df.D) in the beginning?

    – yatu
    Jan 3 at 12:45











  • @ yatu - How to use only HH:MM discarding Secs .

    – J.RAM
    Jan 3 at 13:38











  • Change the second line with df['time'] = df['D'].dt.strftime('%H:%M') `

    – yatu
    Jan 3 at 13:42













  • @ yatu , yes its working can we use cumcount in pivot like this pd.pivot_table(df, 'D', 'time', 'date', aggfunc='cumcount')

    – J.RAM
    Jan 3 at 14:03


















3














You could split the datetime column in date and time and use pivot_table:



df['date'] = df['D'].dt.date
df['time'] = df['D'].dt.time
pd.pivot_table(df, 'D', 'time', 'date', aggfunc='count')

date 2014-01-01 2014-01-02 2014-02-07
time
02:21:51 3.0 NaN NaN
04:34:50 NaN NaN 2.0
21:21:01 NaN 5.0 NaN


Note that you were missing one count for the date 2014-01-02 21:21:01






share|improve this answer
























  • Tried but it was error.. ~/anaconda3/lib/python3.7/site-packages/pandas/core/frame.py in __getitem__(self, key) 2686 return self._getitem_multilevel(key) 2687 else: -> 2688 return self._getitem_column(key) 2689 2690 def _getitem_column(self, key): pandas._libs.hashtable.PyObjectHashTable.get_item() pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item() KeyError: 'D'

    – J.RAM
    Jan 3 at 12:45











  • adding df.D = pd.to_datetime(df.D) in the beginning?

    – yatu
    Jan 3 at 12:45











  • @ yatu - How to use only HH:MM discarding Secs .

    – J.RAM
    Jan 3 at 13:38











  • Change the second line with df['time'] = df['D'].dt.strftime('%H:%M') `

    – yatu
    Jan 3 at 13:42













  • @ yatu , yes its working can we use cumcount in pivot like this pd.pivot_table(df, 'D', 'time', 'date', aggfunc='cumcount')

    – J.RAM
    Jan 3 at 14:03
















3












3








3







You could split the datetime column in date and time and use pivot_table:



df['date'] = df['D'].dt.date
df['time'] = df['D'].dt.time
pd.pivot_table(df, 'D', 'time', 'date', aggfunc='count')

date 2014-01-01 2014-01-02 2014-02-07
time
02:21:51 3.0 NaN NaN
04:34:50 NaN NaN 2.0
21:21:01 NaN 5.0 NaN


Note that you were missing one count for the date 2014-01-02 21:21:01






share|improve this answer













You could split the datetime column in date and time and use pivot_table:



df['date'] = df['D'].dt.date
df['time'] = df['D'].dt.time
pd.pivot_table(df, 'D', 'time', 'date', aggfunc='count')

date 2014-01-01 2014-01-02 2014-02-07
time
02:21:51 3.0 NaN NaN
04:34:50 NaN NaN 2.0
21:21:01 NaN 5.0 NaN


Note that you were missing one count for the date 2014-01-02 21:21:01







share|improve this answer












share|improve this answer



share|improve this answer










answered Jan 3 at 12:02









yatuyatu

15.6k41642




15.6k41642













  • Tried but it was error.. ~/anaconda3/lib/python3.7/site-packages/pandas/core/frame.py in __getitem__(self, key) 2686 return self._getitem_multilevel(key) 2687 else: -> 2688 return self._getitem_column(key) 2689 2690 def _getitem_column(self, key): pandas._libs.hashtable.PyObjectHashTable.get_item() pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item() KeyError: 'D'

    – J.RAM
    Jan 3 at 12:45











  • adding df.D = pd.to_datetime(df.D) in the beginning?

    – yatu
    Jan 3 at 12:45











  • @ yatu - How to use only HH:MM discarding Secs .

