Evaluate $sum_{n=1}^{infty}arctan(frac{2}{n^2})$?












2












$begingroup$


$$begin{align}
sum_{n=1}^{infty}arctanleft(frac{2}{n^2}right)&=sum_{n=1}^{infty}arctanleft(frac{(n+1)-(n-1)}{1+(n+1)(n-1)}right)\
&=sum_{n=1}^{infty}arctan(n+1)-arctan(n-1)\
&= fracpi4
end{align}$$



Is this correct?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I think the process is good and correct.
    $endgroup$
    – Offlaw
    Jan 31 at 2:07
















2












$begingroup$


$$begin{align}
sum_{n=1}^{infty}arctanleft(frac{2}{n^2}right)&=sum_{n=1}^{infty}arctanleft(frac{(n+1)-(n-1)}{1+(n+1)(n-1)}right)\
&=sum_{n=1}^{infty}arctan(n+1)-arctan(n-1)\
&= fracpi4
end{align}$$



Is this correct?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I think the process is good and correct.
    $endgroup$
    – Offlaw
    Jan 31 at 2:07














2












2








2


1



$begingroup$


$$begin{align}
sum_{n=1}^{infty}arctanleft(frac{2}{n^2}right)&=sum_{n=1}^{infty}arctanleft(frac{(n+1)-(n-1)}{1+(n+1)(n-1)}right)\
&=sum_{n=1}^{infty}arctan(n+1)-arctan(n-1)\
&= fracpi4
end{align}$$



Is this correct?










share|cite|improve this question











$endgroup$




$$begin{align}
sum_{n=1}^{infty}arctanleft(frac{2}{n^2}right)&=sum_{n=1}^{infty}arctanleft(frac{(n+1)-(n-1)}{1+(n+1)(n-1)}right)\
&=sum_{n=1}^{infty}arctan(n+1)-arctan(n-1)\
&= fracpi4
end{align}$$



Is this correct?







sequences-and-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 31 at 2:28









Larry

2,53031131




2,53031131










asked Jan 31 at 2:04









AbhayAbhay

3789




3789












  • $begingroup$
    I think the process is good and correct.
    $endgroup$
    – Offlaw
    Jan 31 at 2:07


















  • $begingroup$
    I think the process is good and correct.
    $endgroup$
    – Offlaw
    Jan 31 at 2:07
















$begingroup$
I think the process is good and correct.
$endgroup$
– Offlaw
Jan 31 at 2:07




$begingroup$
I think the process is good and correct.
$endgroup$
– Offlaw
Jan 31 at 2:07










2 Answers
2






active

oldest

votes


















2












$begingroup$

The series telescopes. The partial sum $S_N$ is equal to
begin{align}
S_N &= [arctan (2) - arctan (0)] + [arctan (3) - arctan (1)] + cdots\
& qquad cdots + [arctan (N) - arctan (N - 2)] + [arctan(N + 1) - arctan (N - 1)]\
&= - arctan (0) - arctan (1) + arctan (N) + arctan (N + 1)\
&= -frac{pi}{4} + arctan (N) + arctan (N + 1)
end{align}

So for the sum $S$ we have
begin{align}
S &= lim_{N to infty} S_N\
&= lim_{N to infty} left [- frac{pi}{4} + arctan(N) + arctan(N + 1) right ]\
&= -frac{pi}{4} + frac{pi}{2} + frac{pi}{2}\
&= frac{3 pi}{4}.
end{align}






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    $$sum^{infty}_{n=1}bigg(tan^{-1}(n+1)-tan^{-1}(n)bigg)$$
    $$+sum^{infty}_{n=1}bigg(tan^{-1}(n)-tan^{-1}(n-1)bigg)$$



    Convert into Telescopic Series



    $$=tan^{-1}(infty)-tan^{-1}(1)+tan^{-1}(infty)-tan^{-1}(0)=$$



    $$=pi-frac{pi}{4}=frac{3pi}{4}.$$






    share|cite|improve this answer









    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094394%2fevaluate-sum-n-1-infty-arctan-frac2n2%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      The series telescopes. The partial sum $S_N$ is equal to
      begin{align}
      S_N &= [arctan (2) - arctan (0)] + [arctan (3) - arctan (1)] + cdots\
      & qquad cdots + [arctan (N) - arctan (N - 2)] + [arctan(N + 1) - arctan (N - 1)]\
      &= - arctan (0) - arctan (1) + arctan (N) + arctan (N + 1)\
      &= -frac{pi}{4} + arctan (N) + arctan (N + 1)
      end{align}

