Evaluate $limlimits_{nto infty} left( cos(1/n)-sin(1/n) right) ^n $?












2












$begingroup$


How to calculate
$limlimits_{nto infty} left( cos(1/n)-sin(1/n) right) ^n $?



Since $limlimits_{nto infty} frac {cos(1/n)-sin(1/n) }{1-1/n} = 1 $, I guess that the limit above is $frac{1}{e}$, but since the form $(to 1)^{to infty}$ is indeterminate, I don't know how to prove it formally.



Thanks!










share|cite|improve this question











$endgroup$












  • $begingroup$
    You are right as $cos1/n-sin1/n=1-1/n+o(1/n)$.
    $endgroup$
    – Yves Daoust
    Jan 30 at 13:17


















2












$begingroup$


How to calculate
$limlimits_{nto infty} left( cos(1/n)-sin(1/n) right) ^n $?



Since $limlimits_{nto infty} frac {cos(1/n)-sin(1/n) }{1-1/n} = 1 $, I guess that the limit above is $frac{1}{e}$, but since the form $(to 1)^{to infty}$ is indeterminate, I don't know how to prove it formally.



Thanks!










share|cite|improve this question











$endgroup$












  • $begingroup$
    You are right as $cos1/n-sin1/n=1-1/n+o(1/n)$.
    $endgroup$
    – Yves Daoust
    Jan 30 at 13:17
















2












2








2





$begingroup$


How to calculate
$limlimits_{nto infty} left( cos(1/n)-sin(1/n) right) ^n $?



Since $limlimits_{nto infty} frac {cos(1/n)-sin(1/n) }{1-1/n} = 1 $, I guess that the limit above is $frac{1}{e}$, but since the form $(to 1)^{to infty}$ is indeterminate, I don't know how to prove it formally.



Thanks!










share|cite|improve this question











$endgroup$




How to calculate
$limlimits_{nto infty} left( cos(1/n)-sin(1/n) right) ^n $?



Since $limlimits_{nto infty} frac {cos(1/n)-sin(1/n) }{1-1/n} = 1 $, I guess that the limit above is $frac{1}{e}$, but since the form $(to 1)^{to infty}$ is indeterminate, I don't know how to prove it formally.



Thanks!







calculus limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 30 at 19:58









Paramanand Singh

51.2k558170




51.2k558170










asked Jan 30 at 12:34









Dr. JohnDr. John

132




132












  • $begingroup$
    You are right as $cos1/n-sin1/n=1-1/n+o(1/n)$.
    $endgroup$
    – Yves Daoust
    Jan 30 at 13:17




















  • $begingroup$
    You are right as $cos1/n-sin1/n=1-1/n+o(1/n)$.
    $endgroup$
    – Yves Daoust
    Jan 30 at 13:17


















$begingroup$
You are right as $cos1/n-sin1/n=1-1/n+o(1/n)$.
$endgroup$
– Yves Daoust
Jan 30 at 13:17






$begingroup$
You are right as $cos1/n-sin1/n=1-1/n+o(1/n)$.
$endgroup$
– Yves Daoust
Jan 30 at 13:17












6 Answers
6






active

oldest

votes


















1












$begingroup$

Use $$logleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right]^n = nlogleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right] = frac{logleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right]}{frac{1}{n}}$$
and then apply l'Hospital's rule.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    You must first prove that the inner limit is not zero - otherwise the function is undefined at infinity.
    $endgroup$
    – Lucas Henrique
    Jan 30 at 13:57



















1












$begingroup$

You can get rid of the trigonometric functions by rewriting the exponent $n$ using



$$frac1n=dfrac{dfrac1n}{sindfrac1n}sindfrac1n.$$



As the larger fraction tends to $1$, it can be ignored.



