Limit of $frac{n!}{(n+1)!}$ as n approaches infinity.
$begingroup$
I know that factorials grow faster than any exponential function, but what if you put two factorials up against each other? My problem is finding the limit of:
$$frac{n!}{(n+1)!}$$
as $n$ approaches infinity.
Any ways on how to proceed would be appreciated.
sequences-and-series limits
$endgroup$
add a comment |
$begingroup$
I know that factorials grow faster than any exponential function, but what if you put two factorials up against each other? My problem is finding the limit of:
$$frac{n!}{(n+1)!}$$
as $n$ approaches infinity.
Any ways on how to proceed would be appreciated.
sequences-and-series limits
$endgroup$
10
$begingroup$
$$(n+1)!=(n+1)cdot n!$$
$endgroup$
– lab bhattacharjee
Nov 28 '14 at 16:21
add a comment |
$begingroup$
I know that factorials grow faster than any exponential function, but what if you put two factorials up against each other? My problem is finding the limit of:
$$frac{n!}{(n+1)!}$$
as $n$ approaches infinity.
Any ways on how to proceed would be appreciated.
sequences-and-series limits
$endgroup$
I know that factorials grow faster than any exponential function, but what if you put two factorials up against each other? My problem is finding the limit of:
$$frac{n!}{(n+1)!}$$
as $n$ approaches infinity.
Any ways on how to proceed would be appreciated.
sequences-and-series limits
sequences-and-series limits
edited Feb 1 at 19:49
José Carlos Santos
174k23133242
174k23133242
asked Nov 28 '14 at 16:20
martinmartin
235414
235414
10
$begingroup$
$$(n+1)!=(n+1)cdot n!$$
$endgroup$
– lab bhattacharjee
Nov 28 '14 at 16:21
add a comment |
10
$begingroup$
$$(n+1)!=(n+1)cdot n!$$
$endgroup$
– lab bhattacharjee
Nov 28 '14 at 16:21
10
10
$begingroup$
$$(n+1)!=(n+1)cdot n!$$
$endgroup$
– lab bhattacharjee
Nov 28 '14 at 16:21
$begingroup$
$$(n+1)!=(n+1)cdot n!$$
$endgroup$
– lab bhattacharjee
Nov 28 '14 at 16:21
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$$frac{n!}{(n+1)!} = frac{require{cancel}cancel{n!}}{(n+1)cancel{n!}}=frac 1{n+1}$$
Can you take it from here?
$endgroup$
$begingroup$
Indeed, thank you! :)
$endgroup$
– martin
Nov 28 '14 at 16:27
$begingroup$
You're welcome, fadaes!
$endgroup$
– Namaste
Nov 28 '14 at 16:27
add a comment |
$begingroup$
Hint:
$$frac{n!}{(n+1)!}=frac{n!}{(n+1)(n!)}=frac{1}{n+1}$$
Game Over!
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1042540%2flimit-of-fracnn1-as-n-approaches-infinity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$frac{n!}{(n+1)!} = frac{require{cancel}cancel{n!}}{(n+1)cancel{n!}}=frac 1{n+1}$$
Can you take it from here?
$endgroup$
$begingroup$
Indeed, thank you! :)
$endgroup$
– martin
Nov 28 '14 at 16:27
$begingroup$
You're welcome, fadaes!
$endgroup$
– Namaste
Nov 28 '14 at 16:27
add a comment |
$begingroup$
$$frac{n!}{(n+1)!} = frac{require{cancel}cancel{n!}}{(n+1)cancel{n!}}=frac 1{n+1}$$
Can you take it from here?
$endgroup$
$begingroup$
Indeed, thank you! :)
$endgroup$
– martin
Nov 28 '14 at 16:27
$begingroup$
You're welcome, fadaes!
$endgroup$
– Namaste
Nov 28 '14 at 16:27
add a comment |
$begingroup$
$$frac{n!}{(n+1)!} = frac{require{cancel}cancel{n!}}{(n+1)cancel{n!}}=frac 1{n+1}$$
Can you take it from here?
$endgroup$
$$frac{n!}{(n+1)!} = frac{require{cancel}cancel{n!}}{(n+1)cancel{n!}}=frac 1{n+1}$$
Can you take it from here?
answered Nov 28 '14 at 16:25
NamasteNamaste
1
1
$begingroup$
Indeed, thank you! :)
$endgroup$
– martin
Nov 28 '14 at 16:27
$begingroup$
You're welcome, fadaes!
$endgroup$
– Namaste
Nov 28 '14 at 16:27
add a comment |
$begingroup$
Indeed, thank you! :)
$endgroup$
– martin
Nov 28 '14 at 16:27
$begingroup$
You're welcome, fadaes!
$endgroup$
– Namaste
Nov 28 '14 at 16:27
$begingroup$
Indeed, thank you! :)
$endgroup$
– martin
Nov 28 '14 at 16:27
$begingroup$
Indeed, thank you! :)
$endgroup$
– martin
Nov 28 '14 at 16:27
$begingroup$
You're welcome, fadaes!
$endgroup$
– Namaste
Nov 28 '14 at 16:27
$begingroup$
You're welcome, fadaes!
$endgroup$
– Namaste
Nov 28 '14 at 16:27
add a comment |
$begingroup$
Hint:
$$frac{n!}{(n+1)!}=frac{n!}{(n+1)(n!)}=frac{1}{n+1}$$
Game Over!
$endgroup$
add a comment |
$begingroup$
Hint:
$$frac{n!}{(n+1)!}=frac{n!}{(n+1)(n!)}=frac{1}{n+1}$$
Game Over!
$endgroup$
add a comment |
$begingroup$
Hint:
$$frac{n!}{(n+1)!}=frac{n!}{(n+1)(n!)}=frac{1}{n+1}$$
Game Over!
$endgroup$
Hint:
$$frac{n!}{(n+1)!}=frac{n!}{(n+1)(n!)}=frac{1}{n+1}$$
Game Over!
answered Nov 28 '14 at 16:24
IuʇǝƃɹɐʇoɹIuʇǝƃɹɐʇoɹ
8,36723550
8,36723550
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1042540%2flimit-of-fracnn1-as-n-approaches-infinity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
10
$begingroup$
$$(n+1)!=(n+1)cdot n!$$
$endgroup$
– lab bhattacharjee
Nov 28 '14 at 16:21