If $f(x)$ is continuous, then $f(x+t)$ is continuous.












1












$begingroup$


This might be an obvious question, but I couldn't prove it rigorously.



Suppose $f(x)$ is continuous at every $a$. Then, for every a for every $e>0$, there exists $d>0$ such that $(|x-a|<d Rightarrow left|f(x)-f(a)right|<e).$



Let $g(x)=g(x+t)$.
I want to show that for every $a$ for every $e>0$, there exists $d>0$ such that $(|x-a|<d Rightarrow left|g(x)-g(a)right|<e).$



begin{align*}
|g(x)-g(a)| &=|f(x+t)-f(a+t)|\
&=|f(x+t)-f(x)+f(x)-f(a+t)| \
& leq |f(x+t)-f(x)|+|f(x)-f(a+t)|\
&=|f(x+t)-f(x)|+|f(x)-f(a)+f(a)-f(a+t)| \
& leq |f(x+t)-f(x)|+|f(x)-f(a)|+|f(a)-f(a+t)|.
end{align*}



But I dont know how to go further. I've spent so much time on this simple problem, but still cant figure it out.



Thanks!










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Just use the fact that the function $x to x + t$ is continuous.
    $endgroup$
    – anomaly
    Jan 30 at 22:34






  • 1




    $begingroup$
    what @anomaly said coupled with the fact that continuity is preserved under composition of continuous functions
    $endgroup$
    – rapidracim
    Jan 30 at 22:41










  • $begingroup$
    Oh I see, it was so easy. Thanks a lot!
    $endgroup$
    – Madison
    Jan 30 at 22:47










  • $begingroup$
    Hint $|x-a|=|(x+t)-(a+t)|$ so apply continuity in points $X=x+t$ and $A=a+t$ then $|f(X)-f(A)|<epsilon$.
    $endgroup$
    – zwim
    Jan 30 at 23:12










  • $begingroup$
    Wow, yes, thanks!
    $endgroup$
    – Madison
    Jan 31 at 2:15
















1












$begingroup$


This might be an obvious question, but I couldn't prove it rigorously.



Suppose $f(x)$ is continuous at every $a$. Then, for every a for every $e>0$, there exists $d>0$ such that $(|x-a|<d Rightarrow left|f(x)-f(a)right|<e).$



Let $g(x)=g(x+t)$.
I want to show that for every $a$ for every $e>0$, there exists $d>0$ such that $(|x-a|<d Rightarrow left|g(x)-g(a)right|<e).$



begin{align*}
|g(x)-g(a)| &=|f(x+t)-f(a+t)|\
&=|f(x+t)-f(x)+f(x)-f(a+t)| \
& leq |f(x+t)-f(x)|+|f(x)-f(a+t)|\
&=|f(x+t)-f(x)|+|f(x)-f(a)+f(a)-f(a+t)| \
& leq |f(x+t)-f(x)|+|f(x)-f(a)|+|f(a)-f(a+t)|.
end{align*}



But I dont know how to go further. I've spent so much time on this simple problem, but still cant figure it out.



Thanks!










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Just use the fact that the function $x to x + t$ is continuous.
    $endgroup$
    – anomaly
    Jan 30 at 22:34






  • 1




    $begingroup$
    what @anomaly said coupled with the fact that continuity is preserved under composition of continuous functions
    $endgroup$
    – rapidracim
    Jan 30 at 22:41










  • $begingroup$
    Oh I see, it was so easy. Thanks a lot!
    $endgroup$
    – Madison
    Jan 30 at 22:47










  • $begingroup$
    Hint $|x-a|=|(x+t)-(a+t)|$ so apply continuity in points $X=x+t$ and $A=a+t$ then $|f(X)-f(A)|<epsilon$.
    $endgroup$
    – zwim
    Jan 30 at 23:12










  • $begingroup$
    Wow, yes, thanks!
    $endgroup$
    – Madison
    Jan 31 at 2:15














1












1








1





$begingroup$


This might be an obvious question, but I couldn't prove it rigorously.



Suppose $f(x)$ is continuous at every $a$. Then, for every a for every $e>0$, there exists $d>0$ such that $(|x-a|<d Rightarrow left|f(x)-f(a)right|<e).$



Let $g(x)=g(x+t)$.
I want to show that for every $a$ for every $e>0$, there exists $d>0$ such that $(|x-a|<d Rightarrow left|g(x)-g(a)right|<e).$



begin{align*}
|g(x)-g(a)| &=|f(x+t)-f(a+t)|\
&=|f(x+t)-f(x)+f(x)-f(a+t)| \
& leq |f(x+t)-f(x)|+|f(x)-f(a+t)|\
&=|f(x+t)-f(x)|+|f(x)-f(a)+f(a)-f(a+t)| \
& leq |f(x+t)-f(x)|+|f(x)-f(a)|+|f(a)-f(a+t)|.
end{align*}



But I dont know how to go further. I've spent so much time on this simple problem, but still cant figure it out.



Thanks!










share|cite|improve this question











$endgroup$




This might be an obvious question, but I couldn't prove it rigorously.



Suppose $f(x)$ is continuous at every $a$. Then, for every a for every $e>0$, there exists $d>0$ such that $(|x-a|<d Rightarrow left|f(x)-f(a)right|<e).$



Let $g(x)=g(x+t)$.
I want to show that for every $a$ for every $e>0$, there exists $d>0$ such that $(|x-a|<d Rightarrow left|g(x)-g(a)right|<e).$



begin{align*}
|g(x)-g(a)| &=|f(x+t)-f(a+t)|\
&=|f(x+t)-f(x)+f(x)-f(a+t)| \
& leq |f(x+t)-f(x)|+|f(x)-f(a+t)|\
&=|f(x+t)-f(x)|+|f(x)-f(a)+f(a)-f(a+t)| \
& leq |f(x+t)-f(x)|+|f(x)-f(a)|+|f(a)-f(a+t)|.
end{align*}



But I dont know how to go further. I've spent so much time on this simple problem, but still cant figure it out.



Thanks!







real-analysis continuity






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 30 at 22:48









Adam Higgins

613113




613113










asked Jan 30 at 22:33









MadisonMadison

112




112








  • 2




    $begingroup$
    Just use the fact that the function $x to x + t$ is continuous.
    $endgroup$
    – anomaly
    Jan 30 at 22:34






  • 1




    $begingroup$
    what @anomaly said coupled with the fact that continuity is preserved under composition of continuous functions
    $endgroup$
    – rapidracim
    Jan 30 at 22:41










  • $begingroup$
    Oh I see, it was so easy. Thanks a lot!
    $endgroup$
    – Madison
    Jan 30 at 22:47










  • $begingroup$
    Hint $|x-a|=|(x+t)-(a+t)|$ so apply continuity in points $X=x+t$ and $A=a+t$ then $|f(X)-f(A)|<epsilon$.
    $endgroup$
    – zwim
    Jan 30 at 23:12










  • $begingroup$
    Wow, yes, thanks!
    $endgroup$
    – Madison
    Jan 31 at 2:15














  • 2




    $begingroup$
    Just use the fact that the function $x to x + t$ is continuous.
    $endgroup$
    – anomaly
    Jan 30 at 22:34






  • 1




    $begingroup$
    what @anomaly said coupled with the fact that continuity is preserved under composition of continuous functions
    $endgroup$
    – rapidracim
    Jan 30 at 22:41










  • $begingroup$
    Oh I see, it was so easy. Thanks a lot!
    $endgroup$
    – Madison
    Jan 30 at 22:47










  • $begingroup$
    Hint $|x-a|=|(x+t)-(a+t)|$ so apply continuity in points $X=x+t$ and $A=a+t$ then $|f(X)-f(A)|<epsilon$.
    $endgroup$
    – zwim
    Jan 30 at 23:12










  • $begingroup$
    Wow, yes, thanks!
    $endgroup$
    – Madison
    Jan 31 at 2:15








2




2




$begingroup$
Just use the fact that the function $x to x + t$ is continuous.
$endgroup$
– anomaly
Jan 30 at 22:34




$begingroup$
Just use the fact that the function $x to x + t$ is continuous.
$endgroup$
– anomaly
Jan 30 at 22:34




1




1




$begingroup$
what @anomaly said coupled with the fact that continuity is preserved under composition of continuous functions
$endgroup$
– rapidracim
Jan 30 at 22:41




$begingroup$
what @anomaly said coupled with the fact that continuity is preserved under composition of continuous functions
$endgroup$
– rapidracim
Jan 30 at 22:41












$begingroup$
Oh I see, it was so easy. Thanks a lot!
$endgroup$
– Madison
Jan 30 at 22:47




$begingroup$
Oh I see, it was so easy. Thanks a lot!
$endgroup$
– Madison
Jan 30 at 22:47












$begingroup$
Hint $|x-a|=|(x+t)-(a+t)|$ so apply continuity in points $X=x+t$ and $A=a+t$ then $|f(X)-f(A)|<epsilon$.
$endgroup$
– zwim
Jan 30 at 23:12




$begingroup$
Hint $|x-a|=|(x+t)-(a+t)|$ so apply continuity in points $X=x+t$ and $A=a+t$ then $|f(X)-f(A)|<epsilon$.
$endgroup$
– zwim
Jan 30 at 23:12












$begingroup$
Wow, yes, thanks!
$endgroup$
– Madison
Jan 31 at 2:15




$begingroup$
Wow, yes, thanks!
$endgroup$
– Madison
Jan 31 at 2:15










0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094211%2fif-fx-is-continuous-then-fxt-is-continuous%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094211%2fif-fx-is-continuous-then-fxt-is-continuous%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]