Expected value of outer product of multivariate normal random vector with itself
$begingroup$
Let's say I have a random vector $boldsymbol{t}$ that is distributed according to a multivariate normal distribution:
$$
boldsymbol{t} sim mathcal{N}(boldsymbol{mu}, boldsymbol{Psi})
$$
I now want to find the expected value of the outer product of this random vector:
$$
mathbb{E}left[boldsymbol{t}boldsymbol{t}^intercalright]
$$
Is there a closed-form solution to this problem? In my studies, I have stumbled across the Wishart distribution. Might this be a way to tackle this problem?
probability random-variables normal-distribution expected-value outer-product
$endgroup$
add a comment |
$begingroup$
Let's say I have a random vector $boldsymbol{t}$ that is distributed according to a multivariate normal distribution:
$$
boldsymbol{t} sim mathcal{N}(boldsymbol{mu}, boldsymbol{Psi})
$$
I now want to find the expected value of the outer product of this random vector:
$$
mathbb{E}left[boldsymbol{t}boldsymbol{t}^intercalright]
$$
Is there a closed-form solution to this problem? In my studies, I have stumbled across the Wishart distribution. Might this be a way to tackle this problem?
probability random-variables normal-distribution expected-value outer-product
$endgroup$
add a comment |
$begingroup$
Let's say I have a random vector $boldsymbol{t}$ that is distributed according to a multivariate normal distribution:
$$
boldsymbol{t} sim mathcal{N}(boldsymbol{mu}, boldsymbol{Psi})
$$
I now want to find the expected value of the outer product of this random vector:
$$
mathbb{E}left[boldsymbol{t}boldsymbol{t}^intercalright]
$$
Is there a closed-form solution to this problem? In my studies, I have stumbled across the Wishart distribution. Might this be a way to tackle this problem?
probability random-variables normal-distribution expected-value outer-product
$endgroup$
Let's say I have a random vector $boldsymbol{t}$ that is distributed according to a multivariate normal distribution:
$$
boldsymbol{t} sim mathcal{N}(boldsymbol{mu}, boldsymbol{Psi})
$$
I now want to find the expected value of the outer product of this random vector:
$$
mathbb{E}left[boldsymbol{t}boldsymbol{t}^intercalright]
$$
Is there a closed-form solution to this problem? In my studies, I have stumbled across the Wishart distribution. Might this be a way to tackle this problem?
probability random-variables normal-distribution expected-value outer-product
probability random-variables normal-distribution expected-value outer-product
asked Jan 30 at 7:41
fujifuji
1083
1083
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
First, note that
$$
left(t-muright)left(t-muright)^{intercal}=tt^{intercal}-tmu^{intercal}-mu t^{intercal}+mumu^{intercal}.
$$
Therefore,
begin{align*}
operatorname{Var}(t) & =mathbb{E}left[left(t-muright)left(t-muright)^{intercal}right]\
& =mathbb{E}left[tt^{intercal}right]-mathbb{E}left[tright]mu^{intercal}-mumathbb{E}left[t^{intercal}right]+mumu^{intercal}\
& =mathbb{E}left[tt^{intercal}right]-mumu^{intercal}.
end{align*}
You already know that $operatorname{Var}(t)=Psi$.
Moving some terms around, $mathbb{E}left[tt^{intercal}right]=Psi+mumu^{intercal}$.
$endgroup$
$begingroup$
In the second equation, are $mathbb{E}[t]mu^intercal$ and $mumathbb{E}[t^intercal]$ the same as $mumu^intercal$, or how do you perform the simplification for the last line?
$endgroup$
– fuji
Jan 30 at 8:02
1
$begingroup$
@fuji: $mathbb{E}[t] = mu$ by definition of the random variable $t$ (it is normal with mean $mu$). As for the transpose, $mathbb{E}[t^intercal] = mathbb{E}[t]^intercal$ for any random vector $t$.
