Evaluate the limit by first recognizing the sum as a Riemann Sum for a function defined on $[0,1]$.
$begingroup$
Evaluate the limit by first recognizing the sum as a Riemann Sum for a function defined on $[0,1]$
$$
limlimits_{n to infty} sumlimits_{i=1}^{n} left(frac{i^5}{n^6}+frac{i}{n^2}right).
$$
I understand how to do a Riemann Sum but am not sure how to find f(x) from the limit.
I apologize for any errors in the way I've posted this. This is my first question on here so I don't quite know the swing of things yet.
Thanks everyone for your help!
calculus limits riemann-sum
$endgroup$
add a comment |
$begingroup$
Evaluate the limit by first recognizing the sum as a Riemann Sum for a function defined on $[0,1]$
$$
limlimits_{n to infty} sumlimits_{i=1}^{n} left(frac{i^5}{n^6}+frac{i}{n^2}right).
$$
I understand how to do a Riemann Sum but am not sure how to find f(x) from the limit.
I apologize for any errors in the way I've posted this. This is my first question on here so I don't quite know the swing of things yet.
Thanks everyone for your help!
calculus limits riemann-sum
$endgroup$
add a comment |
$begingroup$
Evaluate the limit by first recognizing the sum as a Riemann Sum for a function defined on $[0,1]$
$$
limlimits_{n to infty} sumlimits_{i=1}^{n} left(frac{i^5}{n^6}+frac{i}{n^2}right).
$$
I understand how to do a Riemann Sum but am not sure how to find f(x) from the limit.
I apologize for any errors in the way I've posted this. This is my first question on here so I don't quite know the swing of things yet.
Thanks everyone for your help!
calculus limits riemann-sum
$endgroup$
Evaluate the limit by first recognizing the sum as a Riemann Sum for a function defined on $[0,1]$
$$
limlimits_{n to infty} sumlimits_{i=1}^{n} left(frac{i^5}{n^6}+frac{i}{n^2}right).
$$
I understand how to do a Riemann Sum but am not sure how to find f(x) from the limit.
I apologize for any errors in the way I've posted this. This is my first question on here so I don't quite know the swing of things yet.
Thanks everyone for your help!
calculus limits riemann-sum
calculus limits riemann-sum
edited Feb 1 at 21:16
user229257
asked Feb 1 at 19:07
user229257user229257
154
154
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If you pull out $frac{1}{n}$ you get
$$
frac{1}{n}sum_{i = 1}^{n} left[left(frac{i}{n}right)^5 + left(frac{i}{n}right)right],
$$
which is a Riemann sum for the function $f(x)=x^5+x$ on the interval $[0,1]$.
Your limit thus equals
$$
intlimits_0^1(x^5+x)dx
= left[ frac{x^6}{6} + frac{x^2}{2} right]_{x = 0}^{1}
= frac{1}{6} + frac{1}{2}
= frac{2}{3}.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096614%2fevaluate-the-limit-by-first-recognizing-the-sum-as-a-riemann-sum-for-a-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If you pull out $frac{1}{n}$ you get
$$
frac{1}{n}sum_{i = 1}^{n} left[left(frac{i}{n}right)^5 + left(frac{i}{n}right)right],
$$
which is a Riemann sum for the function $f(x)=x^5+x$ on the interval $[0,1]$.
Your limit thus equals
$$
intlimits_0^1(x^5+x)dx
= left[ frac{x^6}{6} + frac{x^2}{2} right]_{x = 0}^{1}
= frac{1}{6} + frac{1}{2}
= frac{2}{3}.
$$
$endgroup$
add a comment |
$begingroup$
If you pull out $frac{1}{n}$ you get
$$
frac{1}{n}sum_{i = 1}^{n} left[left(frac{i}{n}right)^5 + left(frac{i}{n}right)right],
$$
which is a Riemann sum for the function $f(x)=x^5+x$ on the interval $[0,1]$.
Your limit thus equals
$$
intlimits_0^1(x^5+x)dx
= left[ frac{x^6}{6} + frac{x^2}{2} right]_{x = 0}^{1}
= frac{1}{6} + frac{1}{2}
= frac{2}{3}.
$$
$endgroup$
add a comment |
$begingroup$
If you pull out $frac{1}{n}$ you get
$$
frac{1}{n}sum_{i = 1}^{n} left[left(frac{i}{n}right)^5 + left(frac{i}{n}right)right],
$$
which is a Riemann sum for the function $f(x)=x^5+x$ on the interval $[0,1]$.
Your limit thus equals
$$
intlimits_0^1(x^5+x)dx
= left[ frac{x^6}{6} + frac{x^2}{2} right]_{x = 0}^{1}
= frac{1}{6} + frac{1}{2}
= frac{2}{3}.
$$
$endgroup$
If you pull out $frac{1}{n}$ you get
$$
frac{1}{n}sum_{i = 1}^{n} left[left(frac{i}{n}right)^5 + left(frac{i}{n}right)right],
$$
which is a Riemann sum for the function $f(x)=x^5+x$ on the interval $[0,1]$.
Your limit thus equals
$$
intlimits_0^1(x^5+x)dx
= left[ frac{x^6}{6} + frac{x^2}{2} right]_{x = 0}^{1}
= frac{1}{6} + frac{1}{2}
= frac{2}{3}.
$$
edited Feb 1 at 21:02
Viktor Glombik
1,3522628
1,3522628
answered Feb 1 at 20:32


GReyesGReyes
2,43815
2,43815
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096614%2fevaluate-the-limit-by-first-recognizing-the-sum-as-a-riemann-sum-for-a-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown