Expected value of outer product of multivariate normal random vector with itself












1












$begingroup$


Let's say I have a random vector $boldsymbol{t}$ that is distributed according to a multivariate normal distribution:
$$
boldsymbol{t} sim mathcal{N}(boldsymbol{mu}, boldsymbol{Psi})
$$

I now want to find the expected value of the outer product of this random vector:
$$
mathbb{E}left[boldsymbol{t}boldsymbol{t}^intercalright]
$$

Is there a closed-form solution to this problem? In my studies, I have stumbled across the Wishart distribution. Might this be a way to tackle this problem?










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Let's say I have a random vector $boldsymbol{t}$ that is distributed according to a multivariate normal distribution:
    $$
    boldsymbol{t} sim mathcal{N}(boldsymbol{mu}, boldsymbol{Psi})
    $$

    I now want to find the expected value of the outer product of this random vector:
    $$
    mathbb{E}left[boldsymbol{t}boldsymbol{t}^intercalright]
    $$

    Is there a closed-form solution to this problem? In my studies, I have stumbled across the Wishart distribution. Might this be a way to tackle this problem?










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Let's say I have a random vector $boldsymbol{t}$ that is distributed according to a multivariate normal distribution:
      $$
      boldsymbol{t} sim mathcal{N}(boldsymbol{mu}, boldsymbol{Psi})
      $$

      I now want to find the expected value of the outer product of this random vector:
      $$
      mathbb{E}left[boldsymbol{t}boldsymbol{t}^intercalright]
      $$

      Is there a closed-form solution to this problem? In my studies, I have stumbled across the Wishart distribution. Might this be a way to tackle this problem?










      share|cite|improve this question









      $endgroup$




      Let's say I have a random vector $boldsymbol{t}$ that is distributed according to a multivariate normal distribution:
      $$
      boldsymbol{t} sim mathcal{N}(boldsymbol{mu}, boldsymbol{Psi})
      $$

      I now want to find the expected value of the outer product of this random vector:
      $$
      mathbb{E}left[boldsymbol{t}boldsymbol{t}^intercalright]
      $$

      Is there a closed-form solution to this problem? In my studies, I have stumbled across the Wishart distribution. Might this be a way to tackle this problem?







      probability random-variables normal-distribution expected-value outer-product






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 30 at 7:41









      fujifuji

      1083




      1083






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          First, note that
          $$
          left(t-muright)left(t-muright)^{intercal}=tt^{intercal}-tmu^{intercal}-mu t^{intercal}+mumu^{intercal}.
          $$

          Therefore,
          begin{align*}
          operatorname{Var}(t) & =mathbb{E}left[left(t-muright)left(t-muright)^{intercal}right]\
          & =mathbb{E}left[tt^{intercal}right]-mathbb{E}left[tright]mu^{intercal}-mumathbb{E}left[t^{intercal}right]+mumu^{intercal}\
          & =mathbb{E}left[tt^{intercal}right]-mumu^{intercal}.
          end{align*}

          You already know that $operatorname{Var}(t)=Psi$.
          Moving some terms around, $mathbb{E}left[tt^{intercal}right]=Psi+mumu^{intercal}$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            In the second equation, are $mathbb{E}[t]mu^intercal$ and $mumathbb{E}[t^intercal]$ the same as $mumu^intercal$, or how do you perform the simplification for the last line?
            $endgroup$
            – fuji
            Jan 30 at 8:02








          • 1




            $begingroup$
            @fuji: $mathbb{E}[t] = mu$ by definition of the random variable $t$ (it is normal with mean $mu$). As for the transpose, $mathbb{E}[t^intercal] = mathbb{E}[t]^intercal$ for any random vector $t$.
            $endgroup$
            – parsiad
            Jan 31 at 1:06












          • $begingroup$
            Thanks for the clarification!
            $endgroup$
            – fuji
            Jan 31 at 8:23












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093218%2fexpected-value-of-outer-product-of-multivariate-normal-random-vector-with-itself%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          First, note that
          $$
          left(t-muright)left(t-muright)^{intercal}=tt^{intercal}-tmu^{intercal}-mu t^{intercal}+mumu^{intercal}.
          $$

          Therefore,
          begin{align*}
          operatorname{Var}(t) & =mathbb{E}left[left(t-muright)left(t-muright)^{intercal}right]\
          & =mathbb{E}left[tt^{intercal}right]-mathbb{E}left[tright]mu^{intercal}-mumathbb{E}left[t^{intercal}right]+mumu^{intercal}\
          & =mathbb{E}left[tt^{intercal}right]-mumu^{intercal}.
          end{align*}

          You already know that $operatorname{Var}(t)=Psi$.
          Moving some terms around, $mathbb{E}left[tt^{intercal}right]=Psi+mumu^{intercal}$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            In the second equation, are $mathbb{E}[t]mu^intercal$ and $mumathbb{E}[t^intercal]$ the same as $mumu^intercal$, or how do you perform the simplification for the last line?
            $endgroup$
            – fuji
            Jan 30 at 8:02








          • 1




            $begingroup$
            @fuji: $mathbb{E}[t] = mu$ by definition of the random variable $t$ (it is normal with mean $mu$). As for the transpose, $mathbb{E}[t^intercal] = mathbb{E}[t]^intercal$ for any random vector $t$.
            $endgroup$
            – parsiad
            Jan 31 at 1:06












          • $begingroup$
            Thanks for the clarification!
            $endgroup$
            – fuji
            Jan 31 at 8:23
















          1












          $begingroup$

          First, note that
          $$
          left(t-muright)left(t-muright)^{intercal}=tt^{intercal}-tmu^{intercal}-mu t^{intercal}+mumu^{intercal}.
          $$

          Therefore,
          begin{align*}
          operatorname{Var}(t) & =mathbb{E}left[left(t-muright)left(t-muright)^{intercal}right]\
          & =mathbb{E}left[tt^{intercal}right]-mathbb{E}left[tright]mu^{intercal}-mumathbb{E}left[t^{intercal}right]+mumu^{intercal}\
          & =mathbb{E}left[tt^{intercal}right]-mumu^{intercal}.
          end{align*}

          You already know that $operatorname{Var}(t)=Psi$.
          Moving some terms around, $mathbb{E}left[tt^{intercal}right]=Psi+mumu^{intercal}$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            In the second equation, are $mathbb{E}[t]mu^intercal$ and $mumathbb{E}[t^intercal]$ the same as $mumu^intercal$, or how do you perform the simplification for the last line?
            $endgroup$
            – fuji
            Jan 30 at 8:02








          • 1




            $begingroup$
            @fuji: $mathbb{E}[t] = mu$ by definition of the random variable $t$ (it is normal with mean $mu$). As for the transpose, $mathbb{E}[t^intercal] = mathbb{E}[t]^intercal$ for any random vector $t$.
            $endgroup$
            – parsiad
            Jan 31 at 1:06












          • $begingroup$
            Thanks for the clarification!
            $endgroup$
            – fuji
            Jan 31 at 8:23














          1












          1








          1





          $begingroup$

          First, note that
          $$
          left(t-muright)left(t-muright)^{intercal}=tt^{intercal}-tmu^{intercal}-mu t^{intercal}+mumu^{intercal}.
          $$

          Therefore,
          begin{align*}
          operatorname{Var}(t) & =mathbb{E}left[left(t-muright)left(t-muright)^{intercal}right]\
          & =mathbb{E}left[tt^{intercal}right]-mathbb{E}left[tright]mu^{intercal}-mumathbb{E}left[t^{intercal}right]+mumu^{intercal}\
          & =mathbb{E}left[tt^{intercal}right]-mumu^{intercal}.
          end{align*}

          You already know that $operatorname{Var}(t)=Psi$.
          Moving some terms around, $mathbb{E}left[tt^{intercal}right]=Psi+mumu^{intercal}$.






          share|cite|improve this answer









          $endgroup$



          First, note that
          $$
          left(t-muright)left(t-muright)^{intercal}=tt^{intercal}-tmu^{intercal}-mu t^{intercal}+mumu^{intercal}.
          $$

          Therefore,
          begin{align*}
          operatorname{Var}(t) & =mathbb{E}left[left(t-muright)left(t-muright)^{intercal}right]\
          & =mathbb{E}left[tt^{intercal}right]-mathbb{E}left[tright]mu^{intercal}-mumathbb{E}left[t^{intercal}right]+mumu^{intercal}\
          & =mathbb{E}left[tt^{intercal}right]-mumu^{intercal}.
          end{align*}

          You already know that $operatorname{Var}(t)=Psi$.
          Moving some terms around, $mathbb{E}left[tt^{intercal}right]=Psi+mumu^{intercal}$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 30 at 7:51









          parsiadparsiad

          18.6k32453




          18.6k32453












          • $begingroup$
            In the second equation, are $mathbb{E}[t]mu^intercal$ and $mumathbb{E}[t^intercal]$ the same as $mumu^intercal$, or how do you perform the simplification for the last line?
            $endgroup$
            – fuji
            Jan 30 at 8:02








          • 1




            $begingroup$
            @fuji: $mathbb{E}[t] = mu$ by definition of the random variable $t$ (it is normal with mean $mu$). As for the transpose, $mathbb{E}[t^intercal] = mathbb{E}[t]^intercal$ for any random vector $t$.
            $endgroup$
            – parsiad
            Jan 31 at 1:06












          • $begingroup$
            Thanks for the clarification!
            $endgroup$
            – fuji
            Jan 31 at 8:23


















          • $begingroup$
            In the second equation, are $mathbb{E}[t]mu^intercal$ and $mumathbb{E}[t^intercal]$ the same as $mumu^intercal$, or how do you perform the simplification for the last line?
            $endgroup$
            – fuji
            Jan 30 at 8:02








          • 1




            $begingroup$
            @fuji: $mathbb{E}[t] = mu$ by definition of the random variable $t$ (it is normal with mean $mu$). As for the transpose, $mathbb{E}[t^intercal] = mathbb{E}[t]^intercal$ for any random vector $t$.
            $endgroup$
            – parsiad
            Jan 31 at 1:06












          • $begingroup$
            Thanks for the clarification!
            $endgroup$
            – fuji
            Jan 31 at 8:23
















          $begingroup$
          In the second equation, are $mathbb{E}[t]mu^intercal$ and $mumathbb{E}[t^intercal]$ the same as $mumu^intercal$, or how do you perform the simplification for the last line?
          $endgroup$
          – fuji
          Jan 30 at 8:02






          $begingroup$
          In the second equation, are $mathbb{E}[t]mu^intercal$ and $mumathbb{E}[t^intercal]$ the same as $mumu^intercal$, or how do you perform the simplification for the last line?
          $endgroup$
          – fuji
          Jan 30 at 8:02






          1




          1




          $begingroup$
          @fuji: $mathbb{E}[t] = mu$ by definition of the random variable $t$ (it is normal with mean $mu$). As for the transpose, $mathbb{E}[t^intercal] = mathbb{E}[t]^intercal$ for any random vector $t$.
          $endgroup$
          – parsiad
          Jan 31 at 1:06






          $begingroup$
          @fuji: $mathbb{E}[t] = mu$ by definition of the random variable $t$ (it is normal with mean $mu$). As for the transpose, $mathbb{E}[t^intercal] = mathbb{E}[t]^intercal$ for any random vector $t$.
          $endgroup$
          – parsiad
          Jan 31 at 1:06














          $begingroup$
          Thanks for the clarification!
          $endgroup$
          – fuji
          Jan 31 at 8:23




          $begingroup$
          Thanks for the clarification!
          $endgroup$
          – fuji
          Jan 31 at 8:23


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093218%2fexpected-value-of-outer-product-of-multivariate-normal-random-vector-with-itself%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith