Calculate the integral using complex analysis $int_0^{infty}frac{sin(sqrt s)}{(1+s)^{2}} ds$
$begingroup$
The task is to calculate this integral using complex analysis: I know some methods, which involve calculating the integral around half of the circle, also it would be wise to add here $i cos(s^{frac{1}{2}})$ and then take the real part of the result. But here comes my problem, this function isn't even, so I am unable to move the limit 0 to $-infty$, which makes it problematic, because integrating over one fourth of the circle involves integrating along the imaginary line, which is not simpler than this. Any help appreciated.
$$int_0^{infty}frac{sin(s^{frac{1}{2}})}{(1+s)^{2}} ds$$
complex-analysis complex-integration
$endgroup$
add a comment |
$begingroup$
The task is to calculate this integral using complex analysis: I know some methods, which involve calculating the integral around half of the circle, also it would be wise to add here $i cos(s^{frac{1}{2}})$ and then take the real part of the result. But here comes my problem, this function isn't even, so I am unable to move the limit 0 to $-infty$, which makes it problematic, because integrating over one fourth of the circle involves integrating along the imaginary line, which is not simpler than this. Any help appreciated.
$$int_0^{infty}frac{sin(s^{frac{1}{2}})}{(1+s)^{2}} ds$$
complex-analysis complex-integration
$endgroup$
1
$begingroup$
You may want to first substitute $s=u^2$.
$endgroup$
– Zachary
Feb 1 at 18:23
$begingroup$
Wow right thank you!
$endgroup$
– ryszard eggink
Feb 1 at 18:25
add a comment |
$begingroup$
The task is to calculate this integral using complex analysis: I know some methods, which involve calculating the integral around half of the circle, also it would be wise to add here $i cos(s^{frac{1}{2}})$ and then take the real part of the result. But here comes my problem, this function isn't even, so I am unable to move the limit 0 to $-infty$, which makes it problematic, because integrating over one fourth of the circle involves integrating along the imaginary line, which is not simpler than this. Any help appreciated.
$$int_0^{infty}frac{sin(s^{frac{1}{2}})}{(1+s)^{2}} ds$$
complex-analysis complex-integration
$endgroup$
The task is to calculate this integral using complex analysis: I know some methods, which involve calculating the integral around half of the circle, also it would be wise to add here $i cos(s^{frac{1}{2}})$ and then take the real part of the result. But here comes my problem, this function isn't even, so I am unable to move the limit 0 to $-infty$, which makes it problematic, because integrating over one fourth of the circle involves integrating along the imaginary line, which is not simpler than this. Any help appreciated.
$$int_0^{infty}frac{sin(s^{frac{1}{2}})}{(1+s)^{2}} ds$$
complex-analysis complex-integration
complex-analysis complex-integration
edited Feb 1 at 19:32
user625055
asked Feb 1 at 18:17
ryszard egginkryszard eggink
420110
420110
1
$begingroup$
You may want to first substitute $s=u^2$.
$endgroup$
– Zachary
Feb 1 at 18:23
$begingroup$
Wow right thank you!
$endgroup$
– ryszard eggink
Feb 1 at 18:25
add a comment |
1
$begingroup$
You may want to first substitute $s=u^2$.
$endgroup$
– Zachary
Feb 1 at 18:23
$begingroup$
Wow right thank you!
$endgroup$
– ryszard eggink
Feb 1 at 18:25
1
1
$begingroup$
You may want to first substitute $s=u^2$.
$endgroup$
– Zachary
Feb 1 at 18:23
$begingroup$
You may want to first substitute $s=u^2$.
$endgroup$
– Zachary
Feb 1 at 18:23
$begingroup$
Wow right thank you!
$endgroup$
– ryszard eggink
Feb 1 at 18:25
$begingroup$
Wow right thank you!
