Formula for ${}_2F_1(h,-n, 2h; 2)$.
$begingroup$
Does anyone know a closed form for the following evaluations of the Hypergeometric function
$$
{}_2F_1(h,-n, 2h; t^{-1})
$$
with $h>0,ngeq 0$ both integers and $0leq tleq 1$ a real. For the most part I'm interested in $t=1/2$ case.
Context: I just found these in my conformal field theory study of quantum Hall states. I don't know much about hypergeometric functions.
Alternative Formula: In case it matters, this is the original sum that I found:
$$
{}_2F_1(h,-n, 2h; x) = sum_{k=0}^n frac{binom{n}{k}binom{h+k-1}{k}}{binom{2h+n-1}{k}}frac{(-1)^k}{x^k}
$$
which Wolfram Mathematica idetified as the hypergeometric function.
Some Numerical Observations: From the numerical checks I have done, it seems when $n$ is odd, then ${}_2F_1(h,-n, 2h; 2)=0$. For the first few even values, it seems like for $n=2m$ the trend is
$$
{}_2F_1(h,-2m, 2h; 2) = prod_{j=0}^{m-1}frac{2j+1}{2(h+j)+1}
$$
Are these observations for $n=$odd and $n=$even true generally? Is there a proof somewhere?
hypergeometric-function
$endgroup$
add a comment |
$begingroup$
Does anyone know a closed form for the following evaluations of the Hypergeometric function
$$
{}_2F_1(h,-n, 2h; t^{-1})
$$
with $h>0,ngeq 0$ both integers and $0leq tleq 1$ a real. For the most part I'm interested in $t=1/2$ case.
Context: I just found these in my conformal field theory study of quantum Hall states. I don't know much about hypergeometric functions.
Alternative Formula: In case it matters, this is the original sum that I found:
$$
{}_2F_1(h,-n, 2h; x) = sum_{k=0}^n frac{binom{n}{k}binom{h+k-1}{k}}{binom{2h+n-1}{k}}frac{(-1)^k}{x^k}
$$
which Wolfram Mathematica idetified as the hypergeometric function.
Some Numerical Observations: From the numerical checks I have done, it seems when $n$ is odd, then ${}_2F_1(h,-n, 2h; 2)=0$. For the first few even values, it seems like for $n=2m$ the trend is
$$
{}_2F_1(h,-2m, 2h; 2) = prod_{j=0}^{m-1}frac{2j+1}{2(h+j)+1}
$$
Are these observations for $n=$odd and $n=$even true generally? Is there a proof somewhere?
hypergeometric-function
$endgroup$
add a comment |
$begingroup$
Does anyone know a closed form for the following evaluations of the Hypergeometric function
$$
{}_2F_1(h,-n, 2h; t^{-1})
$$
with $h>0,ngeq 0$ both integers and $0leq tleq 1$ a real. For the most part I'm interested in $t=1/2$ case.
Context: I just found these in my conformal field theory study of quantum Hall states. I don't know much about hypergeometric functions.
Alternative Formula: In case it matters, this is the original sum that I found:
$$
{}_2F_1(h,-n, 2h; x) = sum_{k=0}^n frac{binom{n}{k}binom{h+k-1}{k}}{binom{2h+n-1}{k}}frac{(-1)^k}{x^k}
$$
which Wolfram Mathematica idetified as the hypergeometric function.
Some Numerical Observations: From the numerical checks I have done, it seems when $n$ is odd, then ${}_2F_1(h,-n, 2h; 2)=0$. For the first few even values, it seems like for $n=2m$ the trend is
$$
{}_2F_1(h,-2m, 2h; 2) = prod_{j=0}^{m-1}frac{2j+1}{2(h+j)+1}
$$
Are these observations for $n=$odd and $n=$even true generally? Is there a proof somewhere?
hypergeometric-function
$endgroup$
Does anyone know a closed form for the following evaluations of the Hypergeometric function
$$
{}_2F_1(h,-n, 2h; t^{-1})
$$
with $h>0,ngeq 0$ both integers and $0leq tleq 1$ a real. For the most part I'm interested in $t=1/2$ case.
Context: I just found these in my conformal field theory study of quantum Hall states. I don't know much about hypergeometric functions.
Alternative Formula: In case it matters, this is the original sum that I found:
$$
{}_2F_1(h,-n, 2h; x) = sum_{k=0}^n frac{binom{n}{k}binom{h+k-1}{k}}{binom{2h+n-1}{k}}frac{(-1)^k}{x^k}
$$
which Wolfram Mathematica idetified as the hypergeometric function.