Now, with $t:=sindfrac1n$, we have



$$lim_{tto0}left(sqrt{1-t^2}-tright)^{1/t}.$$



Using Taylor,



$$sqrt{1-t^2}-t=1-t+o(t)$$ and the limit is the same as



$$lim_{tto0}left(1-tright)^{1/t}.$$





Or by L'Hospital on the logarithm,



$$frac{log(sqrt{1-t^2}-t)}ttofrac{-dfrac t{sqrt{1-t^2}}-1}{sqrt{1-t^2}-t}to-1.$$






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    Since we recall that
    $$sin x=x-{frac {x^{3}}{3!}}+{frac {x^{5}}{5!}}-cdots $$
    and
    $$cos x=1-{frac {x^{2}}{2!}}+{frac {x^{4}}{4!}}-cdots$$
    for all $x$, then
    $$cosleft(frac1nright)-sinleft(frac1nright)=1-frac1n+dots$$
    and so
    $$limlimits_{nto infty} left(cosleft(frac1nright)-sinleft(frac1nright) right) ^n=limlimits_{nto infty} left(1- frac1n right) ^n=e^{-1}, .$$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Thanks a lot!!!
      $endgroup$
      – Dr. John
      Jan 31 at 20:13



















    1












    $begingroup$

    We have :
    $limlimits_{nto infty} left( cos(frac{1}{n})-sin(frac{1}{n}) right) ^n$$=limlimits_{nto infty}(1+cos(frac{1}{n})-sin(frac{1}{n})-1)^n$$=limlimits_{nto infty}left[(1+cos(frac{1}{n})-sin(frac{1}{n})-1)^{frac{1}{cos(frac{1}{n})-sin(frac{1}{n})=1}}right]^{n(cos(frac{1}{n})-sin(frac{1}{n})-1)}$$=e^{limlimits_{nto infty}n(cos(frac{1}{n})-sin(frac{1}{n})-1)}$
    But $limlimits_{nto infty}n(cos(frac{1}{n})-sin(frac{1}{n})-1)$$=limlimits_{nto infty}frac{cos(frac{1}{n})-sin(frac{1}{n})-1}{frac{1}{n}}$$=limlimits_{xto 0}frac{cos x-sin x-1}{x}$$=$$limlimits_{xto 0}(-sin x-cos x)=-1$,so your limit equals $frac{1}{e}$.






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      You may consider





      • $left(frac{cos x - sin x}{1-x}right)^{frac{1}{x}}$ for $xto 0$ and use


      • $lim_{tto 0} (1+t)^{frac{1}{t}}= e$
        begin{eqnarray*} left(frac{cos x - sin x}{1-x}right)^{frac{1}{x}}
        & = & left( underbrace{left(1 + frac{cos x - sin x -1 +x}{1-x}right)^{frac{1-x}{cos x - sin x -1 +x}}}_{stackrel{xto 0}{longrightarrow}e}right)^{underbrace{frac{cos x - sin x -1 +x}{x-x^2}}_{stackrel{L'Hop}{sim}frac{-sin x - cos x +1}{1-2x}stackrel{xto 0}{longrightarrow}0}}\
        & stackrel{xto 0}{longrightarrow} & e^0 = 1
        end{eqnarray*}







      share|cite|improve this answer









      $endgroup$





















        0












        $begingroup$

        Using the well known limit $$lim_{ntoinfty} left(1+frac{1}{n}right)^n=etag{1}$$ it is easy to prove that $$lim_{ntoinfty} left(1-frac{1}{n}right)^n=lim_{ntoinfty}dfrac{1}{left(1+dfrac{1}{n-1}right)^{n-1}}cdotfrac{n-1}{n}=frac{1}{e}tag{2}$$ Next we use the following lemma :




        Lemma: If ${a_n} $ is sequence such that $n(a_n-1)to 0$ then $a_n^nto 1$.




        We can now choose $$a_n=dfrac{cosleft(dfrac{1}{n}right)-sinleft(dfrac{1}{n}right)} {1-dfrac{1}{n}} $$ and note that $$n(a_n-1)=nleft(dfrac{ncosleft(dfrac{1}{n}right)-nsinleft(dfrac{1}{n}right)-n+1} {n-1}right) $$ and the above clearly tends to $0$ so that by lemma above $a_n^nto 1$ and therefore using $(2)$ the desired limit is $1/e$.






        share|cite|improve this answer









        $endgroup$














          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093466%2fevaluate-lim-limits-n-to-infty-left-cos1-n-sin1-n-right-n%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          6 Answers
          6






          active

          oldest

          votes








          6 Answers
          6






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Use $$logleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right]^n = nlogleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right] = frac{logleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right]}{frac{1}{n}}$$
          and then apply l'Hospital's rule.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            You must first prove that the inner limit is not zero - otherwise the function is undefined at infinity.
            $endgroup$
            – Lucas Henrique
            Jan 30 at 13:57
















          1












          $begingroup$

          Use $$logleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right]^n = nlogleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right] = frac{logleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right]}{frac{1}{n}}$$
          and then apply l'Hospital's rule.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            You must first prove that the inner limit is not zero - otherwise the function is undefined at infinity.
            $endgroup$
            – Lucas Henrique
            Jan 30 at 13:57














          1












          1








          1





          $begingroup$

          Use $$logleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right]^n = nlogleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right] = frac{logleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right]}{frac{1}{n}}$$
          and then apply l'Hospital's rule.






          share|cite|improve this answer









          $endgroup$



          Use $$logleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right]^n = nlogleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right] = frac{logleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right]}{frac{1}{n}}$$
          and then apply l'Hospital's rule.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 30 at 12:44









          KlausKlaus

          2,955214




          2,955214












          • $begingroup$
            You must first prove that the inner limit is not zero - otherwise the function is undefined at infinity.
            $endgroup$
            – Lucas Henrique
            Jan 30 at 13:57


















          • $begingroup$
            You must first prove that the inner limit is not zero - otherwise the function is undefined at infinity.
            $endgroup$
            – Lucas Henrique
            Jan 30 at 13:57
















          $begingroup$
          You must first prove that the inner limit is not zero - otherwise the function is undefined at infinity.
          $endgroup$
          – Lucas Henrique
          Jan 30 at 13:57




          $begingroup$
          You must first prove that the inner limit is not zero - otherwise the function is undefined at infinity.
          $endgroup$
          – Lucas Henrique
          Jan 30 at 13:57











          1












          $begingroup$

          You can get rid of the trigonometric functions by rewriting the exponent $n$ using



          $$frac1n=dfrac{dfrac1n}{sindfrac1n}sindfrac1n.$$



          As the larger fraction tends to $1$, it can be ignored.



          Now, with $t:=sindfrac1n$, we have



          $$lim_{tto0}left(sqrt{1-t^2}-tright)^{1/t}.$$



          Using Taylor,



          $$sqrt{1-t^2}-t=1-t+o(t)$$ and the limit is the same as



          $$lim_{tto0}left(1-tright)^{1/t}.$$





          Or by L'Hospital on the logarithm,



          $$frac{log(sqrt{1-t^2}-t)}ttofrac{-dfrac t{sqrt{1-t^2}}-1}{sqrt{1-t^2}-t}to-1.$$






          share|cite|improve this answer











          $endgroup$


















            1












            $begingroup$

            You can get rid of the trigonometric functions by rewriting the exponent $n$ using



            $$frac1n=dfrac{dfrac1n}{sindfrac1n}sindfrac1n.$$



            As the larger fraction tends to $1$, it can be ignored.