$endgroup$
– parsiad
Jan 31 at 1:06
$begingroup$
Thanks for the clarification!
$endgroup$
– fuji
Jan 31 at 8:23
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093218%2fexpected-value-of-outer-product-of-multivariate-normal-random-vector-with-itself%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
First, note that
$$
left(t-muright)left(t-muright)^{intercal}=tt^{intercal}-tmu^{intercal}-mu t^{intercal}+mumu^{intercal}.
$$
Therefore,
begin{align*}
operatorname{Var}(t) & =mathbb{E}left[left(t-muright)left(t-muright)^{intercal}right]\
& =mathbb{E}left[tt^{intercal}right]-mathbb{E}left[tright]mu^{intercal}-mumathbb{E}left[t^{intercal}right]+mumu^{intercal}\
& =mathbb{E}left[tt^{intercal}right]-mumu^{intercal}.
end{align*}
You already know that $operatorname{Var}(t)=Psi$.
Moving some terms around, $mathbb{E}left[tt^{intercal}right]=Psi+mumu^{intercal}$.
$endgroup$
$begingroup$
In the second equation, are $mathbb{E}[t]mu^intercal$ and $mumathbb{E}[t^intercal]$ the same as $mumu^intercal$, or how do you perform the simplification for the last line?
$endgroup$
– fuji
Jan 30 at 8:02
1
$begingroup$
@fuji: $mathbb{E}[t] = mu$ by definition of the random variable $t$ (it is normal with mean $mu$). As for the transpose, $mathbb{E}[t^intercal] = mathbb{E}[t]^intercal$ for any random vector $t$.
$endgroup$
– parsiad
Jan 31 at 1:06
$begingroup$
Thanks for the clarification!
$endgroup$
– fuji
Jan 31 at 8:23
add a comment |
$begingroup$
First, note that
$$
left(t-muright)left(t-muright)^{intercal}=tt^{intercal}-tmu^{intercal}-mu t^{intercal}+mumu^{intercal}.
$$
Therefore,
begin{align*}
operatorname{Var}(t) & =mathbb{E}left[left(t-muright)left(t-muright)^{intercal}right]\
& =mathbb{E}left[tt^{intercal}right]-mathbb{E}left[tright]mu^{intercal}-mumathbb{E}left[t^{intercal}right]+mumu^{intercal}\
& =mathbb{E}left[tt^{intercal}right]-mumu^{intercal}.
end{align*}
You already know that $operatorname{Var}(t)=Psi$.
Moving some terms around, $mathbb{E}left[tt^{intercal}right]=Psi+mumu^{intercal}$.
$endgroup$
$begingroup$
In the second equation, are $mathbb{E}[t]mu^intercal$ and $mumathbb{E}[t^intercal]$ the same as $mumu^intercal$, or how do you perform the simplification for the last line?
$endgroup$
– fuji
Jan 30 at 8:02
1
$begingroup$
@fuji: $mathbb{E}[t] = mu$ by definition of the random variable $t$ (it is normal with mean $mu$). As for the transpose, $mathbb{E}[t^intercal] = mathbb{E}[t]^intercal$ for any random vector $t$.
$endgroup$
– parsiad
Jan 31 at 1:06
$begingroup$
Thanks for the clarification!
$endgroup$
– fuji
Jan 31 at 8:23
add a comment |
$begingroup$
First, note that
$$
left(t-muright)left(t-muright)^{intercal}=tt^{intercal}-tmu^{intercal}-mu t^{intercal}+mumu^{intercal}.
$$
Therefore,
begin{align*}
operatorname{Var}(t) & =mathbb{E}left[left(t-muright)left(t-muright)^{intercal}right]\
& =mathbb{E}left[tt^{intercal}right]-mathbb{E}left[tright]mu^{intercal}-mumathbb{E}left[t^{intercal}right]+mumu^{intercal}\
& =mathbb{E}left[tt^{intercal}right]-mumu^{intercal}.
end{align*}
You already know that $operatorname{Var}(t)=Psi$.