Some Numerical Observations: From the numerical checks I have done, it seems when $n$ is odd, then ${}_2F_1(h,-n, 2h; 2)=0$. For the first few even values, it seems like for $n=2m$ the trend is
$$
{}_2F_1(h,-2m, 2h; 2) = prod_{j=0}^{m-1}frac{2j+1}{2(h+j)+1}
$$
Are these observations for $n=$odd and $n=$even true generally? Is there a proof somewhere?
hypergeometric-function
hypergeometric-function
edited Jan 30 at 19:37
Hamed
asked Jan 30 at 19:21
HamedHamed
4,863722
4,863722
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The value of ${}_2F_1(h,-n; 2h;2) $ is given here:
begin{equation}
{}_2F_1(-n,h; 2h;2)=2^{-n - 1}frac{n! }{(n/2)!}frac{(1 + (-1)^n)Gamma(h + 1/2)}{Gamma(h + (n + 1)/2)}
end{equation}
It vanishes if $n$ is odd. If $n=2m$,
begin{equation}
{}_2F_1(-2m,h; 2h;2)=2^{-2m}frac{(2m)! }{m!}frac{Gamma(h + 1/2)}{Gamma(h + m+1/2)}
end{equation}
which can be written as
begin{align}
{}_2F_1(-2m,h; 2h;2)&=2^{-2m}frac{2^mm!1.3.5cdots(2m-1)}{m!}frac{Gamma(h + 1/2)}{Gamma(h + 1/2).left( h+3/2).(h+5/2)cdotsleft( h+m+1/2) right) right)}\
&= prod_{j=0}^{m-1}frac{2j+1}{2(h+j)+1}
end{align}
as proposed.
For general values of the argument, we can use the representation in terms of the Gegenbauer polynomials given here
begin{equation}
{}_2F_1(-n,h; 2h;z)=frac{2^{-2 n}n! z^n}{ left( h + 1/2 right)_n} C_n^{1/2-h-n}left( 1 - frac{2}{z} right)
end{equation}
$endgroup$
$begingroup$
Thank you so much.
$endgroup$
– Hamed
Jan 31 at 22:10
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093988%2fformula-for-2f-1h-n-2h-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The value of ${}_2F_1(h,-n; 2h;2) $ is given here:
begin{equation}
{}_2F_1(-n,h; 2h;2)=2^{-n - 1}frac{n! }{(n/2)!}frac{(1 + (-1)^n)Gamma(h + 1/2)}{Gamma(h + (n + 1)/2)}
end{equation}
It vanishes if $n$ is odd. If $n=2m$,
begin{equation}
{}_2F_1(-2m,h; 2h;2)=2^{-2m}frac{(2m)! }{m!}frac{Gamma(h + 1/2)}{Gamma(h + m+1/2)}
end{equation}
which can be written as
begin{align}
{}_2F_1(-2m,h; 2h;2)&=2^{-2m}frac{2^mm!1.3.5cdots(2m-1)}{m!}frac{Gamma(h + 1/2)}{Gamma(h + 1/2).left( h+3/2).(h+5/2)cdotsleft( h+m+1/2) right) right)}\
&= prod_{j=0}^{m-1}frac{2j+1}{2(h+j)+1}
end{align}
as proposed.
For general values of the argument, we can use the representation in terms of the Gegenbauer polynomials given here
begin{equation}
{}_2F_1(-n,h; 2h;z)=frac{2^{-2 n}n! z^n}{ left( h + 1/2 right)_n} C_n^{1/2-h-n}left( 1 - frac{2}{z} right)
end{equation}
$endgroup$
$begingroup$
Thank you so much.
$endgroup$
– Hamed
Jan 31 at 22:10
add a comment |
$begingroup$
The value of ${}_2F_1(h,-n; 2h;2) $ is given here:
begin{equation}
{}_2F_1(-n,h; 2h;2)=2^{-n - 1}frac{n! }{(n/2)!}frac{(1 + (-1)^n)Gamma(h + 1/2)}{Gamma(h + (n + 1)/2)}
end{equation}
It vanishes if $n$ is odd. If $n=2m$,
begin{equation}
{}_2F_1(-2m,h; 2h;2)=2^{-2m}frac{(2m)! }{m!}frac{Gamma(h + 1/2)}{Gamma(h + m+1/2)}
end{equation}
which can be written as
begin{align}
{}_2F_1(-2m,h; 2h;2)&=2^{-2m}frac{2^mm!1.3.5cdots(2m-1)}{m!}frac{Gamma(h + 1/2)}{Gamma(h + 1/2).left( h+3/2).(h+5/2)cdotsleft( h+m+1/2) right) right)}\
&= prod_{j=0}^{m-1}frac{2j+1}{2(h+j)+1}
end{align}
as proposed.