            Now, with $t:=sindfrac1n$, we have



            $$lim_{tto0}left(sqrt{1-t^2}-tright)^{1/t}.$$



            Using Taylor,



            $$sqrt{1-t^2}-t=1-t+o(t)$$ and the limit is the same as



            $$lim_{tto0}left(1-tright)^{1/t}.$$





            Or by L'Hospital on the logarithm,



            $$frac{log(sqrt{1-t^2}-t)}ttofrac{-dfrac t{sqrt{1-t^2}}-1}{sqrt{1-t^2}-t}to-1.$$






            share|cite|improve this answer











            $endgroup$
















              1












              1








              1





              $begingroup$

              You can get rid of the trigonometric functions by rewriting the exponent $n$ using



              $$frac1n=dfrac{dfrac1n}{sindfrac1n}sindfrac1n.$$



              As the larger fraction tends to $1$, it can be ignored.



              Now, with $t:=sindfrac1n$, we have



              $$lim_{tto0}left(sqrt{1-t^2}-tright)^{1/t}.$$



              Using Taylor,



              $$sqrt{1-t^2}-t=1-t+o(t)$$ and the limit is the same as



              $$lim_{tto0}left(1-tright)^{1/t}.$$





              Or by L'Hospital on the logarithm,



              $$frac{log(sqrt{1-t^2}-t)}ttofrac{-dfrac t{sqrt{1-t^2}}-1}{sqrt{1-t^2}-t}to-1.$$






              share|cite|improve this answer











              $endgroup$



              You can get rid of the trigonometric functions by rewriting the exponent $n$ using



              $$frac1n=dfrac{dfrac1n}{sindfrac1n}sindfrac1n.$$



              As the larger fraction tends to $1$, it can be ignored.



              Now, with $t:=sindfrac1n$, we have



              $$lim_{tto0}left(sqrt{1-t^2}-tright)^{1/t}.$$



              Using Taylor,



              $$sqrt{1-t^2}-t=1-t+o(t)$$ and the limit is the same as



              $$lim_{tto0}left(1-tright)^{1/t}.$$





              Or by L'Hospital on the logarithm,



              $$frac{log(sqrt{1-t^2}-t)}ttofrac{-dfrac t{sqrt{1-t^2}}-1}{sqrt{1-t^2}-t}to-1.$$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Jan 30 at 13:39

























              answered Jan 30 at 13:33









              Yves DaoustYves Daoust

              132k676230




              132k676230























                  1












                  $begingroup$

                  Since we recall that
                  $$sin x=x-{frac {x^{3}}{3!}}+{frac {x^{5}}{5!}}-cdots $$
                  and
                  $$cos x=1-{frac {x^{2}}{2!}}+{frac {x^{4}}{4!}}-cdots$$
                  for all $x$, then
                  $$cosleft(frac1nright)-sinleft(frac1nright)=1-frac1n+dots$$
                  and so
                  $$limlimits_{nto infty} left(cosleft(frac1nright)-sinleft(frac1nright) right) ^n=limlimits_{nto infty} left(1- frac1n right) ^n=e^{-1}, .$$






                  share|cite|improve this answer









                  $endgroup$













                  • $begingroup$
                    Thanks a lot!!!
                    $endgroup$
                    – Dr. John
                    Jan 31 at 20:13
















                  1












                  $begingroup$

                  Since we recall that
                  $$sin x=x-{frac {x^{3}}{3!}}+{frac {x^{5}}{5!}}-cdots $$
                  and
                  $$cos x=1-{frac {x^{2}}{2!}}+{frac {x^{4}}{4!}}-cdots$$
                  for all $x$, then
                  $$cosleft(frac1nright)-sinleft(frac1nright)=1-frac1n+dots$$
                  and so
                  $$limlimits_{nto infty} left(cosleft(frac1nright)-sinleft(frac1nright) right) ^n=limlimits_{nto infty} left(1- frac1n right) ^n=e^{-1}, .$$






                  share|cite|improve this answer









                  $endgroup$













                  • $begingroup$
                    Thanks a lot!!!
                    $endgroup$
                    – Dr. John
                    Jan 31 at 20:13














                  1












                  1








                  1





                  $begingroup$

                  Since we recall that
                  $$sin x=x-{frac {x^{3}}{3!}}+{frac {x^{5}}{5!}}-cdots $$
                  and
                  $$cos x=1-{frac {x^{2}}{2!}}+{frac {x^{4}}{4!}}-cdots$$
                  for all $x$, then
                  $$cosleft(frac1nright)-sinleft(frac1nright)=1-frac1n+dots$$
                  and so
                  $$limlimits_{nto infty} left(cosleft(frac1nright)-sinleft(frac1nright) right) ^n=limlimits_{nto infty} left(1- frac1n right) ^n=e^{-1}, .$$






                  share|cite|improve this answer









                  $endgroup$



                  Since we recall that
                  $$sin x=x-{frac {x^{3}}{3!}}+{frac {x^{5}}{5!}}-cdots $$
                  and
                  $$cos x=1-{frac {x^{2}}{2!}}+{frac {x^{4}}{4!}}-cdots$$
                  for all $x$, then
                  $$cosleft(frac1nright)-sinleft(frac1nright)=1-frac1n+dots$$
                  and so
                  $$limlimits_{nto infty} left(cosleft(frac1nright)-sinleft(frac1nright) right) ^n=limlimits_{nto infty} left(1- frac1n right) ^n=e^{-1}, .$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 30 at 13:51









                  MarkMark

                  3,46151947




                  3,46151947












                  • $begingroup$
                    Thanks a lot!!!
                    $endgroup$
                    – Dr. John
                    Jan 31 at 20:13


















                  • $begingroup$
                    Thanks a lot!!!
                    $endgroup$
                    – Dr. John
                    Jan 31 at 20:13
















                  $begingroup$
                  Thanks a lot!!!
                  $endgroup$
                  – Dr. John
                  Jan 31 at 20:13




                  $begingroup$
                  Thanks a lot!!!
                  $endgroup$
                  – Dr. John
                  Jan 31 at 20:13











                  1












                  $begingroup$

                  We have :
                  $limlimits_{nto infty} left( cos(frac{1}{n})-sin(frac{1}{n}) right) ^n$$=limlimits_{nto infty}(1+cos(frac{1}{n})-sin(frac{1}{n})-1)^n$$=limlimits_{nto infty}left[(1+cos(frac{1}{n})-sin(frac{1}{n})-1)^{frac{1}{cos(frac{1}{n})-sin(frac{1}{n})=1}}right]^{n(cos(frac{1}{n})-sin(frac{1}{n})-1)}$$=e^{limlimits_{nto infty}n(cos(frac{1}{n})-sin(frac{1}{n})-1)}$
                  But $limlimits_{nto infty}n(cos(frac{1}{n})-sin(frac{1}{n})-1)$$=limlimits_{nto infty}frac{cos(frac{1}{n})-sin(frac{1}{n})-1}{frac{1}{n}}$$=limlimits_{xto 0}frac{cos x-sin x-1}{x}$$=$$limlimits_{xto 0}(-sin x-cos x)=-1$,so your limit equals $frac{1}{e}$.






                  share|cite|improve this answer









                  $endgroup$


















                    1












                    $begingroup$

                    We have :
                    $limlimits_{nto infty} left( cos(frac{1}{n})-sin(frac{1}{n}) right) ^n$$=limlimits_{nto infty}(1+cos(frac{1}{n})-sin(frac{1}{n})-1)^n$$=limlimits_{nto infty}left[(1+cos(frac{1}{n})-sin(frac{1}{n})-1)^{frac{1}{cos(frac{1}{n})-sin(frac{1}{n})=1}}right]^{n(cos(frac{1}{n})-sin(frac{1}{n})-1)}$$=e^{limlimits_{nto infty}n(cos(frac{1}{n})-sin(frac{1}{n})-1)}$
                    But $limlimits_{nto infty}n(cos(frac{1}{n})-sin(frac{1}{n})-1)$$=limlimits_{nto infty}frac{cos(frac{1}{n})-sin(frac{1}{n})-1}{frac{1}{n}}$$=limlimits_{xto 0}frac{cos x-sin x-1}{x}$$=$$limlimits_{xto 0}(-sin x-cos x)=-1$,so your limit equals $frac{1}{e}$.






                    share|cite|improve this answer









                    $endgroup$
















                      1












                      1








                      1





                      $begingroup$

                      We have :
                      $limlimits_{nto infty} left( cos(frac{1}{n})-sin(frac{1}{n}) right) ^n$$=limlimits_{nto infty}(1+cos(frac{1}{n})-sin(frac{1}{n})-1)^n$$=limlimits_{nto infty}left[(1+cos(frac{1}{n})-sin(frac{1}{n})-1)^{frac{1}{cos(frac{1}{n})-sin(frac{1}{n})=1}}right]^{n(cos(frac{1}{n})-sin(frac{1}{n})-1)}$$=e^{limlimits_{nto infty}n(cos(frac{1}{n})-sin(frac{1}{n})-1)}$
                      But $limlimits_{nto infty}n(cos(frac{1}{n})-sin(frac{1}{n})-1)$$=limlimits_{nto infty}frac{cos(frac{1}{n})-sin(frac{1}{n})-1}{frac{1}{n}}$$=limlimits_{xto 0}frac{cos x-sin x-1}{x}$$=$$limlimits_{xto 0}(-sin x-cos x)=-1$,so your limit equals $frac{1}{e}$.






                      share|cite|improve this answer









                      $endgroup$



                      We have :
                      $limlimits_{nto infty} left( cos(frac{1}{n})-sin(frac{1}{n}) right) ^n$$=limlimits_{nto infty}(1+cos(frac{1}{n})-sin(frac{1}{n})-1)^n$$=limlimits_{nto infty}left[(1+cos(frac{1}{n})-sin(frac{1}{n})-1)^{frac{1}{cos(frac{1}{n})-sin(frac{1}{n})=1}}right]^{n(cos(frac{1}{n})-sin(frac{1}{n})-1)}$$=e^{limlimits_{nto infty}n(cos(frac{1}{n})-sin(frac{1}{n})-1)}$
                      But $limlimits_{nto infty}n(cos(frac{1}{n})-sin(frac{1}{n})-1)$$=limlimits_{nto infty}frac{cos(frac{1}{n})-sin(frac{1}{n})-1}{frac{1}{n}}$$=limlimits_{xto 0}frac{cos x-sin x-1}{x}$$=$$limlimits_{xto 0}(-sin x-cos x)=-1$,so your limit equals $frac{1}{e}$.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Jan 30 at 21:57









                      AlexdanutAlexdanut

                      1738




                      1738























                          0












                          $begingroup$

                          You may consider





                          • $left(frac{cos x - sin x}{1-x}right)^{frac{1}{x}}$ for $xto 0$ and use


                          • $lim_{tto 0} (1+t)^{frac{1}{t}}= e$
                            begin{eqnarray*} left(frac{cos x - sin x}{1-x}right)^{frac{1}{x}}
                            & = & left( underbrace{left(1 + frac{cos x - sin x -1 +x}{1-x}right)^{frac{1-x}{cos x - sin x -1 +x}}}_{stackrel{xto 0}{longrightarrow}e}right)^{underbrace{frac{cos x - sin x -1 +x}{x-x^2}}_{stackrel{L'Hop}{sim}frac{-sin x - cos x +1}{1-2x}stackrel{xto 0}{longrightarrow}0}}\
                            & stackrel{xto 0}{longrightarrow} & e^0 = 1
                            end{eqnarray*}







                          share|cite|improve this answer









                          $endgroup$


















                            0












                            $begingroup$

                            You may consider





                            • $left(frac{cos x - sin x}{1-x}right)^{frac{1}{x}}$ for $xto 0$ and use


                            • $lim_{tto 0} (1+t)^{frac{1}{t}}= e$
                              begin{eqnarray*} left(frac{cos x - sin x}{1-x}right)^{frac{1}{x}}
                              & = & left( underbrace{left(1 + frac{cos x - sin x -1 +x}{1-x}right)^{frac{1-x}{cos x - sin x -1 +x}}}_{stackrel{xto 0}{longrightarrow}e}right)^{underbrace{frac{cos x - sin x -1 +x}{x-x^2}}_{stackrel{L'Hop}{sim}frac{-sin x - cos x +1}{1-2x}stackrel{xto 0}{longrightarrow}0}}\
                              & stackrel{xto 0}{longrightarrow} & e^0 = 1
                              end{eqnarray*}







                            share|cite|improve this answer









                            $endgroup$
















                              0












                              0








                              0





                              $begingroup$

                              You may consider





                              • $left(frac{cos x - sin x}{1-x}right)^{frac{1}{x}}$ for $xto 0$ and use


                              • $lim_{tto 0} (1+t)^{frac{1}{t}}= e$
                                begin{eqnarray*} left(frac{cos x - sin x}{1-x}right)^{frac{1}{x}}
                                & = & left( underbrace{left(1 + frac{cos x - sin x -1 +x}{1-x}right)^{frac{1-x}{cos x - sin x -1 +x}}}_{stackrel{xto 0}{longrightarrow}e}right)^{underbrace{frac{cos x - sin x -1 +x}{x-x^2}}_{stackrel{L'Hop}{sim}frac{-sin x - cos x +1}{1-2x}stackrel{xto 0}{longrightarrow}0}}\
                                & stackrel{xto 0}{longrightarrow} & e^0 = 1
                                end{eqnarray*}







                              share|cite|improve this answer









                              $endgroup$



                              You may consider





                              • $left(frac{cos x - sin x}{1-x}right)^{frac{1}{x}}$ for $xto 0$ and use


                              • $lim_{tto 0} (1+t)^{frac{1}{t}}= e$
                                begin{eqnarray*} left(frac{cos x - sin x}{1-x}right)^{frac{1}{x}}
                                & = & left( underbrace{left(1 + frac{cos x - sin x -1 +x}{1-x}right)^{frac{1-x}{cos x - sin x -1 +x}}}_{stackrel{xto 0}{longrightarrow}e}right)^{underbrace{frac{cos x - sin x -1 +x}{x-x^2}}_{stackrel{L'Hop}{sim}frac{-sin x - cos x +1}{1-2x}stackrel{xto 0}{longrightarrow}0}}\
                                & stackrel{xto 0}{longrightarrow} & e^0 = 1
                                end{eqnarray*}








                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Jan 30 at 13:23









                              trancelocationtrancelocation

                              13.6k1828




                              13.6k1828























                                  0












                                  $begingroup$

                                  Using the well known limit $$lim_{ntoinfty} left(1+frac{1}{n}right)^n=etag{1}$$ it is easy to prove that $$lim_{ntoinfty} left(1-frac{1}{n}right)^n=lim_{ntoinfty}dfrac{1}{left(1+dfrac{1}{n-1}right)^{n-1}}cdotfrac{n-1}{n}=frac{1}{e}tag{2}$$ Next we use the following lemma :




                                  Lemma: If ${a_n} $ is sequence such that $n(a_n-1)to 0$ then $a_n^nto 1$.




                                  We can now choose $$a_n=dfrac{cosleft(dfrac{1}{n}right)-sinleft(dfrac{1}{n}right)} {1-dfrac{1}{n}} $$ and note that $$n(a_n-1)=nleft(dfrac{ncosleft(dfrac{1}{n}right)-nsinleft(dfrac{1}{n}right)-n+1} {n-1}right) $$ and the above clearly tends to $0$ so that by lemma above $a_n^nto 1$ and therefore using $(2)$ the desired limit is $1/e$.






                                  share|cite|improve this answer









                                  $endgroup$


















                                    0












                                    $begingroup$

                                    Using the well known limit $$lim_{ntoinfty} left(1+frac{1}{n}right)^n=etag{1}$$ it is easy to prove that $$lim_{ntoinfty} left(1-frac{1}{n}right)^n=lim_{ntoinfty}dfrac{1}{left(1+dfrac{1}{n-1}right)^{n-1}}cdotfrac{n-1}{n}=frac{1}{e}tag{2}$$ Next we use the following lemma :




                                    Lemma: If ${a_n} $ is sequence such that $n(a_n-1)to 0$ then $a_n^nto 1$.




                                    We can now choose $$a_n=dfrac{cosleft(dfrac{1}{n}right)-sinleft(dfrac{1}{n}right)} {1-dfrac{1}{n}} $$ and note that $$n(a_n-1)=nleft(dfrac{ncosleft(dfrac{1}{n}right)-nsinleft(dfrac{1}{n}right)-n+1} {n-1}right) $$ and the above clearly tends to $0$ so that by lemma above $a_n^nto 1$ and therefore using $(2)$ the desired limit is $1/e$.






                                    share|cite|improve this answer









                                    $endgroup$
















                                      0












                                      0








                                      0





                                      $begingroup$

                                      Using the well known limit $$lim_{ntoinfty} left(1+frac{1}{n}right)^n=etag{1}$$ it is easy to prove that $$lim_{ntoinfty} left(1-frac{1}{n}right)^n=lim_{ntoinfty}dfrac{1}{left(1+dfrac{1}{n-1}right)^{n-1}}cdotfrac{n-1}{n}=frac{1}{e}tag{2}$$ Next we use the following lemma :




                                      Lemma: If ${a_n} $ is sequence such that $n(a_n-1)to 0$ then $a_n^nto 1$.




                                      We can now choose $$a_n=dfrac{cosleft(dfrac{1}{n}right)-sinleft(dfrac{1}{n}right)} {1-dfrac{1}{n}} $$ and note that $$n(a_n-1)=nleft(dfrac{ncosleft(dfrac{1}{n}right)-nsinleft(dfrac{1}{n}right)-n+1} {n-1}right) $$ and the above clearly tends to $0$ so that by lemma above $a_n^nto 1$ and therefore using $(2)$ the desired limit is $1/e$.






                                      share|cite|improve this answer









                                      $endgroup$



                                      Using the well known limit $$lim_{ntoinfty} left(1+frac{1}{n}right)^n=etag{1}$$ it is easy to prove that $$lim_{ntoinfty} left(1-frac{1}{n}right)^n=lim_{ntoinfty}dfrac{1}{left(1+dfrac{1}{n-1}right)^{n-1}}cdotfrac{n-1}{n}=frac{1}{e}tag{2}$$ Next we use the following lemma :




                                      Lemma: If ${a_n} $ is sequence such that $n(a_n-1)to 0$ then $a_n^nto 1$.




                                      We can now choose $$a_n=dfrac{cosleft(dfrac{1}{n}right)-sinleft(dfrac{1}{n}right)} {1-dfrac{1}{n}} $$ and note that $$n(a_n-1)=nleft(dfrac{ncosleft(dfrac{1}{n}right)-nsinleft(dfrac{1}{n}right)-n+1} {n-1}right) $$ and the above clearly tends to $0$ so that by lemma above $a_n^nto 1$ and therefore using $(2)$ the desired limit is $1/e$.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Jan 30 at 15:34









                                      Paramanand SinghParamanand Singh

                                      51.2k558170




                                      51.2k558170






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093466%2fevaluate-lim-limits-n-to-infty-left-cos1-n-sin1-n-right-n%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          MongoDB - Not Authorized To Execute Command

                                          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                                          How to fix TextFormField cause rebuild widget in Flutter