Evaluate $sum_{n=1}^{infty}arctan(frac{2}{n^2})$?
$begingroup$
$$begin{align}
sum_{n=1}^{infty}arctanleft(frac{2}{n^2}right)&=sum_{n=1}^{infty}arctanleft(frac{(n+1)-(n-1)}{1+(n+1)(n-1)}right)\
&=sum_{n=1}^{infty}arctan(n+1)-arctan(n-1)\
&= fracpi4
end{align}$$
Is this correct?
sequences-and-series
$endgroup$
add a comment |
$begingroup$
$$begin{align}
sum_{n=1}^{infty}arctanleft(frac{2}{n^2}right)&=sum_{n=1}^{infty}arctanleft(frac{(n+1)-(n-1)}{1+(n+1)(n-1)}right)\
&=sum_{n=1}^{infty}arctan(n+1)-arctan(n-1)\
&= fracpi4
end{align}$$
Is this correct?
sequences-and-series
$endgroup$
$begingroup$
I think the process is good and correct.
$endgroup$
– Offlaw
Jan 31 at 2:07
add a comment |
$begingroup$
$$begin{align}
sum_{n=1}^{infty}arctanleft(frac{2}{n^2}right)&=sum_{n=1}^{infty}arctanleft(frac{(n+1)-(n-1)}{1+(n+1)(n-1)}right)\
&=sum_{n=1}^{infty}arctan(n+1)-arctan(n-1)\
&= fracpi4
end{align}$$
Is this correct?
sequences-and-series
$endgroup$
$$begin{align}
sum_{n=1}^{infty}arctanleft(frac{2}{n^2}right)&=sum_{n=1}^{infty}arctanleft(frac{(n+1)-(n-1)}{1+(n+1)(n-1)}right)\
&=sum_{n=1}^{infty}arctan(n+1)-arctan(n-1)\
&= fracpi4
end{align}$$
Is this correct?
sequences-and-series
sequences-and-series
edited Jan 31 at 2:28


Larry
2,53031131
2,53031131
asked Jan 31 at 2:04
AbhayAbhay
3789
3789
$begingroup$
I think the process is good and correct.
$endgroup$
– Offlaw
Jan 31 at 2:07
add a comment |
$begingroup$
I think the process is good and correct.
$endgroup$
– Offlaw
Jan 31 at 2:07
$begingroup$
I think the process is good and correct.
$endgroup$
– Offlaw
Jan 31 at 2:07
$begingroup$
I think the process is good and correct.
$endgroup$
– Offlaw
Jan 31 at 2:07
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The series telescopes. The partial sum $S_N$ is equal to
begin{align}
S_N &= [arctan (2) - arctan (0)] + [arctan (3) - arctan (1)] + cdots\
& qquad cdots + [arctan (N) - arctan (N - 2)] + [arctan(N + 1) - arctan (N - 1)]\
&= - arctan (0) - arctan (1) + arctan (N) + arctan (N + 1)\
&= -frac{pi}{4} + arctan (N) + arctan (N + 1)
end{align}
So for the sum $S$ we have
begin{align}
S &= lim_{N to infty} S_N\
&= lim_{N to infty} left [- frac{pi}{4} + arctan(N) + arctan(N + 1) right ]\
&= -frac{pi}{4} + frac{pi}{2} + frac{pi}{2}\
&= frac{3 pi}{4}.
end{align}
$endgroup$
add a comment |
$begingroup$
$$sum^{infty}_{n=1}bigg(tan^{-1}(n+1)-tan^{-1}(n)bigg)$$
$$+sum^{infty}_{n=1}bigg(tan^{-1}(n)-tan^{-1}(n-1)bigg)$$
Convert into Telescopic Series
$$=tan^{-1}(infty)-tan^{-1}(1)+tan^{-1}(infty)-tan^{-1}(0)=$$
$$=pi-frac{pi}{4}=frac{3pi}{4}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094394%2fevaluate-sum-n-1-infty-arctan-frac2n2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The series telescopes. The partial sum $S_N$ is equal to
begin{align}
S_N &= [arctan (2) - arctan (0)] + [arctan (3) - arctan (1)] + cdots\
& qquad cdots + [arctan (N) - arctan (N - 2)] + [arctan(N + 1) - arctan (N - 1)]\
&= - arctan (0) - arctan (1) + arctan (N) + arctan (N + 1)\
&= -frac{pi}{4} + arctan (N) + arctan (N + 1)
end{align}
So for the sum $S$ we have
begin{align}
S &= lim_{N to infty} S_N\
&= lim_{N to infty} left [- frac{pi}{4} + arctan(N) + arctan(N + 1) right ]\
&= -frac{pi}{4} + frac{pi}{2} + frac{pi}{2}\
&= frac{3 pi}{4}.
end{align}
$endgroup$
add a comment |
$begingroup$
The series telescopes. The partial sum $S_N$ is equal to
begin{align}
S_N &= [arctan (2) - arctan (0)] + [arctan (3) - arctan (1)] + cdots\
& qquad cdots + [arctan (N) - arctan (N - 2)] + [arctan(N + 1) - arctan (N - 1)]\
&= - arctan (0) - arctan (1) + arctan (N) + arctan (N + 1)\
&= -frac{pi}{4} + arctan (N) + arctan (N + 1)
end{align}
So for the sum $S$ we have
begin{align}
S &= lim_{N to infty} S_N\
&= lim_{N to infty} left [- frac{pi}{4} + arctan(N) + arctan(N + 1) right ]\
&= -frac{pi}{4} + frac{pi}{2} + frac{pi}{2}\
&= frac{3 pi}{4}.
end{align}
$endgroup$
add a comment |
$begingroup$
The series telescopes. The partial sum $S_N$ is equal to
begin{align}
S_N &= [arctan (2) - arctan (0)] + [arctan (3) - arctan (1)] + cdots\
& qquad cdots + [arctan (N) - arctan (N - 2)] + [arctan(N + 1) - arctan (N - 1)]\
&= - arctan (0) - arctan (1) + arctan (N) + arctan (N + 1)\
&= -frac{pi}{4} + arctan (N) + arctan (N + 1)
end{align}
So for the sum $S$ we have
begin{align}
S &= lim_{N to infty} S_N\
&= lim_{N to infty} left [- frac{pi}{4} + arctan(N) + arctan(N + 1) right ]\
&= -frac{pi}{4} + frac{pi}{2} + frac{pi}{2}\
&= frac{3 pi}{4}.
end{align}
$endgroup$
The series telescopes. The partial sum $S_N$ is equal to
begin{align}
S_N &= [arctan (2) - arctan (0)] + [arctan (3) - arctan (1)] + cdots\
& qquad cdots + [arctan (N) - arctan (N - 2)] + [arctan(N + 1) - arctan (N - 1)]\
&= - arctan (0) - arctan (1) + arctan (N) + arctan (N + 1)\
&= -frac{pi}{4} + arctan (N) + arctan (N + 1)
end{align}
So for the sum $S$ we have
begin{align}
S &= lim_{N to infty} S_N\
&= lim_{N to infty} left [- frac{pi}{4} + arctan(N) + arctan(N + 1) right ]\
&= -frac{pi}{4} + frac{pi}{2} + frac{pi}{2}\
&= frac{3 pi}{4}.
end{align}
answered Jan 31 at 2:14


omegadotomegadot
6,2692829
6,2692829
add a comment |
add a comment |
$begingroup$
$$sum^{infty}_{n=1}bigg(tan^{-1}(n+1)-tan^{-1}(n)bigg)$$
$$+sum^{infty}_{n=1}bigg(tan^{-1}(n)-tan^{-1}(n-1)bigg)$$
Convert into Telescopic Series
$$=tan^{-1}(infty)-tan^{-1}(1)+tan^{-1}(infty)-tan^{-1}(0)=$$
$$=pi-frac{pi}{4}=frac{3pi}{4}.$$
$endgroup$
add a comment |
$begingroup$
$$sum^{infty}_{n=1}bigg(tan^{-1}(n+1)-tan^{-1}(n)bigg)$$
$$+sum^{infty}_{n=1}bigg(tan^{-1}(n)-tan^{-1}(n-1)bigg)$$
Convert into Telescopic Series
$$=tan^{-1}(infty)-tan^{-1}(1)+tan^{-1}(infty)-tan^{-1}(0)=$$
$$=pi-frac{pi}{4}=frac{3pi}{4}.$$
$endgroup$
add a comment |
$begingroup$
$$sum^{infty}_{n=1}bigg(tan^{-1}(n+1)-tan^{-1}(n)bigg)$$
$$+sum^{infty}_{n=1}bigg(tan^{-1}(n)-tan^{-1}(n-1)bigg)$$
Convert into Telescopic Series
$$=tan^{-1}(infty)-tan^{-1}(1)+tan^{-1}(infty)-tan^{-1}(0)=$$
$$=pi-frac{pi}{4}=frac{3pi}{4}.$$
$endgroup$
$$sum^{infty}_{n=1}bigg(tan^{-1}(n+1)-tan^{-1}(n)bigg)$$
$$+sum^{infty}_{n=1}bigg(tan^{-1}(n)-tan^{-1}(n-1)bigg)$$
Convert into Telescopic Series
$$=tan^{-1}(infty)-tan^{-1}(1)+tan^{-1}(infty)-tan^{-1}(0)=$$
$$=pi-frac{pi}{4}=frac{3pi}{4}.$$
answered Jan 31 at 2:21
DXTDXT
5,8892732
5,8892732
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094394%2fevaluate-sum-n-1-infty-arctan-frac2n2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I think the process is good and correct.
$endgroup$
– Offlaw
Jan 31 at 2:07