For general values of the argument, we can use the representation in terms of the Gegenbauer polynomials given here
begin{equation}
{}_2F_1(-n,h; 2h;z)=frac{2^{-2 n}n! z^n}{ left( h + 1/2 right)_n} C_n^{1/2-h-n}left( 1 - frac{2}{z} right)
end{equation}
$endgroup$
$begingroup$
Thank you so much.
$endgroup$
– Hamed
Jan 31 at 22:10
add a comment |
$begingroup$
The value of ${}_2F_1(h,-n; 2h;2) $ is given here:
begin{equation}
{}_2F_1(-n,h; 2h;2)=2^{-n - 1}frac{n! }{(n/2)!}frac{(1 + (-1)^n)Gamma(h + 1/2)}{Gamma(h + (n + 1)/2)}
end{equation}
It vanishes if $n$ is odd. If $n=2m$,
begin{equation}
{}_2F_1(-2m,h; 2h;2)=2^{-2m}frac{(2m)! }{m!}frac{Gamma(h + 1/2)}{Gamma(h + m+1/2)}
end{equation}
which can be written as
begin{align}
{}_2F_1(-2m,h; 2h;2)&=2^{-2m}frac{2^mm!1.3.5cdots(2m-1)}{m!}frac{Gamma(h + 1/2)}{Gamma(h + 1/2).left( h+3/2).(h+5/2)cdotsleft( h+m+1/2) right) right)}\
&= prod_{j=0}^{m-1}frac{2j+1}{2(h+j)+1}
end{align}
as proposed.
For general values of the argument, we can use the representation in terms of the Gegenbauer polynomials given here
begin{equation}
{}_2F_1(-n,h; 2h;z)=frac{2^{-2 n}n! z^n}{ left( h + 1/2 right)_n} C_n^{1/2-h-n}left( 1 - frac{2}{z} right)
end{equation}
$endgroup$
The value of ${}_2F_1(h,-n; 2h;2) $ is given here:
begin{equation}
{}_2F_1(-n,h; 2h;2)=2^{-n - 1}frac{n! }{(n/2)!}frac{(1 + (-1)^n)Gamma(h + 1/2)}{Gamma(h + (n + 1)/2)}
end{equation}
It vanishes if $n$ is odd. If $n=2m$,
begin{equation}
{}_2F_1(-2m,h; 2h;2)=2^{-2m}frac{(2m)! }{m!}frac{Gamma(h + 1/2)}{Gamma(h + m+1/2)}
end{equation}
which can be written as
begin{align}
{}_2F_1(-2m,h; 2h;2)&=2^{-2m}frac{2^mm!1.3.5cdots(2m-1)}{m!}frac{Gamma(h + 1/2)}{Gamma(h + 1/2).left( h+3/2).(h+5/2)cdotsleft( h+m+1/2) right) right)}\
&= prod_{j=0}^{m-1}frac{2j+1}{2(h+j)+1}
end{align}
as proposed.
For general values of the argument, we can use the representation in terms of the Gegenbauer polynomials given here
begin{equation}
{}_2F_1(-n,h; 2h;z)=frac{2^{-2 n}n! z^n}{ left( h + 1/2 right)_n} C_n^{1/2-h-n}left( 1 - frac{2}{z} right)
end{equation}
answered Jan 31 at 21:49
Paul EntaPaul Enta
5,40611435
5,40611435
$begingroup$
Thank you so much.
$endgroup$
– Hamed
Jan 31 at 22:10
add a comment |
$begingroup$
Thank you so much.
$endgroup$
– Hamed
Jan 31 at 22:10
$begingroup$
Thank you so much.
$endgroup$
– Hamed
Jan 31 at 22:10
$begingroup$
Thank you so much.
$endgroup$
– Hamed
Jan 31 at 22:10
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093988%2fformula-for-2f-1h-n-2h-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown