Evaluate $limlimits_{nto infty} left( cos(1/n)-sin(1/n) right) ^n $?
$begingroup$
How to calculate
$limlimits_{nto infty} left( cos(1/n)-sin(1/n) right) ^n $?
Since $limlimits_{nto infty} frac {cos(1/n)-sin(1/n) }{1-1/n} = 1 $, I guess that the limit above is $frac{1}{e}$, but since the form $(to 1)^{to infty}$ is indeterminate, I don't know how to prove it formally.
Thanks!
calculus limits
$endgroup$
add a comment |
$begingroup$
How to calculate
$limlimits_{nto infty} left( cos(1/n)-sin(1/n) right) ^n $?
Since $limlimits_{nto infty} frac {cos(1/n)-sin(1/n) }{1-1/n} = 1 $, I guess that the limit above is $frac{1}{e}$, but since the form $(to 1)^{to infty}$ is indeterminate, I don't know how to prove it formally.
Thanks!
calculus limits
$endgroup$
$begingroup$
You are right as $cos1/n-sin1/n=1-1/n+o(1/n)$.
$endgroup$
– Yves Daoust
Jan 30 at 13:17
add a comment |
$begingroup$
How to calculate
$limlimits_{nto infty} left( cos(1/n)-sin(1/n) right) ^n $?
Since $limlimits_{nto infty} frac {cos(1/n)-sin(1/n) }{1-1/n} = 1 $, I guess that the limit above is $frac{1}{e}$, but since the form $(to 1)^{to infty}$ is indeterminate, I don't know how to prove it formally.
Thanks!
calculus limits
$endgroup$
How to calculate
$limlimits_{nto infty} left( cos(1/n)-sin(1/n) right) ^n $?
Since $limlimits_{nto infty} frac {cos(1/n)-sin(1/n) }{1-1/n} = 1 $, I guess that the limit above is $frac{1}{e}$, but since the form $(to 1)^{to infty}$ is indeterminate, I don't know how to prove it formally.
Thanks!
calculus limits
calculus limits
edited Jan 30 at 19:58


Paramanand Singh
51.2k558170
51.2k558170
asked Jan 30 at 12:34
Dr. JohnDr. John
132
132
$begingroup$
You are right as $cos1/n-sin1/n=1-1/n+o(1/n)$.
$endgroup$
– Yves Daoust
Jan 30 at 13:17
add a comment |
$begingroup$
You are right as $cos1/n-sin1/n=1-1/n+o(1/n)$.
$endgroup$
– Yves Daoust
Jan 30 at 13:17
$begingroup$
You are right as $cos1/n-sin1/n=1-1/n+o(1/n)$.
$endgroup$
– Yves Daoust
Jan 30 at 13:17
$begingroup$
You are right as $cos1/n-sin1/n=1-1/n+o(1/n)$.
$endgroup$
– Yves Daoust
Jan 30 at 13:17
add a comment |
6 Answers
6
active
oldest
votes
$begingroup$
Use $$logleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right]^n = nlogleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right] = frac{logleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right]}{frac{1}{n}}$$
and then apply l'Hospital's rule.
$endgroup$
$begingroup$
You must first prove that the inner limit is not zero - otherwise the function is undefined at infinity.
$endgroup$
– Lucas Henrique
Jan 30 at 13:57
add a comment |
$begingroup$
You can get rid of the trigonometric functions by rewriting the exponent $n$ using
$$frac1n=dfrac{dfrac1n}{sindfrac1n}sindfrac1n.$$
As the larger fraction tends to $1$, it can be ignored.
Now, with $t:=sindfrac1n$, we have
$$lim_{tto0}left(sqrt{1-t^2}-tright)^{1/t}.$$
Using Taylor,
$$sqrt{1-t^2}-t=1-t+o(t)$$ and the limit is the same as
$$lim_{tto0}left(1-tright)^{1/t}.$$
Or by L'Hospital on the logarithm,
$$frac{log(sqrt{1-t^2}-t)}ttofrac{-dfrac t{sqrt{1-t^2}}-1}{sqrt{1-t^2}-t}to-1.$$
$endgroup$
add a comment |
$begingroup$
Since we recall that
$$sin x=x-{frac {x^{3}}{3!}}+{frac {x^{5}}{5!}}-cdots $$
and
$$cos x=1-{frac {x^{2}}{2!}}+{frac {x^{4}}{4!}}-cdots$$
for all $x$, then
$$cosleft(frac1nright)-sinleft(frac1nright)=1-frac1n+dots$$
and so
$$limlimits_{nto infty} left(cosleft(frac1nright)-sinleft(frac1nright) right) ^n=limlimits_{nto infty} left(1- frac1n right) ^n=e^{-1}, .$$
$endgroup$
$begingroup$
Thanks a lot!!!
$endgroup$
– Dr. John
Jan 31 at 20:13
add a comment |
$begingroup$
We have :
$limlimits_{nto infty} left( cos(frac{1}{n})-sin(frac{1}{n}) right) ^n$$=limlimits_{nto infty}(1+cos(frac{1}{n})-sin(frac{1}{n})-1)^n$$=limlimits_{nto infty}left[(1+cos(frac{1}{n})-sin(frac{1}{n})-1)^{frac{1}{cos(frac{1}{n})-sin(frac{1}{n})=1}}right]^{n(cos(frac{1}{n})-sin(frac{1}{n})-1)}$$=e^{limlimits_{nto infty}n(cos(frac{1}{n})-sin(frac{1}{n})-1)}$
But $limlimits_{nto infty}n(cos(frac{1}{n})-sin(frac{1}{n})-1)$$=limlimits_{nto infty}frac{cos(frac{1}{n})-sin(frac{1}{n})-1}{frac{1}{n}}$$=limlimits_{xto 0}frac{cos x-sin x-1}{x}$$=$$limlimits_{xto 0}(-sin x-cos x)=-1$,so your limit equals $frac{1}{e}$.
$endgroup$
add a comment |
$begingroup$
You may consider
$left(frac{cos x - sin x}{1-x}right)^{frac{1}{x}}$ for $xto 0$ and use
$lim_{tto 0} (1+t)^{frac{1}{t}}= e$
begin{eqnarray*} left(frac{cos x - sin x}{1-x}right)^{frac{1}{x}}
& = & left( underbrace{left(1 + frac{cos x - sin x -1 +x}{1-x}right)^{frac{1-x}{cos x - sin x -1 +x}}}_{stackrel{xto 0}{longrightarrow}e}right)^{underbrace{frac{cos x - sin x -1 +x}{x-x^2}}_{stackrel{L'Hop}{sim}frac{-sin x - cos x +1}{1-2x}stackrel{xto 0}{longrightarrow}0}}\
& stackrel{xto 0}{longrightarrow} & e^0 = 1
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
Using the well known limit $$lim_{ntoinfty} left(1+frac{1}{n}right)^n=etag{1}$$ it is easy to prove that $$lim_{ntoinfty} left(1-frac{1}{n}right)^n=lim_{ntoinfty}dfrac{1}{left(1+dfrac{1}{n-1}right)^{n-1}}cdotfrac{n-1}{n}=frac{1}{e}tag{2}$$ Next we use the following lemma :
Lemma: If ${a_n} $ is sequence such that $n(a_n-1)to 0$ then $a_n^nto 1$.
We can now choose $$a_n=dfrac{cosleft(dfrac{1}{n}right)-sinleft(dfrac{1}{n}right)} {1-dfrac{1}{n}} $$ and note that $$n(a_n-1)=nleft(dfrac{ncosleft(dfrac{1}{n}right)-nsinleft(dfrac{1}{n}right)-n+1} {n-1}right) $$ and the above clearly tends to $0$ so that by lemma above $a_n^nto 1$ and therefore using $(2)$ the desired limit is $1/e$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093466%2fevaluate-lim-limits-n-to-infty-left-cos1-n-sin1-n-right-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Use $$logleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right]^n = nlogleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right] = frac{logleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right]}{frac{1}{n}}$$
and then apply l'Hospital's rule.
$endgroup$
$begingroup$
You must first prove that the inner limit is not zero - otherwise the function is undefined at infinity.
$endgroup$
– Lucas Henrique
Jan 30 at 13:57
add a comment |
$begingroup$
Use $$logleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right]^n = nlogleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right] = frac{logleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right]}{frac{1}{n}}$$
and then apply l'Hospital's rule.
$endgroup$
$begingroup$
You must first prove that the inner limit is not zero - otherwise the function is undefined at infinity.
$endgroup$
– Lucas Henrique
Jan 30 at 13:57
add a comment |
$begingroup$
Use $$logleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right]^n = nlogleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right] = frac{logleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right]}{frac{1}{n}}$$
and then apply l'Hospital's rule.
$endgroup$
Use $$logleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right]^n = nlogleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right] = frac{logleft[cosleft(frac{1}{n}right)-sinleft(frac{1}{n}right)right]}{frac{1}{n}}$$
and then apply l'Hospital's rule.
answered Jan 30 at 12:44
KlausKlaus
2,955214
2,955214
$begingroup$
You must first prove that the inner limit is not zero - otherwise the function is undefined at infinity.
$endgroup$
– Lucas Henrique
Jan 30 at 13:57
add a comment |
$begingroup$
You must first prove that the inner limit is not zero - otherwise the function is undefined at infinity.
$endgroup$
– Lucas Henrique
Jan 30 at 13:57
$begingroup$
You must first prove that the inner limit is not zero - otherwise the function is undefined at infinity.
$endgroup$
– Lucas Henrique
Jan 30 at 13:57
$begingroup$
You must first prove that the inner limit is not zero - otherwise the function is undefined at infinity.
$endgroup$
– Lucas Henrique
Jan 30 at 13:57
add a comment |
$begingroup$
You can get rid of the trigonometric functions by rewriting the exponent $n$ using
$$frac1n=dfrac{dfrac1n}{sindfrac1n}sindfrac1n.$$
As the larger fraction tends to $1$, it can be ignored.
Now, with $t:=sindfrac1n$, we have
$$lim_{tto0}left(sqrt{1-t^2}-tright)^{1/t}.$$
Using Taylor,
$$sqrt{1-t^2}-t=1-t+o(t)$$ and the limit is the same as
$$lim_{tto0}left(1-tright)^{1/t}.$$
Or by L'Hospital on the logarithm,
$$frac{log(sqrt{1-t^2}-t)}ttofrac{-dfrac t{sqrt{1-t^2}}-1}{sqrt{1-t^2}-t}to-1.$$
$endgroup$
add a comment |
$begingroup$
You can get rid of the trigonometric functions by rewriting the exponent $n$ using
$$frac1n=dfrac{dfrac1n}{sindfrac1n}sindfrac1n.$$
As the larger fraction tends to $1$, it can be ignored.
Now, with $t:=sindfrac1n$, we have
$$lim_{tto0}left(sqrt{1-t^2}-tright)^{1/t}.$$
Using Taylor,
$$sqrt{1-t^2}-t=1-t+o(t)$$ and the limit is the same as
$$lim_{tto0}left(1-tright)^{1/t}.$$
Or by L'Hospital on the logarithm,
$$frac{log(sqrt{1-t^2}-t)}ttofrac{-dfrac t{sqrt{1-t^2}}-1}{sqrt{1-t^2}-t}to-1.$$
$endgroup$
add a comment |
$begingroup$
You can get rid of the trigonometric functions by rewriting the exponent $n$ using
$$frac1n=dfrac{dfrac1n}{sindfrac1n}sindfrac1n.$$
As the larger fraction tends to $1$, it can be ignored.
Now, with $t:=sindfrac1n$, we have
$$lim_{tto0}left(sqrt{1-t^2}-tright)^{1/t}.$$
Using Taylor,
$$sqrt{1-t^2}-t=1-t+o(t)$$ and the limit is the same as
$$lim_{tto0}left(1-tright)^{1/t}.$$
Or by L'Hospital on the logarithm,
$$frac{log(sqrt{1-t^2}-t)}ttofrac{-dfrac t{sqrt{1-t^2}}-1}{sqrt{1-t^2}-t}to-1.$$
$endgroup$
You can get rid of the trigonometric functions by rewriting the exponent $n$ using
$$frac1n=dfrac{dfrac1n}{sindfrac1n}sindfrac1n.$$
As the larger fraction tends to $1$, it can be ignored.
Now, with $t:=sindfrac1n$, we have
$$lim_{tto0}left(sqrt{1-t^2}-tright)^{1/t}.$$
Using Taylor,
$$sqrt{1-t^2}-t=1-t+o(t)$$ and the limit is the same as
$$lim_{tto0}left(1-tright)^{1/t}.$$
Or by L'Hospital on the logarithm,
$$frac{log(sqrt{1-t^2}-t)}ttofrac{-dfrac t{sqrt{1-t^2}}-1}{sqrt{1-t^2}-t}to-1.$$
edited Jan 30 at 13:39
answered Jan 30 at 13:33
Yves DaoustYves Daoust
132k676230
132k676230
add a comment |
add a comment |
$begingroup$
Since we recall that
$$sin x=x-{frac {x^{3}}{3!}}+{frac {x^{5}}{5!}}-cdots $$
and
$$cos x=1-{frac {x^{2}}{2!}}+{frac {x^{4}}{4!}}-cdots$$
for all $x$, then
$$cosleft(frac1nright)-sinleft(frac1nright)=1-frac1n+dots$$
and so
$$limlimits_{nto infty} left(cosleft(frac1nright)-sinleft(frac1nright) right) ^n=limlimits_{nto infty} left(1- frac1n right) ^n=e^{-1}, .$$
$endgroup$
$begingroup$
Thanks a lot!!!
$endgroup$
– Dr. John
Jan 31 at 20:13
add a comment |
$begingroup$
Since we recall that
$$sin x=x-{frac {x^{3}}{3!}}+{frac {x^{5}}{5!}}-cdots $$
and
$$cos x=1-{frac {x^{2}}{2!}}+{frac {x^{4}}{4!}}-cdots$$
for all $x$, then
$$cosleft(frac1nright)-sinleft(frac1nright)=1-frac1n+dots$$
and so
$$limlimits_{nto infty} left(cosleft(frac1nright)-sinleft(frac1nright) right) ^n=limlimits_{nto infty} left(1- frac1n right) ^n=e^{-1}, .$$
$endgroup$
$begingroup$
Thanks a lot!!!
$endgroup$
– Dr. John
Jan 31 at 20:13
add a comment |
$begingroup$
Since we recall that
$$sin x=x-{frac {x^{3}}{3!}}+{frac {x^{5}}{5!}}-cdots $$
and
$$cos x=1-{frac {x^{2}}{2!}}+{frac {x^{4}}{4!}}-cdots$$
for all $x$, then
$$cosleft(frac1nright)-sinleft(frac1nright)=1-frac1n+dots$$
and so
$$limlimits_{nto infty} left(cosleft(frac1nright)-sinleft(frac1nright) right) ^n=limlimits_{nto infty} left(1- frac1n right) ^n=e^{-1}, .$$
$endgroup$
Since we recall that
$$sin x=x-{frac {x^{3}}{3!}}+{frac {x^{5}}{5!}}-cdots $$
and
$$cos x=1-{frac {x^{2}}{2!}}+{frac {x^{4}}{4!}}-cdots$$
for all $x$, then
$$cosleft(frac1nright)-sinleft(frac1nright)=1-frac1n+dots$$
and so
$$limlimits_{nto infty} left(cosleft(frac1nright)-sinleft(frac1nright) right) ^n=limlimits_{nto infty} left(1- frac1n right) ^n=e^{-1}, .$$
answered Jan 30 at 13:51
MarkMark
3,46151947
3,46151947
$begingroup$
Thanks a lot!!!
$endgroup$
– Dr. John
Jan 31 at 20:13
add a comment |
$begingroup$
Thanks a lot!!!
$endgroup$
– Dr. John
Jan 31 at 20:13
$begingroup$
Thanks a lot!!!
$endgroup$
– Dr. John
Jan 31 at 20:13
$begingroup$
Thanks a lot!!!
$endgroup$
– Dr. John
Jan 31 at 20:13
add a comment |
$begingroup$
We have :
$limlimits_{nto infty} left( cos(frac{1}{n})-sin(frac{1}{n}) right) ^n$$=limlimits_{nto infty}(1+cos(frac{1}{n})-sin(frac{1}{n})-1)^n$$=limlimits_{nto infty}left[(1+cos(frac{1}{n})-sin(frac{1}{n})-1)^{frac{1}{cos(frac{1}{n})-sin(frac{1}{n})=1}}right]^{n(cos(frac{1}{n})-sin(frac{1}{n})-1)}$$=e^{limlimits_{nto infty}n(cos(frac{1}{n})-sin(frac{1}{n})-1)}$
But $limlimits_{nto infty}n(cos(frac{1}{n})-sin(frac{1}{n})-1)$$=limlimits_{nto infty}frac{cos(frac{1}{n})-sin(frac{1}{n})-1}{frac{1}{n}}$$=limlimits_{xto 0}frac{cos x-sin x-1}{x}$$=$$limlimits_{xto 0}(-sin x-cos x)=-1$,so your limit equals $frac{1}{e}$.
$endgroup$
add a comment |
$begingroup$
We have :
$limlimits_{nto infty} left( cos(frac{1}{n})-sin(frac{1}{n}) right) ^n$$=limlimits_{nto infty}(1+cos(frac{1}{n})-sin(frac{1}{n})-1)^n$$=limlimits_{nto infty}left[(1+cos(frac{1}{n})-sin(frac{1}{n})-1)^{frac{1}{cos(frac{1}{n})-sin(frac{1}{n})=1}}right]^{n(cos(frac{1}{n})-sin(frac{1}{n})-1)}$$=e^{limlimits_{nto infty}n(cos(frac{1}{n})-sin(frac{1}{n})-1)}$
But $limlimits_{nto infty}n(cos(frac{1}{n})-sin(frac{1}{n})-1)$$=limlimits_{nto infty}frac{cos(frac{1}{n})-sin(frac{1}{n})-1}{frac{1}{n}}$$=limlimits_{xto 0}frac{cos x-sin x-1}{x}$$=$$limlimits_{xto 0}(-sin x-cos x)=-1$,so your limit equals $frac{1}{e}$.
$endgroup$
add a comment |
$begingroup$
We have :
$limlimits_{nto infty} left( cos(frac{1}{n})-sin(frac{1}{n}) right) ^n$$=limlimits_{nto infty}(1+cos(frac{1}{n})-sin(frac{1}{n})-1)^n$$=limlimits_{nto infty}left[(1+cos(frac{1}{n})-sin(frac{1}{n})-1)^{frac{1}{cos(frac{1}{n})-sin(frac{1}{n})=1}}right]^{n(cos(frac{1}{n})-sin(frac{1}{n})-1)}$$=e^{limlimits_{nto infty}n(cos(frac{1}{n})-sin(frac{1}{n})-1)}$
But $limlimits_{nto infty}n(cos(frac{1}{n})-sin(frac{1}{n})-1)$$=limlimits_{nto infty}frac{cos(frac{1}{n})-sin(frac{1}{n})-1}{frac{1}{n}}$$=limlimits_{xto 0}frac{cos x-sin x-1}{x}$$=$$limlimits_{xto 0}(-sin x-cos x)=-1$,so your limit equals $frac{1}{e}$.
$endgroup$
We have :
$limlimits_{nto infty} left( cos(frac{1}{n})-sin(frac{1}{n}) right) ^n$$=limlimits_{nto infty}(1+cos(frac{1}{n})-sin(frac{1}{n})-1)^n$$=limlimits_{nto infty}left[(1+cos(frac{1}{n})-sin(frac{1}{n})-1)^{frac{1}{cos(frac{1}{n})-sin(frac{1}{n})=1}}right]^{n(cos(frac{1}{n})-sin(frac{1}{n})-1)}$$=e^{limlimits_{nto infty}n(cos(frac{1}{n})-sin(frac{1}{n})-1)}$
But $limlimits_{nto infty}n(cos(frac{1}{n})-sin(frac{1}{n})-1)$$=limlimits_{nto infty}frac{cos(frac{1}{n})-sin(frac{1}{n})-1}{frac{1}{n}}$$=limlimits_{xto 0}frac{cos x-sin x-1}{x}$$=$$limlimits_{xto 0}(-sin x-cos x)=-1$,so your limit equals $frac{1}{e}$.
answered Jan 30 at 21:57
AlexdanutAlexdanut
1738
1738
add a comment |
add a comment |
$begingroup$
You may consider
$left(frac{cos x - sin x}{1-x}right)^{frac{1}{x}}$ for $xto 0$ and use
$lim_{tto 0} (1+t)^{frac{1}{t}}= e$
begin{eqnarray*} left(frac{cos x - sin x}{1-x}right)^{frac{1}{x}}
& = & left( underbrace{left(1 + frac{cos x - sin x -1 +x}{1-x}right)^{frac{1-x}{cos x - sin x -1 +x}}}_{stackrel{xto 0}{longrightarrow}e}right)^{underbrace{frac{cos x - sin x -1 +x}{x-x^2}}_{stackrel{L'Hop}{sim}frac{-sin x - cos x +1}{1-2x}stackrel{xto 0}{longrightarrow}0}}\
& stackrel{xto 0}{longrightarrow} & e^0 = 1
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
You may consider
$left(frac{cos x - sin x}{1-x}right)^{frac{1}{x}}$ for $xto 0$ and use
$lim_{tto 0} (1+t)^{frac{1}{t}}= e$
begin{eqnarray*} left(frac{cos x - sin x}{1-x}right)^{frac{1}{x}}
& = & left( underbrace{left(1 + frac{cos x - sin x -1 +x}{1-x}right)^{frac{1-x}{cos x - sin x -1 +x}}}_{stackrel{xto 0}{longrightarrow}e}right)^{underbrace{frac{cos x - sin x -1 +x}{x-x^2}}_{stackrel{L'Hop}{sim}frac{-sin x - cos x +1}{1-2x}stackrel{xto 0}{longrightarrow}0}}\
& stackrel{xto 0}{longrightarrow} & e^0 = 1
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
You may consider
$left(frac{cos x - sin x}{1-x}right)^{frac{1}{x}}$ for $xto 0$ and use
$lim_{tto 0} (1+t)^{frac{1}{t}}= e$
begin{eqnarray*} left(frac{cos x - sin x}{1-x}right)^{frac{1}{x}}
& = & left( underbrace{left(1 + frac{cos x - sin x -1 +x}{1-x}right)^{frac{1-x}{cos x - sin x -1 +x}}}_{stackrel{xto 0}{longrightarrow}e}right)^{underbrace{frac{cos x - sin x -1 +x}{x-x^2}}_{stackrel{L'Hop}{sim}frac{-sin x - cos x +1}{1-2x}stackrel{xto 0}{longrightarrow}0}}\
& stackrel{xto 0}{longrightarrow} & e^0 = 1
end{eqnarray*}
$endgroup$
You may consider
$left(frac{cos x - sin x}{1-x}right)^{frac{1}{x}}$ for $xto 0$ and use
$lim_{tto 0} (1+t)^{frac{1}{t}}= e$
begin{eqnarray*} left(frac{cos x - sin x}{1-x}right)^{frac{1}{x}}
& = & left( underbrace{left(1 + frac{cos x - sin x -1 +x}{1-x}right)^{frac{1-x}{cos x - sin x -1 +x}}}_{stackrel{xto 0}{longrightarrow}e}right)^{underbrace{frac{cos x - sin x -1 +x}{x-x^2}}_{stackrel{L'Hop}{sim}frac{-sin x - cos x +1}{1-2x}stackrel{xto 0}{longrightarrow}0}}\
& stackrel{xto 0}{longrightarrow} & e^0 = 1
end{eqnarray*}
answered Jan 30 at 13:23
trancelocationtrancelocation
13.6k1828
13.6k1828
add a comment |
add a comment |
$begingroup$
Using the well known limit $$lim_{ntoinfty} left(1+frac{1}{n}right)^n=etag{1}$$ it is easy to prove that $$lim_{ntoinfty} left(1-frac{1}{n}right)^n=lim_{ntoinfty}dfrac{1}{left(1+dfrac{1}{n-1}right)^{n-1}}cdotfrac{n-1}{n}=frac{1}{e}tag{2}$$ Next we use the following lemma :
Lemma: If ${a_n} $ is sequence such that $n(a_n-1)to 0$ then $a_n^nto 1$.
We can now choose $$a_n=dfrac{cosleft(dfrac{1}{n}right)-sinleft(dfrac{1}{n}right)} {1-dfrac{1}{n}} $$ and note that $$n(a_n-1)=nleft(dfrac{ncosleft(dfrac{1}{n}right)-nsinleft(dfrac{1}{n}right)-n+1} {n-1}right) $$ and the above clearly tends to $0$ so that by lemma above $a_n^nto 1$ and therefore using $(2)$ the desired limit is $1/e$.
$endgroup$
add a comment |
$begingroup$
Using the well known limit $$lim_{ntoinfty} left(1+frac{1}{n}right)^n=etag{1}$$ it is easy to prove that $$lim_{ntoinfty} left(1-frac{1}{n}right)^n=lim_{ntoinfty}dfrac{1}{left(1+dfrac{1}{n-1}right)^{n-1}}cdotfrac{n-1}{n}=frac{1}{e}tag{2}$$ Next we use the following lemma :
Lemma: If ${a_n} $ is sequence such that $n(a_n-1)to 0$ then $a_n^nto 1$.
We can now choose $$a_n=dfrac{cosleft(dfrac{1}{n}right)-sinleft(dfrac{1}{n}right)} {1-dfrac{1}{n}} $$ and note that $$n(a_n-1)=nleft(dfrac{ncosleft(dfrac{1}{n}right)-nsinleft(dfrac{1}{n}right)-n+1} {n-1}right) $$ and the above clearly tends to $0$ so that by lemma above $a_n^nto 1$ and therefore using $(2)$ the desired limit is $1/e$.
$endgroup$
add a comment |
$begingroup$
Using the well known limit $$lim_{ntoinfty} left(1+frac{1}{n}right)^n=etag{1}$$ it is easy to prove that $$lim_{ntoinfty} left(1-frac{1}{n}right)^n=lim_{ntoinfty}dfrac{1}{left(1+dfrac{1}{n-1}right)^{n-1}}cdotfrac{n-1}{n}=frac{1}{e}tag{2}$$ Next we use the following lemma :
Lemma: If ${a_n} $ is sequence such that $n(a_n-1)to 0$ then $a_n^nto 1$.
We can now choose $$a_n=dfrac{cosleft(dfrac{1}{n}right)-sinleft(dfrac{1}{n}right)} {1-dfrac{1}{n}} $$ and note that $$n(a_n-1)=nleft(dfrac{ncosleft(dfrac{1}{n}right)-nsinleft(dfrac{1}{n}right)-n+1} {n-1}right) $$ and the above clearly tends to $0$ so that by lemma above $a_n^nto 1$ and therefore using $(2)$ the desired limit is $1/e$.
$endgroup$
Using the well known limit $$lim_{ntoinfty} left(1+frac{1}{n}right)^n=etag{1}$$ it is easy to prove that $$lim_{ntoinfty} left(1-frac{1}{n}right)^n=lim_{ntoinfty}dfrac{1}{left(1+dfrac{1}{n-1}right)^{n-1}}cdotfrac{n-1}{n}=frac{1}{e}tag{2}$$ Next we use the following lemma :
Lemma: If ${a_n} $ is sequence such that $n(a_n-1)to 0$ then $a_n^nto 1$.
We can now choose $$a_n=dfrac{cosleft(dfrac{1}{n}right)-sinleft(dfrac{1}{n}right)} {1-dfrac{1}{n}} $$ and note that $$n(a_n-1)=nleft(dfrac{ncosleft(dfrac{1}{n}right)-nsinleft(dfrac{1}{n}right)-n+1} {n-1}right) $$ and the above clearly tends to $0$ so that by lemma above $a_n^nto 1$ and therefore using $(2)$ the desired limit is $1/e$.
answered Jan 30 at 15:34


Paramanand SinghParamanand Singh
51.2k558170
51.2k558170
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093466%2fevaluate-lim-limits-n-to-infty-left-cos1-n-sin1-n-right-n%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
You are right as $cos1/n-sin1/n=1-1/n+o(1/n)$.
$endgroup$
– Yves Daoust
Jan 30 at 13:17