Integrating $frac{1}{1+x^2}$ and $frac{-1}{1+x^2}$
$begingroup$
Given the idea of antiderivatives, how do I reconcile the following?
$$ F(x) = int_0^x frac{1}{1+t^2},dt = arctan x $$
$$ G(x) = int_0^xfrac{-1}{1 + t^2},dt neq text{arccot }x iff frac{d}{dx}big[text{arccot }xbig] = frac{-1}{1+x^2}$$
calculus integration
$endgroup$
add a comment |
$begingroup$
Given the idea of antiderivatives, how do I reconcile the following?
$$ F(x) = int_0^x frac{1}{1+t^2},dt = arctan x $$
$$ G(x) = int_0^xfrac{-1}{1 + t^2},dt neq text{arccot }x iff frac{d}{dx}big[text{arccot }xbig] = frac{-1}{1+x^2}$$
calculus integration
$endgroup$
1
$begingroup$
$G(x)=operatorname{arccot} x+C$. You need to determine the constant.
$endgroup$
– Eclipse Sun
Feb 1 at 20:11
$begingroup$
Are you trying to prove that $intfrac{dx}{x^2+1}=arctan x$?
$endgroup$
– clathratus
Feb 2 at 5:11
add a comment |
$begingroup$
Given the idea of antiderivatives, how do I reconcile the following?
$$ F(x) = int_0^x frac{1}{1+t^2},dt = arctan x $$
$$ G(x) = int_0^xfrac{-1}{1 + t^2},dt neq text{arccot }x iff frac{d}{dx}big[text{arccot }xbig] = frac{-1}{1+x^2}$$
calculus integration
$endgroup$
Given the idea of antiderivatives, how do I reconcile the following?
$$ F(x) = int_0^x frac{1}{1+t^2},dt = arctan x $$
$$ G(x) = int_0^xfrac{-1}{1 + t^2},dt neq text{arccot }x iff frac{d}{dx}big[text{arccot }xbig] = frac{-1}{1+x^2}$$
calculus integration
calculus integration
asked Feb 1 at 20:08
clocktowerclocktower
524418
524418
1
$begingroup$
$G(x)=operatorname{arccot} x+C$. You need to determine the constant.
$endgroup$
– Eclipse Sun
Feb 1 at 20:11
$begingroup$
Are you trying to prove that $intfrac{dx}{x^2+1}=arctan x$?
$endgroup$
– clathratus
Feb 2 at 5:11
add a comment |
1
$begingroup$
$G(x)=operatorname{arccot} x+C$. You need to determine the constant.
$endgroup$
– Eclipse Sun
Feb 1 at 20:11
$begingroup$
Are you trying to prove that $intfrac{dx}{x^2+1}=arctan x$?
$endgroup$
– clathratus
Feb 2 at 5:11
1
1
$begingroup$
$G(x)=operatorname{arccot} x+C$. You need to determine the constant.
$endgroup$
– Eclipse Sun
Feb 1 at 20:11
$begingroup$
$G(x)=operatorname{arccot} x+C$. You need to determine the constant.
$endgroup$
– Eclipse Sun
Feb 1 at 20:11
$begingroup$
Are you trying to prove that $intfrac{dx}{x^2+1}=arctan x$?
$endgroup$
– clathratus
Feb 2 at 5:11
$begingroup$
Are you trying to prove that $intfrac{dx}{x^2+1}=arctan x$?
$endgroup$
– clathratus
Feb 2 at 5:11
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Since by definition $G(0)=0$, $G(x)=-arctan x=operatorname{arccot}x-frac{pi}{2}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096671%2fintegrating-frac11x2-and-frac-11x2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since by definition $G(0)=0$, $G(x)=-arctan x=operatorname{arccot}x-frac{pi}{2}$.
$endgroup$
add a comment |
$begingroup$
Since by definition $G(0)=0$, $G(x)=-arctan x=operatorname{arccot}x-frac{pi}{2}$.
$endgroup$
add a comment |
$begingroup$
Since by definition $G(0)=0$, $G(x)=-arctan x=operatorname{arccot}x-frac{pi}{2}$.
$endgroup$
Since by definition $G(0)=0$, $G(x)=-arctan x=operatorname{arccot}x-frac{pi}{2}$.
answered Feb 1 at 20:12
J.G.J.G.
33.2k23252
33.2k23252
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096671%2fintegrating-frac11x2-and-frac-11x2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
$G(x)=operatorname{arccot} x+C$. You need to determine the constant.
$endgroup$
– Eclipse Sun
Feb 1 at 20:11
$begingroup$
Are you trying to prove that $intfrac{dx}{x^2+1}=arctan x$?
$endgroup$
– clathratus
Feb 2 at 5:11