      So for the sum $S$ we have
      begin{align}
      S &= lim_{N to infty} S_N\
      &= lim_{N to infty} left [- frac{pi}{4} + arctan(N) + arctan(N + 1) right ]\
      &= -frac{pi}{4} + frac{pi}{2} + frac{pi}{2}\
      &= frac{3 pi}{4}.
      end{align}






      share|cite|improve this answer









      $endgroup$


















        2












        $begingroup$

        The series telescopes. The partial sum $S_N$ is equal to
        begin{align}
        S_N &= [arctan (2) - arctan (0)] + [arctan (3) - arctan (1)] + cdots\
        & qquad cdots + [arctan (N) - arctan (N - 2)] + [arctan(N + 1) - arctan (N - 1)]\
        &= - arctan (0) - arctan (1) + arctan (N) + arctan (N + 1)\
        &= -frac{pi}{4} + arctan (N) + arctan (N + 1)
        end{align}

        So for the sum $S$ we have
        begin{align}
        S &= lim_{N to infty} S_N\
        &= lim_{N to infty} left [- frac{pi}{4} + arctan(N) + arctan(N + 1) right ]\
        &= -frac{pi}{4} + frac{pi}{2} + frac{pi}{2}\
        &= frac{3 pi}{4}.
        end{align}






        share|cite|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          The series telescopes. The partial sum $S_N$ is equal to
          begin{align}
          S_N &= [arctan (2) - arctan (0)] + [arctan (3) - arctan (1)] + cdots\
          & qquad cdots + [arctan (N) - arctan (N - 2)] + [arctan(N + 1) - arctan (N - 1)]\
          &= - arctan (0) - arctan (1) + arctan (N) + arctan (N + 1)\
          &= -frac{pi}{4} + arctan (N) + arctan (N + 1)
          end{align}

          So for the sum $S$ we have
          begin{align}
          S &= lim_{N to infty} S_N\
          &= lim_{N to infty} left [- frac{pi}{4} + arctan(N) + arctan(N + 1) right ]\
          &= -frac{pi}{4} + frac{pi}{2} + frac{pi}{2}\
          &= frac{3 pi}{4}.
          end{align}






          share|cite|improve this answer









          $endgroup$



          The series telescopes. The partial sum $S_N$ is equal to
          begin{align}
          S_N &= [arctan (2) - arctan (0)] + [arctan (3) - arctan (1)] + cdots\
          & qquad cdots + [arctan (N) - arctan (N - 2)] + [arctan(N + 1) - arctan (N - 1)]\
          &= - arctan (0) - arctan (1) + arctan (N) + arctan (N + 1)\
          &= -frac{pi}{4} + arctan (N) + arctan (N + 1)
          end{align}

          So for the sum $S$ we have
          begin{align}
          S &= lim_{N to infty} S_N\
          &= lim_{N to infty} left [- frac{pi}{4} + arctan(N) + arctan(N + 1) right ]\
          &= -frac{pi}{4} + frac{pi}{2} + frac{pi}{2}\
          &= frac{3 pi}{4}.
          end{align}







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 31 at 2:14









          omegadotomegadot

          6,2692829




          6,2692829























              0












              $begingroup$

              $$sum^{infty}_{n=1}bigg(tan^{-1}(n+1)-tan^{-1}(n)bigg)$$
              $$+sum^{infty}_{n=1}bigg(tan^{-1}(n)-tan^{-1}(n-1)bigg)$$



              Convert into Telescopic Series



              $$=tan^{-1}(infty)-tan^{-1}(1)+tan^{-1}(infty)-tan^{-1}(0)=$$



              $$=pi-frac{pi}{4}=frac{3pi}{4}.$$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                $$sum^{infty}_{n=1}bigg(tan^{-1}(n+1)-tan^{-1}(n)bigg)$$
                $$+sum^{infty}_{n=1}bigg(tan^{-1}(n)-tan^{-1}(n-1)bigg)$$



                Convert into Telescopic Series



                $$=tan^{-1}(infty)-tan^{-1}(1)+tan^{-1}(infty)-tan^{-1}(0)=$$



                $$=pi-frac{pi}{4}=frac{3pi}{4}.$$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  $$sum^{infty}_{n=1}bigg(tan^{-1}(n+1)-tan^{-1}(n)bigg)$$
                  $$+sum^{infty}_{n=1}bigg(tan^{-1}(n)-tan^{-1}(n-1)bigg)$$



                  Convert into Telescopic Series



                  $$=tan^{-1}(infty)-tan^{-1}(1)+tan^{-1}(infty)-tan^{-1}(0)=$$



                  $$=pi-frac{pi}{4}=frac{3pi}{4}.$$






                  share|cite|improve this answer









                  $endgroup$



                  $$sum^{infty}_{n=1}bigg(tan^{-1}(n+1)-tan^{-1}(n)bigg)$$
                  $$+sum^{infty}_{n=1}bigg(tan^{-1}(n)-tan^{-1}(n-1)bigg)$$



                  Convert into Telescopic Series



                  $$=tan^{-1}(infty)-tan^{-1}(1)+tan^{-1}(infty)-tan^{-1}(0)=$$



                  $$=pi-frac{pi}{4}=frac{3pi}{4}.$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 31 at 2:21









                  DXTDXT

                  5,8892732




                  5,8892732






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094394%2fevaluate-sum-n-1-infty-arctan-frac2n2%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                      How to fix TextFormField cause rebuild widget in Flutter