    – J.RAM
    Jan 3 at 13:38











  • Change the second line with df['time'] = df['D'].dt.strftime('%H:%M') `

    – yatu
    Jan 3 at 13:42













  • @ yatu , yes its working can we use cumcount in pivot like this pd.pivot_table(df, 'D', 'time', 'date', aggfunc='cumcount')

    – J.RAM
    Jan 3 at 14:03





















  • Tried but it was error.. ~/anaconda3/lib/python3.7/site-packages/pandas/core/frame.py in __getitem__(self, key) 2686 return self._getitem_multilevel(key) 2687 else: -> 2688 return self._getitem_column(key) 2689 2690 def _getitem_column(self, key): pandas._libs.hashtable.PyObjectHashTable.get_item() pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item() KeyError: 'D'

    – J.RAM
    Jan 3 at 12:45











  • adding df.D = pd.to_datetime(df.D) in the beginning?

    – yatu
    Jan 3 at 12:45











  • @ yatu - How to use only HH:MM discarding Secs .

    – J.RAM
    Jan 3 at 13:38











  • Change the second line with df['time'] = df['D'].dt.strftime('%H:%M') `

    – yatu
    Jan 3 at 13:42













  • @ yatu , yes its working can we use cumcount in pivot like this pd.pivot_table(df, 'D', 'time', 'date', aggfunc='cumcount')

    – J.RAM
    Jan 3 at 14:03



















Tried but it was error.. ~/anaconda3/lib/python3.7/site-packages/pandas/core/frame.py in __getitem__(self, key) 2686 return self._getitem_multilevel(key) 2687 else: -> 2688 return self._getitem_column(key) 2689 2690 def _getitem_column(self, key): pandas._libs.hashtable.PyObjectHashTable.get_item() pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item() KeyError: 'D'

– J.RAM
Jan 3 at 12:45





Tried but it was error.. ~/anaconda3/lib/python3.7/site-packages/pandas/core/frame.py in __getitem__(self, key) 2686 return self._getitem_multilevel(key) 2687 else: -> 2688 return self._getitem_column(key) 2689 2690 def _getitem_column(self, key): pandas._libs.hashtable.PyObjectHashTable.get_item() pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item() KeyError: 'D'

– J.RAM
Jan 3 at 12:45













adding df.D = pd.to_datetime(df.D) in the beginning?

– yatu
Jan 3 at 12:45





adding df.D = pd.to_datetime(df.D) in the beginning?

– yatu
Jan 3 at 12:45













@ yatu - How to use only HH:MM discarding Secs .

– J.RAM
Jan 3 at 13:38





@ yatu - How to use only HH:MM discarding Secs .

– J.RAM
Jan 3 at 13:38













Change the second line with df['time'] = df['D'].dt.strftime('%H:%M') `

– yatu
Jan 3 at 13:42







Change the second line with df['time'] = df['D'].dt.strftime('%H:%M') `

– yatu
Jan 3 at 13:42















@ yatu , yes its working can we use cumcount in pivot like this pd.pivot_table(df, 'D', 'time', 'date', aggfunc='cumcount')

– J.RAM
Jan 3 at 14:03







@ yatu , yes its working can we use cumcount in pivot like this pd.pivot_table(df, 'D', 'time', 'date', aggfunc='cumcount')

– J.RAM
Jan 3 at 14:03















1














Use crosstab with strftime for convert datetimes to custom strings:



df.D = pd.to_datetime(df.D)

ndf = pd.crosstab(df['D'].dt.strftime('%H:%M').rename('H'), df['D'].dt.strftime('%Y-%m-%d'))
print (ndf)
D 2014-01-01 2014-01-02 2014-02-07
H
02:21 3 0 0
04:34 0 0 2
21:21 0 5 0




ndf = pd.crosstab(df['D'].dt.time.rename('T'), df['D'].dt.date) 
print (ndf)
D 2014-01-01 2014-01-02 2014-02-07
T
02:21:51 3 0 0
04:34:50 0 0 2
21:21:01 0 5 0





share|improve this answer


























  • no there is error when tried running .. ~/anaconda3/lib/python3.7/site-packages/pandas/core/frame.py in __getitem__(self, key) 2686 return self._getitem_multilevel(key) 2687 else: -> 2688 return self._getitem_column(key) 2689 2690 def _getitem_column(self, key): pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()

    – J.RAM
    Jan 3 at 12:47











  • @J.RAM - What is print (df.columns) ?

    – jezrael
    Jan 3 at 12:48











  • print (df.columns) Index(['X', 'Y', 'Z', 'D'], dtype='object')

    – J.RAM
    Jan 3 at 13:19











  • @J.RAM - And print (df.dtypes) ?

    – jezrael
    Jan 3 at 13:21






  • 1





    it works after adding df.D = pd.to_datetime(df.D) df['date'] = df['D'].dt.date df['time'] = df['D'].dt.time

    – J.RAM
    Jan 3 at 13:24
















1














Use crosstab with strftime for convert datetimes to custom strings:



df.D = pd.to_datetime(df.D)

ndf = pd.crosstab(df['D'].dt.strftime('%H:%M').rename('H'), df['D'].dt.strftime('%Y-%m-%d'))
print (ndf)
D 2014-01-01 2014-01-02 2014-02-07
H
02:21 3 0 0
04:34 0 0 2
21:21 0 5 0




ndf = pd.crosstab(df['D'].dt.time.rename('T'), df['D'].dt.date) 
print (ndf)
D 2014-01-01 2014-01-02 2014-02-07
T
02:21:51 3 0 0
04:34:50 0 0 2
21:21:01 0 5 0





share|improve this answer


























  • no there is error when tried running .. ~/anaconda3/lib/python3.7/site-packages/pandas/core/frame.py in __getitem__(self, key) 2686 return self._getitem_multilevel(key) 2687 else: -> 2688 return self._getitem_column(key) 2689 2690 def _getitem_column(self, key): pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()

    – J.RAM
    Jan 3 at 12:47











  • @J.RAM - What is print (df.columns) ?

    – jezrael
    Jan 3 at 12:48











  • print (df.columns) Index(['X', 'Y', 'Z', 'D'], dtype='object')

    – J.RAM
    Jan 3 at 13:19











  • @J.RAM - And print (df.dtypes) ?

    – jezrael
    Jan 3 at 13:21






  • 1





    it works after adding df.D = pd.to_datetime(df.D) df['date'] = df['D'].dt.date df['time'] = df['D'].dt.time

    – J.RAM
    Jan 3 at 13:24














1












1








1







Use crosstab with strftime for convert datetimes to custom strings:



df.D = pd.to_datetime(df.D)

ndf = pd.crosstab(df['D'].dt.strftime('%H:%M').rename('H'), df['D'].dt.strftime('%Y-%m-%d'))
print (ndf)
D 2014-01-01 2014-01-02 2014-02-07
H
02:21 3 0 0
04:34 0 0 2
21:21 0 5 0




ndf = pd.crosstab(df['D'].dt.time.rename('T'), df['D'].dt.date) 
print (ndf)
D 2014-01-01 2014-01-02 2014-02-07
T
02:21:51 3 0 0
04:34:50 0 0 2
21:21:01 0 5 0





share|improve this answer















Use crosstab with strftime for convert datetimes to custom strings:



df.D = pd.to_datetime(df.D)

ndf = pd.crosstab(df['D'].dt.strftime('%H:%M').rename('H'), df['D'].dt.strftime('%Y-%m-%d'))
print (ndf)
D 2014-01-01 2014-01-02 2014-02-07
H
02:21 3 0 0
04:34 0 0 2
21:21 0 5 0




ndf = pd.crosstab(df['D'].dt.time.rename('T'), df['D'].dt.date) 
print (ndf)
D 2014-01-01 2014-01-02 2014-02-07
T
02:21:51 3 0 0
04:34:50 0 0 2
21:21:01 0 5 0






share|improve this answer














share|improve this answer



share|improve this answer








edited Jan 3 at 13:24

























answered Jan 3 at 12:08









jezraeljezrael

358k26323402




358k26323402













  • no there is error when tried running .. ~/anaconda3/lib/python3.7/site-packages/pandas/core/frame.py in __getitem__(self, key) 2686 return self._getitem_multilevel(key) 2687 else: -> 2688 return self._getitem_column(key) 2689 2690 def _getitem_column(self, key): pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()

    – J.RAM
    Jan 3 at 12:47











  • @J.RAM - What is print (df.columns) ?

    – jezrael
    Jan 3 at 12:48











  • print (df.columns) Index(['X', 'Y', 'Z', 'D'], dtype='object')

    – J.RAM
    Jan 3 at 13:19











  • @J.RAM - And print (df.dtypes) ?

    – jezrael
    Jan 3 at 13:21






  • 1





    it works after adding df.D = pd.to_datetime(df.D) df['date'] = df['D'].dt.date df['time'] = df['D'].dt.time

    – J.RAM
    Jan 3 at 13:24



















  • no there is error when tried running .. ~/anaconda3/lib/python3.7/site-packages/pandas/core/frame.py in __getitem__(self, key) 2686 return self._getitem_multilevel(key) 2687 else: -> 2688 return self._getitem_column(key) 2689 2690 def _getitem_column(self, key): pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()

    – J.RAM
    Jan 3 at 12:47











  • @J.RAM - What is print (df.columns) ?

    – jezrael
    Jan 3 at 12:48











  • print (df.columns) Index(['X', 'Y', 'Z', 'D'], dtype='object')

    – J.RAM
    Jan 3 at 13:19











  • @J.RAM - And print (df.dtypes) ?

    – jezrael
    Jan 3 at 13:21






  • 1





    it works after adding df.D = pd.to_datetime(df.D) df['date'] = df['D'].dt.date df['time'] = df['D'].dt.time

    – J.RAM
    Jan 3 at 13:24

















no there is error when tried running .. ~/anaconda3/lib/python3.7/site-packages/pandas/core/frame.py in __getitem__(self, key) 2686 return self._getitem_multilevel(key) 2687 else: -> 2688 return self._getitem_column(key) 2689 2690 def _getitem_column(self, key): pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()

– J.RAM
Jan 3 at 12:47





no there is error when tried running .. ~/anaconda3/lib/python3.7/site-packages/pandas/core/frame.py in __getitem__(self, key) 2686 return self._getitem_multilevel(key) 2687 else: -> 2688 return self._getitem_column(key) 2689 2690 def _getitem_column(self, key): pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()

– J.RAM
Jan 3 at 12:47













@J.RAM - What is print (df.columns) ?

– jezrael
Jan 3 at 12:48





@J.RAM - What is print (df.columns) ?

– jezrael
Jan 3 at 12:48













print (df.columns) Index(['X', 'Y', 'Z', 'D'], dtype='object')

– J.RAM
Jan 3 at 13:19





print (df.columns) Index(['X', 'Y', 'Z', 'D'], dtype='object')

– J.RAM
Jan 3 at 13:19













@J.RAM - And print (df.dtypes) ?

– jezrael
Jan 3 at 13:21





@J.RAM - And print (df.dtypes) ?

– jezrael
Jan 3 at 13:21




1




1





it works after adding df.D = pd.to_datetime(df.D) df['date'] = df['D'].dt.date df['time'] = df['D'].dt.time

– J.RAM
Jan 3 at 13:24





it works after adding df.D = pd.to_datetime(df.D) df['date'] = df['D'].dt.date df['time'] = df['D'].dt.time

– J.RAM
Jan 3 at 13:24


















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54021773%2fpandas-timegrouper-on-dataframe-using-aggregate-function-count%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

SQL update select statement

WPF add header to Image with URL pettitions [duplicate]