$endgroup$
– ryszard eggink
Feb 1 at 18:25
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Integrating by parts gives
$$int_0^{infty}frac{sin(sqrt s)}{(1+s)^{2}} ds=int_0^infty frac{cos (sqrt s)}{1+s}frac{ds}{2sqrt s}$$
Now substitution $s=x^2$ and the integral become
$$int_0^infty frac{cos x}{1+x^2}dx$$
Since the integrand is an even function and the real part of $e^{ix}$ is $cos x$ we have the following equality
$$int_0^infty frac{cos x}{1+x^2}dx=frac12int_{-infty}^infty frac{e^{ix}}{(x+i)(x-i)}dx$$
Choosing the contour to be the upper semi-plane where only the pole $z=i$ exists for the function $$f(z)=frac{e^{iz}}{(z+i)(z-i)}$$
Give the integral to be $$frac12 cdot 2pi i lim_{zto i} cdot (z-i)cdot text{Res} f(z)=pi i lim_{zto i} frac{e^{iz}}{z+i} =pi i frac{e^{-1}}{2i}=frac{pi}{2e}$$
$endgroup$
1
$begingroup$
Thanks, i got the same results after a hint from the comment :)
$endgroup$
– ryszard eggink
Feb 1 at 19:30
add a comment |
$begingroup$
$$newcommand{Res}{operatorname*{Res}}
begin{align}
int_0^inftyfrac{sinleft(s^{1/2}right)}{(1+s)^2},mathrm{d}s
&=int_0^inftyfrac{2ssin(s)}{(1+s^2)^2},mathrm{d}stag1\
&=int_{-infty}^inftyfrac{ssin(s)}{(1+s^2)^2},mathrm{d}stag2\
&=int_{-infty}^inftyfrac1{2i}left(e^{is}-e^{-is}right)frac1{4i}left(frac1{(s-i)^2}-frac1{(s+i)^2}right)mathrm{d}stag3\
&=-frac18left[2pi iRes_{s=i}left(frac{e^{is}}{(s-i)^2}right)-2pi iRes_{s=-i}left(frac{e^{-is}}{(s+i)^2}right)right]tag4\[6pt]
&=-frac18left[-frac{2pi}e-frac{2pi}eright]tag5\[9pt]
&=fracpi{2e}tag6
end{align}
$$
Explanation:
$(1)$: substitute $smapsto s^2$
$(2)$: use symmetry
$(3)$: write $sin(x)$ as exponentials and apply partial fractions
$(4)$: use the contour $[-R,R]cup Re^{i[0,pi]}$ for $e^{is}$ which contains the singularity at $s=i$
$phantom{(4)text{:}}$ use the contour $[-R,R]cup Re^{i[0,-pi]}$ for $e^{-is}$ which contains the singularity at $s=-i$
$phantom{(4)text{:}}$ note that the second contour is clockwise
$(5)$: evaluate the residues
$(6)$: simplify
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096559%2fcalculate-the-integral-using-complex-analysis-int-0-infty-frac-sin-sqrt-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Integrating by parts gives
$$int_0^{infty}frac{sin(sqrt s)}{(1+s)^{2}} ds=int_0^infty frac{cos (sqrt s)}{1+s}frac{ds}{2sqrt s}$$
Now substitution $s=x^2$ and the integral become
$$int_0^infty frac{cos x}{1+x^2}dx$$
Since the integrand is an even function and the real part of $e^{ix}$ is $cos x$ we have the following equality
$$int_0^infty frac{cos x}{1+x^2}dx=frac12int_{-infty}^infty frac{e^{ix}}{(x+i)(x-i)}dx$$
Choosing the contour to be the upper semi-plane where only the pole $z=i$ exists for the function $$f(z)=frac{e^{iz}}{(z+i)(z-i)}$$
Give the integral to be $$frac12 cdot 2pi i lim_{zto i} cdot (z-i)cdot text{Res} f(z)=pi i lim_{zto i} frac{e^{iz}}{z+i} =pi i frac{e^{-1}}{2i}=frac{pi}{2e}$$
$endgroup$
1
$begingroup$
Thanks, i got the same results after a hint from the comment :)
$endgroup$
– ryszard eggink
Feb 1 at 19:30
add a comment |
$begingroup$
Integrating by parts gives
$$int_0^{infty}frac{sin(sqrt s)}{(1+s)^{2}} ds=int_0^infty frac{cos (sqrt s)}{1+s}frac{ds}{2sqrt s}$$
Now substitution $s=x^2$ and the integral become
$$int_0^infty frac{cos x}{1+x^2}dx$$
Since the integrand is an even function and the real part of $e^{ix}$ is $cos x$ we have the following equality
$$int_0^infty frac{cos x}{1+x^2}dx=frac12int_{-infty}^infty frac{e^{ix}}{(x+i)(x-i)}dx$$
Choosing the contour to be the upper semi-plane where only the pole $z=i$ exists for the function $$f(z)=frac{e^{iz}}{(z+i)(z-i)}$$
Give the integral to be $$frac12 cdot 2pi i lim_{zto i} cdot (z-i)cdot text{Res} f(z)=pi i lim_{zto i} frac{e^{iz}}{z+i} =pi i frac{e^{-1}}{2i}=frac{pi}{2e}$$
$endgroup$
1
$begingroup$
Thanks, i got the same results after a hint from the comment :)
$endgroup$
– ryszard eggink
Feb 1 at 19:30
add a comment |
$begingroup$
Integrating by parts gives
$$int_0^{infty}frac{sin(sqrt s)}{(1+s)^{2}} ds=int_0^infty frac{cos (sqrt s)}{1+s}frac{ds}{2sqrt s}$$
Now substitution $s=x^2$ and the integral become
$$int_0^infty frac{cos x}{1+x^2}dx$$
Since the integrand is an even function and the real part of $e^{ix}$ is $cos x$ we have the following equality
$$int_0^infty frac{cos x}{1+x^2}dx=frac12int_{-infty}^infty frac{e^{ix}}{(x+i)(x-i)}dx$$
Choosing the contour to be the upper semi-plane where only the pole $z=i$ exists for the function $$f(z)=frac{e^{iz}}{(z+i)(z-i)}$$
Give the integral to be $$frac12 cdot 2pi i lim_{zto i} cdot (z-i)cdot text{Res} f(z)=pi i lim_{zto i} frac{e^{iz}}{z+i} =pi i frac{e^{-1}}{2i}=frac{pi}{2e}$$
$endgroup$
Integrating by parts gives
$$int_0^{infty}frac{sin(sqrt s)}{(1+s)^{2}} ds=int_0^infty frac{cos (sqrt s)}{1+s}frac{ds}{2sqrt s}$$
Now substitution $s=x^2$ and the integral become
$$int_0^infty frac{cos x}{1+x^2}dx$$
Since the integrand is an even function and the real part of $e^{ix}$ is $cos x$ we have the following equality
$$int_0^infty frac{cos x}{1+x^2}dx=frac12int_{-infty}^infty frac{e^{ix}}{(x+i)(x-i)}dx$$
Choosing the contour to be the upper semi-plane where only the pole $z=i$ exists for the function $$f(z)=frac{e^{iz}}{(z+i)(z-i)}$$
Give the integral to be $$frac12 cdot 2pi i lim_{zto i} cdot (z-i)cdot text{Res} f(z)=pi i lim_{zto i} frac{e^{iz}}{z+i} =pi i frac{e^{-1}}{2i}=frac{pi}{2e}$$
edited Feb 1 at 19:34
answered Feb 1 at 19:29
user625055
1
$begingroup$
Thanks, i got the same results after a hint from the comment :)
$endgroup$
– ryszard eggink
Feb 1 at 19:30
add a comment |
1
$begingroup$
Thanks, i got the same results after a hint from the comment :)
$endgroup$
– ryszard eggink
Feb 1 at 19:30
1
1
$begingroup$
Thanks, i got the same results after a hint from the comment :)
$endgroup$
– ryszard eggink
Feb 1 at 19:30
$begingroup$
Thanks, i got the same results after a hint from the comment :)
$endgroup$
– ryszard eggink
Feb 1 at 19:30
add a comment |
$begingroup$
$$newcommand{Res}{operatorname*{Res}}
begin{align}
int_0^inftyfrac{sinleft(s^{1/2}right)}{(1+s)^2},mathrm{d}s
&=int_0^inftyfrac{2ssin(s)}{(1+s^2)^2},mathrm{d}stag1\
&=int_{-infty}^inftyfrac{ssin(s)}{(1+s^2)^2},mathrm{d}stag2\
&=int_{-infty}^inftyfrac1{2i}left(e^{is}-e^{-is}right)frac1{4i}left(frac1{(s-i)^2}-frac1{(s+i)^2}right)mathrm{d}stag3\
&=-frac18left[2pi iRes_{s=i}left(frac{e^{is}}{(s-i)^2}right)-2pi iRes_{s=-i}left(frac{e^{-is}}{(s+i)^2}right)right]tag4\[6pt]
&=-frac18left[-frac{2pi}e-frac{2pi}eright]tag5\[9pt]
&=fracpi{2e}tag6
end{align}
$$
Explanation:
$(1)$: substitute $smapsto s^2$
$(2)$: use symmetry
$(3)$: write $sin(x)$ as exponentials and apply partial fractions
$(4)$: use the contour $[-R,R]cup Re^{i[0,pi]}$ for $e^{is}$ which contains the singularity at $s=i$
$phantom{(4)text{:}}$ use the contour $[-R,R]cup Re^{i[0,-pi]}$ for $e^{-is}$ which contains the singularity at $s=-i$
$phantom{(4)text{:}}$ note that the second contour is clockwise
$(5)$: evaluate the residues
$(6)$: simplify
$endgroup$
add a comment |
$begingroup$
$$newcommand{Res}{operatorname*{Res}}
begin{align}
int_0^inftyfrac{sinleft(s^{1/2}right)}{(1+s)^2},mathrm{d}s
&=int_0^inftyfrac{2ssin(s)}{(1+s^2)^2},mathrm{d}stag1\
&=int_{-infty}^inftyfrac{ssin(s)}{(1+s^2)^2},mathrm{d}stag2\
&=int_{-infty}^inftyfrac1{2i}left(e^{is}-e^{-is}right)frac1{4i}left(frac1{(s-i)^2}-frac1{(s+i)^2}right)mathrm{d}stag3\
&=-frac18left[2pi iRes_{s=i}left(frac{e^{is}}{(s-i)^2}right)-2pi iRes_{s=-i}left(frac{e^{-is}}{(s+i)^2}right)right]tag4\[6pt]
&=-frac18left[-frac{2pi}e-frac{2pi}eright]tag5\[9pt]
&=fracpi{2e}tag6
end{align}
$$
Explanation:
$(1)$: substitute $smapsto s^2$
$(2)$: use symmetry
$(3)$: write $sin(x)$ as exponentials and apply partial fractions
$(4)$: use the contour $[-R,R]cup Re^{i[0,pi]}$ for $e^{is}$ which contains the singularity at $s=i$
$phantom{(4)text{:}}$ use the contour $[-R,R]cup Re^{i[0,-pi]}$ for $e^{-is}$ which contains the singularity at $s=-i$
$phantom{(4)text{:}}$ note that the second contour is clockwise
$(5)$: evaluate the residues
$(6)$: simplify
$endgroup$
add a comment |
$begingroup$
$$newcommand{Res}{operatorname*{Res}}
begin{align}
int_0^inftyfrac{sinleft(s^{1/2}right)}{(1+s)^2},mathrm{d}s
&=int_0^inftyfrac{2ssin(s)}{(1+s^2)^2},mathrm{d}stag1\
&=int_{-infty}^inftyfrac{ssin(s)}{(1+s^2)^2},mathrm{d}stag2\
&=int_{-infty}^inftyfrac1{2i}left(e^{is}-e^{-is}right)frac1{4i}left(frac1{(s-i)^2}-frac1{(s+i)^2}right)mathrm{d}stag3\
&=-frac18left[2pi iRes_{s=i}left(frac{e^{is}}{(s-i)^2}right)-2pi iRes_{s=-i}left(frac{e^{-is}}{(s+i)^2}right)right]tag4\[6pt]
&=-frac18left[-frac{2pi}e-frac{2pi}eright]tag5\[9pt]
&=fracpi{2e}tag6
end{align}
$$
Explanation:
$(1)$: substitute $smapsto s^2$
$(2)$: use symmetry
$(3)$: write $sin(x)$ as exponentials and apply partial fractions
$(4)$: use the contour $[-R,R]cup Re^{i[0,pi]}$ for $e^{is}$ which contains the singularity at $s=i$
$phantom{(4)text{:}}$ use the contour $[-R,R]cup Re^{i[0,-pi]}$ for $e^{-is}$ which contains the singularity at $s=-i$
$phantom{(4)text{:}}$ note that the second contour is clockwise
$(5)$: evaluate the residues
$(6)$: simplify
$endgroup$
$$newcommand{Res}{operatorname*{Res}}
begin{align}
int_0^inftyfrac{sinleft(s^{1/2}right)}{(1+s)^2},mathrm{d}s
&=int_0^inftyfrac{2ssin(s)}{(1+s^2)^2},mathrm{d}stag1\
&=int_{-infty}^inftyfrac{ssin(s)}{(1+s^2)^2},mathrm{d}stag2\
&=int_{-infty}^inftyfrac1{2i}left(e^{is}-e^{-is}right)frac1{4i}left(frac1{(s-i)^2}-frac1{(s+i)^2}right)mathrm{d}stag3\
&=-frac18left[2pi iRes_{s=i}left(frac{e^{is}}{(s-i)^2}right)-2pi iRes_{s=-i}left(frac{e^{-is}}{(s+i)^2}right)right]tag4\[6pt]
&=-frac18left[-frac{2pi}e-frac{2pi}eright]tag5\[9pt]
&=fracpi{2e}tag6
end{align}
$$
Explanation:
$(1)$: substitute $smapsto s^2$
$(2)$: use symmetry
$(3)$: write $sin(x)$ as exponentials and apply partial fractions
$(4)$: use the contour $[-R,R]cup Re^{i[0,pi]}$ for $e^{is}$ which contains the singularity at $s=i$
$phantom{(4)text{:}}$ use the contour $[-R,R]cup Re^{i[0,-pi]}$ for $e^{-is}$ which contains the singularity at $s=-i$
$phantom{(4)text{:}}$ note that the second contour is clockwise
$(5)$: evaluate the residues
$(6)$: simplify
edited Feb 2 at 0:21
answered Feb 1 at 19:33
robjohn♦robjohn
271k27313642
271k27313642
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096559%2fcalculate-the-integral-using-complex-analysis-int-0-infty-frac-sin-sqrt-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
You may want to first substitute $s=u^2$.
$endgroup$
– Zachary
Feb 1 at 18:23
$begingroup$
Wow right thank you!
$endgroup$
– ryszard eggink
Feb 1 at 18:25