Calculate the integral using complex analysis $int_0^{infty}frac{sin(sqrt s)}{(1+s)^{2}} ds$












0












$begingroup$


The task is to calculate this integral using complex analysis: I know some methods, which involve calculating the integral around half of the circle, also it would be wise to add here $i cos(s^{frac{1}{2}})$ and then take the real part of the result. But here comes my problem, this function isn't even, so I am unable to move the limit 0 to $-infty$, which makes it problematic, because integrating over one fourth of the circle involves integrating along the imaginary line, which is not simpler than this. Any help appreciated.



$$int_0^{infty}frac{sin(s^{frac{1}{2}})}{(1+s)^{2}} ds$$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    You may want to first substitute $s=u^2$.
    $endgroup$
    – Zachary
    Feb 1 at 18:23










  • $begingroup$
    Wow right thank you!
    $endgroup$
    – ryszard eggink
    Feb 1 at 18:25
















0












$begingroup$


The task is to calculate this integral using complex analysis: I know some methods, which involve calculating the integral around half of the circle, also it would be wise to add here $i cos(s^{frac{1}{2}})$ and then take the real part of the result. But here comes my problem, this function isn't even, so I am unable to move the limit 0 to $-infty$, which makes it problematic, because integrating over one fourth of the circle involves integrating along the imaginary line, which is not simpler than this. Any help appreciated.



$$int_0^{infty}frac{sin(s^{frac{1}{2}})}{(1+s)^{2}} ds$$










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    You may want to first substitute $s=u^2$.
    $endgroup$
    – Zachary
    Feb 1 at 18:23










  • $begingroup$
    Wow right thank you!
    $endgroup$
    – ryszard eggink
    Feb 1 at 18:25














0












0








0





$begingroup$


The task is to calculate this integral using complex analysis: I know some methods, which involve calculating the integral around half of the circle, also it would be wise to add here $i cos(s^{frac{1}{2}})$ and then take the real part of the result. But here comes my problem, this function isn't even, so I am unable to move the limit 0 to $-infty$, which makes it problematic, because integrating over one fourth of the circle involves integrating along the imaginary line, which is not simpler than this. Any help appreciated.



$$int_0^{infty}frac{sin(s^{frac{1}{2}})}{(1+s)^{2}} ds$$










share|cite|improve this question











$endgroup$




The task is to calculate this integral using complex analysis: I know some methods, which involve calculating the integral around half of the circle, also it would be wise to add here $i cos(s^{frac{1}{2}})$ and then take the real part of the result. But here comes my problem, this function isn't even, so I am unable to move the limit 0 to $-infty$, which makes it problematic, because integrating over one fourth of the circle involves integrating along the imaginary line, which is not simpler than this. Any help appreciated.



$$int_0^{infty}frac{sin(s^{frac{1}{2}})}{(1+s)^{2}} ds$$







complex-analysis complex-integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 1 at 19:32







user625055

















asked Feb 1 at 18:17









ryszard egginkryszard eggink

420110




420110








  • 1




    $begingroup$
    You may want to first substitute $s=u^2$.
    $endgroup$
    – Zachary
    Feb 1 at 18:23










  • $begingroup$
    Wow right thank you!
    $endgroup$
    – ryszard eggink
    Feb 1 at 18:25














  • 1




    $begingroup$
    You may want to first substitute $s=u^2$.
    $endgroup$
    – Zachary
    Feb 1 at 18:23










  • $begingroup$
    Wow right thank you!
    $endgroup$
    – ryszard eggink
    Feb 1 at 18:25








1




1




$begingroup$
You may want to first substitute $s=u^2$.
$endgroup$
– Zachary
Feb 1 at 18:23




$begingroup$
You may want to first substitute $s=u^2$.
$endgroup$
– Zachary
Feb 1 at 18:23












$begingroup$
Wow right thank you!
$endgroup$
– ryszard eggink
Feb 1 at 18:25




$begingroup$
Wow right thank you!
$endgroup$
– ryszard eggink
Feb 1 at 18:25










2 Answers
2






active

oldest

votes


















1












$begingroup$

Integrating by parts gives
$$int_0^{infty}frac{sin(sqrt s)}{(1+s)^{2}} ds=int_0^infty frac{cos (sqrt s)}{1+s}frac{ds}{2sqrt s}$$
Now substitution $s=x^2$ and the integral become
$$int_0^infty frac{cos x}{1+x^2}dx$$
Since the integrand is an even function and the real part of $e^{ix}$ is $cos x$ we have the following equality
$$int_0^infty frac{cos x}{1+x^2}dx=frac12int_{-infty}^infty frac{e^{ix}}{(x+i)(x-i)}dx$$
Choosing the contour to be the upper semi-plane where only the pole $z=i$ exists for the function $$f(z)=frac{e^{iz}}{(z+i)(z-i)}$$
Give the integral to be $$frac12 cdot 2pi i lim_{zto i} cdot (z-i)cdot text{Res} f(z)=pi i lim_{zto i} frac{e^{iz}}{z+i} =pi i frac{e^{-1}}{2i}=frac{pi}{2e}$$






share|cite|improve this answer











$endgroup$









  • 1




    $begingroup$
    Thanks, i got the same results after a hint from the comment :)
    $endgroup$
    – ryszard eggink
    Feb 1 at 19:30



















0












$begingroup$

$$newcommand{Res}{operatorname*{Res}}
begin{align}
int_0^inftyfrac{sinleft(s^{1/2}right)}{(1+s)^2},mathrm{d}s
&=int_0^inftyfrac{2ssin(s)}{(1+s^2)^2},mathrm{d}stag1\
&=int_{-infty}^inftyfrac{ssin(s)}{(1+s^2)^2},mathrm{d}stag2\
&=int_{-infty}^inftyfrac1{2i}left(e^{is}-e^{-is}right)frac1{4i}left(frac1{(s-i)^2}-frac1{(s+i)^2}right)mathrm{d}stag3\
&=-frac18left[2pi iRes_{s=i}left(frac{e^{is}}{(s-i)^2}right)-2pi iRes_{s=-i}left(frac{e^{-is}}{(s+i)^2}right)right]tag4\[6pt]
&=-frac18left[-frac{2pi}e-frac{2pi}eright]tag5\[9pt]
&=fracpi{2e}tag6
end{align}
$$

Explanation:
$(1)$: substitute $smapsto s^2$
$(2)$: use symmetry
$(3)$: write $sin(x)$ as exponentials and apply partial fractions
$(4)$: use the contour $[-R,R]cup Re^{i[0,pi]}$ for $e^{is}$ which contains the singularity at $s=i$
$phantom{(4)text{:}}$ use the contour $[-R,R]cup Re^{i[0,-pi]}$ for $e^{-is}$ which contains the singularity at $s=-i$
$phantom{(4)text{:}}$ note that the second contour is clockwise
$(5)$: evaluate the residues
$(6)$: simplify






share|cite|improve this answer











$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096559%2fcalculate-the-integral-using-complex-analysis-int-0-infty-frac-sin-sqrt-s%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Integrating by parts gives
    $$int_0^{infty}frac{sin(sqrt s)}{(1+s)^{2}} ds=int_0^infty frac{cos (sqrt s)}{1+s}frac{ds}{2sqrt s}$$
    Now substitution $s=x^2$ and the integral become
    $$int_0^infty frac{cos x}{1+x^2}dx$$
    Since the integrand is an even function and the real part of $e^{ix}$ is $cos x$ we have the following equality
    $$int_0^infty frac{cos x}{1+x^2}dx=frac12int_{-infty}^infty frac{e^{ix}}{(x+i)(x-i)}dx$$
    Choosing the contour to be the upper semi-plane where only the pole $z=i$ exists for the function $$f(z)=frac{e^{iz}}{(z+i)(z-i)}$$
    Give the integral to be $$frac12 cdot 2pi i lim_{zto i} cdot (z-i)cdot text{Res} f(z)=pi i lim_{zto i} frac{e^{iz}}{z+i} =pi i frac{e^{-1}}{2i}=frac{pi}{2e}$$






    share|cite|improve this answer











    $endgroup$









    • 1




      $begingroup$
      Thanks, i got the same results after a hint from the comment :)
      $endgroup$
      – ryszard eggink
      Feb 1 at 19:30
