Moving some terms around, $mathbb{E}left[tt^{intercal}right]=Psi+mumu^{intercal}$.
$endgroup$
First, note that
$$
left(t-muright)left(t-muright)^{intercal}=tt^{intercal}-tmu^{intercal}-mu t^{intercal}+mumu^{intercal}.
$$
Therefore,
begin{align*}
operatorname{Var}(t) & =mathbb{E}left[left(t-muright)left(t-muright)^{intercal}right]\
& =mathbb{E}left[tt^{intercal}right]-mathbb{E}left[tright]mu^{intercal}-mumathbb{E}left[t^{intercal}right]+mumu^{intercal}\
& =mathbb{E}left[tt^{intercal}right]-mumu^{intercal}.
end{align*}
You already know that $operatorname{Var}(t)=Psi$.
Moving some terms around, $mathbb{E}left[tt^{intercal}right]=Psi+mumu^{intercal}$.
answered Jan 30 at 7:51
parsiadparsiad
18.6k32453
18.6k32453
$begingroup$
In the second equation, are $mathbb{E}[t]mu^intercal$ and $mumathbb{E}[t^intercal]$ the same as $mumu^intercal$, or how do you perform the simplification for the last line?
$endgroup$
– fuji
Jan 30 at 8:02
1
$begingroup$
@fuji: $mathbb{E}[t] = mu$ by definition of the random variable $t$ (it is normal with mean $mu$). As for the transpose, $mathbb{E}[t^intercal] = mathbb{E}[t]^intercal$ for any random vector $t$.
$endgroup$
– parsiad
Jan 31 at 1:06
$begingroup$
Thanks for the clarification!
$endgroup$
– fuji
Jan 31 at 8:23
add a comment |
$begingroup$
In the second equation, are $mathbb{E}[t]mu^intercal$ and $mumathbb{E}[t^intercal]$ the same as $mumu^intercal$, or how do you perform the simplification for the last line?
$endgroup$
– fuji
Jan 30 at 8:02
1
$begingroup$
@fuji: $mathbb{E}[t] = mu$ by definition of the random variable $t$ (it is normal with mean $mu$). As for the transpose, $mathbb{E}[t^intercal] = mathbb{E}[t]^intercal$ for any random vector $t$.
$endgroup$
– parsiad
Jan 31 at 1:06
$begingroup$
Thanks for the clarification!
$endgroup$
– fuji
Jan 31 at 8:23
$begingroup$
In the second equation, are $mathbb{E}[t]mu^intercal$ and $mumathbb{E}[t^intercal]$ the same as $mumu^intercal$, or how do you perform the simplification for the last line?
$endgroup$
– fuji
Jan 30 at 8:02
$begingroup$
In the second equation, are $mathbb{E}[t]mu^intercal$ and $mumathbb{E}[t^intercal]$ the same as $mumu^intercal$, or how do you perform the simplification for the last line?
$endgroup$
– fuji
Jan 30 at 8:02
1
1
$begingroup$
@fuji: $mathbb{E}[t] = mu$ by definition of the random variable $t$ (it is normal with mean $mu$). As for the transpose, $mathbb{E}[t^intercal] = mathbb{E}[t]^intercal$ for any random vector $t$.
$endgroup$
– parsiad
Jan 31 at 1:06
$begingroup$
@fuji: $mathbb{E}[t] = mu$ by definition of the random variable $t$ (it is normal with mean $mu$). As for the transpose, $mathbb{E}[t^intercal] = mathbb{E}[t]^intercal$ for any random vector $t$.
$endgroup$
– parsiad
Jan 31 at 1:06
$begingroup$
Thanks for the clarification!
$endgroup$
– fuji
Jan 31 at 8:23
$begingroup$
Thanks for the clarification!
$endgroup$
– fuji
Jan 31 at 8:23
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093218%2fexpected-value-of-outer-product-of-multivariate-normal-random-vector-with-itself%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown