Vectorization identity: Weyl matrices












0












$begingroup$


Take a ring $Z_n = {0,1,...,n-1}$. All operations occur modulo $n$. Consider the $n^{th}$ roots of unity $omega_n = expleft(frac{2pi i}{n}right)$. Now define



$$X = sum_a vert{a+1}ranglelangle{a}vert$$
$$Z = sum_a omega_a vert{a}ranglelangle{a}vert,$$



where $vert arangle$ is a column vector of an orthonormal basis and $langle avert$ is the corresponding basis row vector.



These matrices follow the commutation $XZ = omega ZX$. The Weyl matrices are defined as $W_{a,b} = X^aZ^b$.



Vectorization of a matrix $A=sum A_{i,j}vert i ranglelangle jvert$ is defined by vec$(A) = sum A_{i,j}vert i ranglevert jrangle$



I am given an identity vec$(mathbb{I})$vec$(mathbb{I})^* = frac{1}{n}sumlimits_{c,d}overline{W_{c,d}}otimes W_{c,d}$. Could someone point out how I could prove this?










share|cite|improve this question











$endgroup$












  • $begingroup$
    How are the bras and kets defined?
    $endgroup$
    – md2perpe
    Feb 1 at 20:00










  • $begingroup$
    @md2perpe Sorry, will add it to the question. The bras and kets are row and column vectors respectively. Hence $vert aranglelangle a vert$ would be a projector matrix, for instance.
    $endgroup$
    – user1936752
    Feb 1 at 21:53












  • $begingroup$
    Is the basis arbitrary or should it be orthonormal?
    $endgroup$
    – md2perpe
    Feb 2 at 7:01










  • $begingroup$
    @md2perpe, I believe it is an orthonormal basis.
    $endgroup$
    – user1936752
    Feb 2 at 10:17










  • $begingroup$
    Could also be that ${ vert a rangle }$ is any basis and that ${ langle a vert }$ is the dual basis such that $langle a' vert a'' rangle = delta(a', a''),$ i.e. $=1$ if $a'=a'',$ and $=0$ otherwise.
    $endgroup$
    – md2perpe
    Feb 2 at 11:16
















0












$begingroup$


Take a ring $Z_n = {0,1,...,n-1}$. All operations occur modulo $n$. Consider the $n^{th}$ roots of unity $omega_n = expleft(frac{2pi i}{n}right)$. Now define



$$X = sum_a vert{a+1}ranglelangle{a}vert$$
$$Z = sum_a omega_a vert{a}ranglelangle{a}vert,$$



where $vert arangle$ is a column vector of an orthonormal basis and $langle avert$ is the corresponding basis row vector.



These matrices follow the commutation $XZ = omega ZX$. The Weyl matrices are defined as $W_{a,b} = X^aZ^b$.



Vectorization of a matrix $A=sum A_{i,j}vert i ranglelangle jvert$ is defined by vec$(A) = sum A_{i,j}vert i ranglevert jrangle$



I am given an identity vec$(mathbb{I})$vec$(mathbb{I})^* = frac{1}{n}sumlimits_{c,d}overline{W_{c,d}}otimes W_{c,d}$. Could someone point out how I could prove this?










share|cite|improve this question











$endgroup$












  • $begingroup$
    How are the bras and kets defined?
    $endgroup$
    – md2perpe
    Feb 1 at 20:00










  • $begingroup$
    @md2perpe Sorry, will add it to the question. The bras and kets are row and column vectors respectively. Hence $vert aranglelangle a vert$ would be a projector matrix, for instance.
    $endgroup$
    – user1936752
    Feb 1 at 21:53












  • $begingroup$
    Is the basis arbitrary or should it be orthonormal?
    $endgroup$
    – md2perpe
    Feb 2 at 7:01










  • $begingroup$
    @md2perpe, I believe it is an orthonormal basis.
    $endgroup$
    – user1936752
    Feb 2 at 10:17










  • $begingroup$
    Could also be that ${ vert a rangle }$ is any basis and that ${ langle a vert }$ is the dual basis such that $langle a' vert a'' rangle = delta(a', a''),$ i.e. $=1$ if $a'=a'',$ and $=0$ otherwise.
    $endgroup$
    – md2perpe
    Feb 2 at 11:16














0












0








0





$begingroup$


Take a ring $Z_n = {0,1,...,n-1}$. All operations occur modulo $n$. Consider the $n^{th}$ roots of unity $omega_n = expleft(frac{2pi i}{n}right)$. Now define



$$X = sum_a vert{a+1}ranglelangle{a}vert$$
$$Z = sum_a omega_a vert{a}ranglelangle{a}vert,$$



where $vert arangle$ is a column vector of an orthonormal basis and $langle avert$ is the corresponding basis row vector.



These matrices follow the commutation $XZ = omega ZX$. The Weyl matrices are defined as $W_{a,b} = X^aZ^b$.



Vectorization of a matrix $A=sum A_{i,j}vert i ranglelangle jvert$ is defined by vec$(A) = sum A_{i,j}vert i ranglevert jrangle$



I am given an identity vec$(mathbb{I})$vec$(mathbb{I})^* = frac{1}{n}sumlimits_{c,d}overline{W_{c,d}}otimes W_{c,d}$. Could someone point out how I could prove this?










share|cite|improve this question











$endgroup$




Take a ring $Z_n = {0,1,...,n-1}$. All operations occur modulo $n$. Consider the $n^{th}$ roots of unity $omega_n = expleft(frac{2pi i}{n}right)$. Now define



$$X = sum_a vert{a+1}ranglelangle{a}vert$$
$$Z = sum_a omega_a vert{a}ranglelangle{a}vert,$$



where $vert arangle$ is a column vector of an orthonormal basis and $langle avert$ is the corresponding basis row vector.



These matrices follow the commutation $XZ = omega ZX$. The Weyl matrices are defined as $W_{a,b} = X^aZ^b$.



Vectorization of a matrix $A=sum A_{i,j}vert i ranglelangle jvert$ is defined by vec$(A) = sum A_{i,j}vert i ranglevert jrangle$



I am given an identity vec$(mathbb{I})$vec$(mathbb{I})^* = frac{1}{n}sumlimits_{c,d}overline{W_{c,d}}otimes W_{c,d}$. Could someone point out how I could prove this?







linear-algebra weyl-group vectorization






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 2 at 10:17







user1936752

















asked Feb 1 at 19:40









user1936752user1936752

5841515




5841515












  • $begingroup$
    How are the bras and kets defined?
    $endgroup$
    – md2perpe
    Feb 1 at 20:00










  • $begingroup$
    @md2perpe Sorry, will add it to the question. The bras and kets are row and column vectors respectively. Hence $vert aranglelangle a vert$ would be a projector matrix, for instance.
    $endgroup$
    – user1936752
    Feb 1 at 21:53












  • $begingroup$
    Is the basis arbitrary or should it be orthonormal?
    $endgroup$
    – md2perpe
    Feb 2 at 7:01










  • $begingroup$
    @md2perpe, I believe it is an orthonormal basis.
    $endgroup$
    – user1936752
    Feb 2 at 10:17










  • $begingroup$
    Could also be that ${ vert a rangle }$ is any basis and that ${ langle a vert }$ is the dual basis such that $langle a' vert a'' rangle = delta(a', a''),$ i.e. $=1$ if $a'=a'',$ and $=0$ otherwise.
    $endgroup$
    – md2perpe
    Feb 2 at 11:16


















  • $begingroup$
    How are the bras and kets defined?
    $endgroup$
    – md2perpe
    Feb 1 at 20:00










  • $begingroup$
    @md2perpe Sorry, will add it to the question. The bras and kets are row and column vectors respectively. Hence $vert aranglelangle a vert$ would be a projector matrix, for instance.
    $endgroup$
    – user1936752
    Feb 1 at 21:53












  • $begingroup$
    Is the basis arbitrary or should it be orthonormal?
    $endgroup$
    – md2perpe
    Feb 2 at 7:01










  • $begingroup$
    @md2perpe, I believe it is an orthonormal basis.
    $endgroup$
    – user1936752
    Feb 2 at 10:17










  • $begingroup$
    Could also be that ${ vert a rangle }$ is any basis and that ${ langle a vert }$ is the dual basis such that $langle a' vert a'' rangle = delta(a', a''),$ i.e. $=1$ if $a'=a'',$ and $=0$ otherwise.
    $endgroup$
    – md2perpe
    Feb 2 at 11:16
















$begingroup$
How are the bras and kets defined?
$endgroup$
– md2perpe
Feb 1 at 20:00




$begingroup$
How are the bras and kets defined?
$endgroup$
– md2perpe
Feb 1 at 20:00












$begingroup$
@md2perpe Sorry, will add it to the question. The bras and kets are row and column vectors respectively. Hence $vert aranglelangle a vert$ would be a projector matrix, for instance.
$endgroup$
– user1936752
Feb 1 at 21:53






$begingroup$
@md2perpe Sorry, will add it to the question. The bras and kets are row and column vectors respectively. Hence $vert aranglelangle a vert$ would be a projector matrix, for instance.
$endgroup$
– user1936752
Feb 1 at 21:53














$begingroup$
Is the basis arbitrary or should it be orthonormal?
$endgroup$
– md2perpe
Feb 2 at 7:01




$begingroup$
Is the basis arbitrary or should it be orthonormal?
$endgroup$
– md2perpe
Feb 2 at 7:01












$begingroup$
@md2perpe, I believe it is an orthonormal basis.
$endgroup$
– user1936752
Feb 2 at 10:17




$begingroup$
@md2perpe, I believe it is an orthonormal basis.
$endgroup$
– user1936752
Feb 2 at 10:17












$begingroup$
Could also be that ${ vert a rangle }$ is any basis and that ${ langle a vert }$ is the dual basis such that $langle a' vert a'' rangle = delta(a', a''),$ i.e. $=1$ if $a'=a'',$ and $=0$ otherwise.
$endgroup$
– md2perpe
Feb 2 at 11:16




$begingroup$
Could also be that ${ vert a rangle }$ is any basis and that ${ langle a vert }$ is the dual basis such that $langle a' vert a'' rangle = delta(a', a''),$ i.e. $=1$ if $a'=a'',$ and $=0$ otherwise.
$endgroup$
– md2perpe
Feb 2 at 11:16










0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096644%2fvectorization-identity-weyl-matrices%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096644%2fvectorization-identity-weyl-matrices%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

SQL update select statement

WPF add header to Image with URL pettitions [duplicate]