    1












    $begingroup$

    Integrating by parts gives
    $$int_0^{infty}frac{sin(sqrt s)}{(1+s)^{2}} ds=int_0^infty frac{cos (sqrt s)}{1+s}frac{ds}{2sqrt s}$$
    Now substitution $s=x^2$ and the integral become
    $$int_0^infty frac{cos x}{1+x^2}dx$$
    Since the integrand is an even function and the real part of $e^{ix}$ is $cos x$ we have the following equality
    $$int_0^infty frac{cos x}{1+x^2}dx=frac12int_{-infty}^infty frac{e^{ix}}{(x+i)(x-i)}dx$$
    Choosing the contour to be the upper semi-plane where only the pole $z=i$ exists for the function $$f(z)=frac{e^{iz}}{(z+i)(z-i)}$$
    Give the integral to be $$frac12 cdot 2pi i lim_{zto i} cdot (z-i)cdot text{Res} f(z)=pi i lim_{zto i} frac{e^{iz}}{z+i} =pi i frac{e^{-1}}{2i}=frac{pi}{2e}$$






    share|cite|improve this answer











    $endgroup$









    • 1




      $begingroup$
      Thanks, i got the same results after a hint from the comment :)
      $endgroup$
      – ryszard eggink
      Feb 1 at 19:30














    1












    1








    1





    $begingroup$

    Integrating by parts gives
    $$int_0^{infty}frac{sin(sqrt s)}{(1+s)^{2}} ds=int_0^infty frac{cos (sqrt s)}{1+s}frac{ds}{2sqrt s}$$
    Now substitution $s=x^2$ and the integral become
    $$int_0^infty frac{cos x}{1+x^2}dx$$
    Since the integrand is an even function and the real part of $e^{ix}$ is $cos x$ we have the following equality
    $$int_0^infty frac{cos x}{1+x^2}dx=frac12int_{-infty}^infty frac{e^{ix}}{(x+i)(x-i)}dx$$
    Choosing the contour to be the upper semi-plane where only the pole $z=i$ exists for the function $$f(z)=frac{e^{iz}}{(z+i)(z-i)}$$
    Give the integral to be $$frac12 cdot 2pi i lim_{zto i} cdot (z-i)cdot text{Res} f(z)=pi i lim_{zto i} frac{e^{iz}}{z+i} =pi i frac{e^{-1}}{2i}=frac{pi}{2e}$$






    share|cite|improve this answer











    $endgroup$



    Integrating by parts gives
    $$int_0^{infty}frac{sin(sqrt s)}{(1+s)^{2}} ds=int_0^infty frac{cos (sqrt s)}{1+s}frac{ds}{2sqrt s}$$
    Now substitution $s=x^2$ and the integral become
    $$int_0^infty frac{cos x}{1+x^2}dx$$
    Since the integrand is an even function and the real part of $e^{ix}$ is $cos x$ we have the following equality
    $$int_0^infty frac{cos x}{1+x^2}dx=frac12int_{-infty}^infty frac{e^{ix}}{(x+i)(x-i)}dx$$
    Choosing the contour to be the upper semi-plane where only the pole $z=i$ exists for the function $$f(z)=frac{e^{iz}}{(z+i)(z-i)}$$
    Give the integral to be $$frac12 cdot 2pi i lim_{zto i} cdot (z-i)cdot text{Res} f(z)=pi i lim_{zto i} frac{e^{iz}}{z+i} =pi i frac{e^{-1}}{2i}=frac{pi}{2e}$$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Feb 1 at 19:34

























    answered Feb 1 at 19:29







    user625055















    • 1




      $begingroup$
      Thanks, i got the same results after a hint from the comment :)
      $endgroup$
      – ryszard eggink
      Feb 1 at 19:30














    • 1




      $begingroup$
      Thanks, i got the same results after a hint from the comment :)
      $endgroup$
      – ryszard eggink
      Feb 1 at 19:30








    1




    1




    $begingroup$
    Thanks, i got the same results after a hint from the comment :)
    $endgroup$
    – ryszard eggink
    Feb 1 at 19:30




    $begingroup$
    Thanks, i got the same results after a hint from the comment :)
    $endgroup$
    – ryszard eggink
    Feb 1 at 19:30











    0












    $begingroup$

    $$newcommand{Res}{operatorname*{Res}}
    begin{align}
    int_0^inftyfrac{sinleft(s^{1/2}right)}{(1+s)^2},mathrm{d}s
    &=int_0^inftyfrac{2ssin(s)}{(1+s^2)^2},mathrm{d}stag1\
    &=int_{-infty}^inftyfrac{ssin(s)}{(1+s^2)^2},mathrm{d}stag2\
    &=int_{-infty}^inftyfrac1{2i}left(e^{is}-e^{-is}right)frac1{4i}left(frac1{(s-i)^2}-frac1{(s+i)^2}right)mathrm{d}stag3\
    &=-frac18left[2pi iRes_{s=i}left(frac{e^{is}}{(s-i)^2}right)-2pi iRes_{s=-i}left(frac{e^{-is}}{(s+i)^2}right)right]tag4\[6pt]
    &=-frac18left[-frac{2pi}e-frac{2pi}eright]tag5\[9pt]
    &=fracpi{2e}tag6
    end{align}
    $$

    Explanation:
    $(1)$: substitute $smapsto s^2$
    $(2)$: use symmetry
    $(3)$: write $sin(x)$ as exponentials and apply partial fractions
    $(4)$: use the contour $[-R,R]cup Re^{i[0,pi]}$ for $e^{is}$ which contains the singularity at $s=i$
    $phantom{(4)text{:}}$ use the contour $[-R,R]cup Re^{i[0,-pi]}$ for $e^{-is}$ which contains the singularity at $s=-i$
    $phantom{(4)text{:}}$ note that the second contour is clockwise
    $(5)$: evaluate the residues
    $(6)$: simplify






    share|cite|improve this answer











    $endgroup$


















      0












      $begingroup$

      $$newcommand{Res}{operatorname*{Res}}
      begin{align}
      int_0^inftyfrac{sinleft(s^{1/2}right)}{(1+s)^2},mathrm{d}s
      &=int_0^inftyfrac{2ssin(s)}{(1+s^2)^2},mathrm{d}stag1\
      &=int_{-infty}^inftyfrac{ssin(s)}{(1+s^2)^2},mathrm{d}stag2\
      &=int_{-infty}^inftyfrac1{2i}left(e^{is}-e^{-is}right)frac1{4i}left(frac1{(s-i)^2}-frac1{(s+i)^2}right)mathrm{d}stag3\
      &=-frac18left[2pi iRes_{s=i}left(frac{e^{is}}{(s-i)^2}right)-2pi iRes_{s=-i}left(frac{e^{-is}}{(s+i)^2}right)right]tag4\[6pt]
      &=-frac18left[-frac{2pi}e-frac{2pi}eright]tag5\[9pt]
      &=fracpi{2e}tag6
      end{align}
      $$

      Explanation:
      $(1)$: substitute $smapsto s^2$
      $(2)$: use symmetry
      $(3)$: write $sin(x)$ as exponentials and apply partial fractions
      $(4)$: use the contour $[-R,R]cup Re^{i[0,pi]}$ for $e^{is}$ which contains the singularity at $s=i$
      $phantom{(4)text{:}}$ use the contour $[-R,R]cup Re^{i[0,-pi]}$ for $e^{-is}$ which contains the singularity at $s=-i$
      $phantom{(4)text{:}}$ note that the second contour is clockwise
      $(5)$: evaluate the residues
      $(6)$: simplify






      share|cite|improve this answer











      $endgroup$
















        0












        0








        0





        $begingroup$

        $$newcommand{Res}{operatorname*{Res}}
        begin{align}
        int_0^inftyfrac{sinleft(s^{1/2}right)}{(1+s)^2},mathrm{d}s
        &=int_0^inftyfrac{2ssin(s)}{(1+s^2)^2},mathrm{d}stag1\
        &=int_{-infty}^inftyfrac{ssin(s)}{(1+s^2)^2},mathrm{d}stag2\
        &=int_{-infty}^inftyfrac1{2i}left(e^{is}-e^{-is}right)frac1{4i}left(frac1{(s-i)^2}-frac1{(s+i)^2}right)mathrm{d}stag3\
        &=-frac18left[2pi iRes_{s=i}left(frac{e^{is}}{(s-i)^2}right)-2pi iRes_{s=-i}left(frac{e^{-is}}{(s+i)^2}right)right]tag4\[6pt]
        &=-frac18left[-frac{2pi}e-frac{2pi}eright]tag5\[9pt]
        &=fracpi{2e}tag6
        end{align}
        $$

        Explanation:
        $(1)$: substitute $smapsto s^2$
        $(2)$: use symmetry
        $(3)$: write $sin(x)$ as exponentials and apply partial fractions
        $(4)$: use the contour $[-R,R]cup Re^{i[0,pi]}$ for $e^{is}$ which contains the singularity at $s=i$
        $phantom{(4)text{:}}$ use the contour $[-R,R]cup Re^{i[0,-pi]}$ for $e^{-is}$ which contains the singularity at $s=-i$
        $phantom{(4)text{:}}$ note that the second contour is clockwise
        $(5)$: evaluate the residues
        $(6)$: simplify






        share|cite|improve this answer











        $endgroup$



        $$newcommand{Res}{operatorname*{Res}}
        begin{align}
        int_0^inftyfrac{sinleft(s^{1/2}right)}{(1+s)^2},mathrm{d}s
        &=int_0^inftyfrac{2ssin(s)}{(1+s^2)^2},mathrm{d}stag1\
        &=int_{-infty}^inftyfrac{ssin(s)}{(1+s^2)^2},mathrm{d}stag2\
        &=int_{-infty}^inftyfrac1{2i}left(e^{is}-e^{-is}right)frac1{4i}left(frac1{(s-i)^2}-frac1{(s+i)^2}right)mathrm{d}stag3\
        &=-frac18left[2pi iRes_{s=i}left(frac{e^{is}}{(s-i)^2}right)-2pi iRes_{s=-i}left(frac{e^{-is}}{(s+i)^2}right)right]tag4\[6pt]
        &=-frac18left[-frac{2pi}e-frac{2pi}eright]tag5\[9pt]
        &=fracpi{2e}tag6
        end{align}
        $$

        Explanation:
        $(1)$: substitute $smapsto s^2$
        $(2)$: use symmetry
        $(3)$: write $sin(x)$ as exponentials and apply partial fractions
        $(4)$: use the contour $[-R,R]cup Re^{i[0,pi]}$ for $e^{is}$ which contains the singularity at $s=i$
        $phantom{(4)text{:}}$ use the contour $[-R,R]cup Re^{i[0,-pi]}$ for $e^{-is}$ which contains the singularity at $s=-i$
        $phantom{(4)text{:}}$ note that the second contour is clockwise
        $(5)$: evaluate the residues
        $(6)$: simplify







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Feb 2 at 0:21

























        answered Feb 1 at 19:33









        robjohnrobjohn

        271k27313642




        271k27313642






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096559%2fcalculate-the-integral-using-complex-analysis-int-0-infty-frac-sin-sqrt-s%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            SQL update select statement

            WPF add header to Image with URL pettitions [duplicate]