Integrating $frac{1}{1+x^2}$ and $frac{-1}{1+x^2}$












0












$begingroup$


Given the idea of antiderivatives, how do I reconcile the following?



$$ F(x) = int_0^x frac{1}{1+t^2},dt = arctan x $$



$$ G(x) = int_0^xfrac{-1}{1 + t^2},dt neq text{arccot }x iff frac{d}{dx}big[text{arccot }xbig] = frac{-1}{1+x^2}$$










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    $G(x)=operatorname{arccot} x+C$. You need to determine the constant.
    $endgroup$
    – Eclipse Sun
    Feb 1 at 20:11












  • $begingroup$
    Are you trying to prove that $intfrac{dx}{x^2+1}=arctan x$?
    $endgroup$
    – clathratus
    Feb 2 at 5:11
















0












$begingroup$


Given the idea of antiderivatives, how do I reconcile the following?



$$ F(x) = int_0^x frac{1}{1+t^2},dt = arctan x $$



$$ G(x) = int_0^xfrac{-1}{1 + t^2},dt neq text{arccot }x iff frac{d}{dx}big[text{arccot }xbig] = frac{-1}{1+x^2}$$










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    $G(x)=operatorname{arccot} x+C$. You need to determine the constant.
    $endgroup$
    – Eclipse Sun
    Feb 1 at 20:11












  • $begingroup$
    Are you trying to prove that $intfrac{dx}{x^2+1}=arctan x$?
    $endgroup$
    – clathratus
    Feb 2 at 5:11














0












0








0





$begingroup$


Given the idea of antiderivatives, how do I reconcile the following?



$$ F(x) = int_0^x frac{1}{1+t^2},dt = arctan x $$



$$ G(x) = int_0^xfrac{-1}{1 + t^2},dt neq text{arccot }x iff frac{d}{dx}big[text{arccot }xbig] = frac{-1}{1+x^2}$$










share|cite|improve this question









$endgroup$




Given the idea of antiderivatives, how do I reconcile the following?



$$ F(x) = int_0^x frac{1}{1+t^2},dt = arctan x $$



$$ G(x) = int_0^xfrac{-1}{1 + t^2},dt neq text{arccot }x iff frac{d}{dx}big[text{arccot }xbig] = frac{-1}{1+x^2}$$







calculus integration






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Feb 1 at 20:08









clocktowerclocktower

524418




524418








  • 1




    $begingroup$
    $G(x)=operatorname{arccot} x+C$. You need to determine the constant.
    $endgroup$
    – Eclipse Sun
    Feb 1 at 20:11












  • $begingroup$
    Are you trying to prove that $intfrac{dx}{x^2+1}=arctan x$?
    $endgroup$
    – clathratus
    Feb 2 at 5:11














  • 1




    $begingroup$
    $G(x)=operatorname{arccot} x+C$. You need to determine the constant.
    $endgroup$
    – Eclipse Sun
    Feb 1 at 20:11












  • $begingroup$
    Are you trying to prove that $intfrac{dx}{x^2+1}=arctan x$?
    $endgroup$
    – clathratus
    Feb 2 at 5:11








1




1




$begingroup$
$G(x)=operatorname{arccot} x+C$. You need to determine the constant.
$endgroup$
– Eclipse Sun
Feb 1 at 20:11






$begingroup$
$G(x)=operatorname{arccot} x+C$. You need to determine the constant.
$endgroup$
– Eclipse Sun
Feb 1 at 20:11














$begingroup$
Are you trying to prove that $intfrac{dx}{x^2+1}=arctan x$?
$endgroup$
– clathratus
Feb 2 at 5:11




$begingroup$
Are you trying to prove that $intfrac{dx}{x^2+1}=arctan x$?
$endgroup$
– clathratus
Feb 2 at 5:11










1 Answer
1






active

oldest

votes


















2












$begingroup$

Since by definition $G(0)=0$, $G(x)=-arctan x=operatorname{arccot}x-frac{pi}{2}$.






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096671%2fintegrating-frac11x2-and-frac-11x2%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Since by definition $G(0)=0$, $G(x)=-arctan x=operatorname{arccot}x-frac{pi}{2}$.






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      Since by definition $G(0)=0$, $G(x)=-arctan x=operatorname{arccot}x-frac{pi}{2}$.






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        Since by definition $G(0)=0$, $G(x)=-arctan x=operatorname{arccot}x-frac{pi}{2}$.






        share|cite|improve this answer









        $endgroup$



        Since by definition $G(0)=0$, $G(x)=-arctan x=operatorname{arccot}x-frac{pi}{2}$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Feb 1 at 20:12









        J.G.J.G.

        33.2k23252




        33.2k23252






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096671%2fintegrating-frac11x2-and-frac-11x2%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            SQL update select statement

            WPF add header to Image with URL pettitions [duplicate]