Show that $a^{(p-1)!+1} equiv a mod p$












0












$begingroup$


I'm working in the following excercise:




Show that $a^{(p-1)!+1} equiv a mod p$




By Wilson's theorem I have:



$$a^{(p-1)!} equiv -1 mod p$$
$$a^{(p-1)!} * a equiv -1 * amod p$$
$$a^{(p-1)!+1} equiv -a mod p$$
$$a^{(p-1)!+1} equiv a mod p$$



I'm not sure about my proof, is that correct? any help will be really appreciated.










share|cite|improve this question









$endgroup$








  • 3




    $begingroup$
    Why can you suddenly rid of the minus sign?
    $endgroup$
    – Randall
    Jan 30 at 22:05






  • 1




    $begingroup$
    How can you justify that $-aequiv a pmod p$?
    $endgroup$
    – fleablood
    Jan 30 at 22:06






  • 1




    $begingroup$
    How does wilson's th which states $(p-1)! equiv -1 pmod p$ make you assume $a^{(p-1)!}equiv a pmod p$?
    $endgroup$
    – fleablood
    Jan 30 at 22:08
















0












$begingroup$


I'm working in the following excercise:




Show that $a^{(p-1)!+1} equiv a mod p$




By Wilson's theorem I have:



$$a^{(p-1)!} equiv -1 mod p$$
$$a^{(p-1)!} * a equiv -1 * amod p$$
$$a^{(p-1)!+1} equiv -a mod p$$
$$a^{(p-1)!+1} equiv a mod p$$



I'm not sure about my proof, is that correct? any help will be really appreciated.










share|cite|improve this question









$endgroup$








  • 3




    $begingroup$
    Why can you suddenly rid of the minus sign?
    $endgroup$
    – Randall
    Jan 30 at 22:05






  • 1




    $begingroup$
    How can you justify that $-aequiv a pmod p$?
    $endgroup$
    – fleablood
    Jan 30 at 22:06






  • 1




    $begingroup$
    How does wilson's th which states $(p-1)! equiv -1 pmod p$ make you assume $a^{(p-1)!}equiv a pmod p$?
    $endgroup$
    – fleablood
    Jan 30 at 22:08














0












0








0





$begingroup$


I'm working in the following excercise:




Show that $a^{(p-1)!+1} equiv a mod p$




By Wilson's theorem I have:



$$a^{(p-1)!} equiv -1 mod p$$
$$a^{(p-1)!} * a equiv -1 * amod p$$
$$a^{(p-1)!+1} equiv -a mod p$$
$$a^{(p-1)!+1} equiv a mod p$$



I'm not sure about my proof, is that correct? any help will be really appreciated.










share|cite|improve this question









$endgroup$




I'm working in the following excercise:




Show that $a^{(p-1)!+1} equiv a mod p$




By Wilson's theorem I have:



$$a^{(p-1)!} equiv -1 mod p$$
$$a^{(p-1)!} * a equiv -1 * amod p$$
$$a^{(p-1)!+1} equiv -a mod p$$
$$a^{(p-1)!+1} equiv a mod p$$



I'm not sure about my proof, is that correct? any help will be really appreciated.







number-theory modular-arithmetic






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 30 at 21:57









mrazmraz

450110




450110








  • 3




    $begingroup$
    Why can you suddenly rid of the minus sign?
    $endgroup$
    – Randall
    Jan 30 at 22:05






  • 1




    $begingroup$
    How can you justify that $-aequiv a pmod p$?
    $endgroup$
    – fleablood
    Jan 30 at 22:06






  • 1




    $begingroup$
    How does wilson's th which states $(p-1)! equiv -1 pmod p$ make you assume $a^{(p-1)!}equiv a pmod p$?
    $endgroup$
    – fleablood
    Jan 30 at 22:08














  • 3




    $begingroup$
    Why can you suddenly rid of the minus sign?
    $endgroup$
    – Randall
    Jan 30 at 22:05






  • 1




    $begingroup$
    How can you justify that $-aequiv a pmod p$?
    $endgroup$
    – fleablood
    Jan 30 at 22:06






  • 1




    $begingroup$
    How does wilson's th which states $(p-1)! equiv -1 pmod p$ make you assume $a^{(p-1)!}equiv a pmod p$?
    $endgroup$
    – fleablood
    Jan 30 at 22:08








3




3




$begingroup$
Why can you suddenly rid of the minus sign?
$endgroup$
– Randall
Jan 30 at 22:05




$begingroup$
Why can you suddenly rid of the minus sign?
$endgroup$
– Randall
Jan 30 at 22:05




1




1




$begingroup$
How can you justify that $-aequiv a pmod p$?
$endgroup$
– fleablood
Jan 30 at 22:06




$begingroup$
How can you justify that $-aequiv a pmod p$?
$endgroup$
– fleablood
Jan 30 at 22:06




1




1




$begingroup$
How does wilson's th which states $(p-1)! equiv -1 pmod p$ make you assume $a^{(p-1)!}equiv a pmod p$?
$endgroup$
– fleablood
Jan 30 at 22:08




$begingroup$
How does wilson's th which states $(p-1)! equiv -1 pmod p$ make you assume $a^{(p-1)!}equiv a pmod p$?
$endgroup$
– fleablood
Jan 30 at 22:08










1 Answer
1






active

oldest

votes


















2












$begingroup$

Actually it is $a^{(p-1)!} equiv 1$ mod $p$ (not $-1$). Indeed, $a^{k(p-1)} equiv 1$ for any integer $k$, as $|(mathbb{F}_p)^{times}| = p-1.$



[In general, let $G$ be any group. Then for every element $g in G$, the equation $g^{k|G|} = e$ holds for any positive integer $k$, where $e$ is the identity element. Here set $G = (mathbb{F}_p)^{times}$ where the operation is multiplcation.]






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094173%2fshow-that-ap-11-equiv-a-mod-p%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Actually it is $a^{(p-1)!} equiv 1$ mod $p$ (not $-1$). Indeed, $a^{k(p-1)} equiv 1$ for any integer $k$, as $|(mathbb{F}_p)^{times}| = p-1.$



    [In general, let $G$ be any group. Then for every element $g in G$, the equation $g^{k|G|} = e$ holds for any positive integer $k$, where $e$ is the identity element. Here set $G = (mathbb{F}_p)^{times}$ where the operation is multiplcation.]






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      Actually it is $a^{(p-1)!} equiv 1$ mod $p$ (not $-1$). Indeed, $a^{k(p-1)} equiv 1$ for any integer $k$, as $|(mathbb{F}_p)^{times}| = p-1.$



      [In general, let $G$ be any group. Then for every element $g in G$, the equation $g^{k|G|} = e$ holds for any positive integer $k$, where $e$ is the identity element. Here set $G = (mathbb{F}_p)^{times}$ where the operation is multiplcation.]






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        Actually it is $a^{(p-1)!} equiv 1$ mod $p$ (not $-1$). Indeed, $a^{k(p-1)} equiv 1$ for any integer $k$, as $|(mathbb{F}_p)^{times}| = p-1.$



        [In general, let $G$ be any group. Then for every element $g in G$, the equation $g^{k|G|} = e$ holds for any positive integer $k$, where $e$ is the identity element. Here set $G = (mathbb{F}_p)^{times}$ where the operation is multiplcation.]






        share|cite|improve this answer









        $endgroup$



        Actually it is $a^{(p-1)!} equiv 1$ mod $p$ (not $-1$). Indeed, $a^{k(p-1)} equiv 1$ for any integer $k$, as $|(mathbb{F}_p)^{times}| = p-1.$



        [In general, let $G$ be any group. Then for every element $g in G$, the equation $g^{k|G|} = e$ holds for any positive integer $k$, where $e$ is the identity element. Here set $G = (mathbb{F}_p)^{times}$ where the operation is multiplcation.]







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 30 at 22:07









        MikeMike

        4,611512




        4,611512






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094173%2fshow-that-ap-11-equiv-a-mod-p%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

            Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

            A Topological Invariant for $pi_3(U(n))$