How to convert formula to disjunctive normal form?












14












$begingroup$



Convert



$$((p wedge q) → r) wedge (¬(p wedge q) → r)$$



to DNF.




This is what I've already done:



$$((p wedge q) → r) wedge (¬(p wedge q) → r)$$



$$(¬(p wedge q) vee r) wedge ((p wedge q) vee r)$$



$$((¬p vee ¬q) vee r) wedge ((p wedge q) vee r)$$



And from this point I'm not sure how to proceed. Help would be appreciated.



Sorry, but the last line was written badly (I think). It's fixed now.










share|cite|improve this question











$endgroup$












  • $begingroup$
    It's really great you got as far as you did; thanks for showing what you've done.
    $endgroup$
    – Namaste
    Nov 4 '12 at 17:10
















14












$begingroup$



Convert



$$((p wedge q) → r) wedge (¬(p wedge q) → r)$$



to DNF.




This is what I've already done:



$$((p wedge q) → r) wedge (¬(p wedge q) → r)$$



$$(¬(p wedge q) vee r) wedge ((p wedge q) vee r)$$



$$((¬p vee ¬q) vee r) wedge ((p wedge q) vee r)$$



And from this point I'm not sure how to proceed. Help would be appreciated.



Sorry, but the last line was written badly (I think). It's fixed now.










share|cite|improve this question











$endgroup$












  • $begingroup$
    It's really great you got as far as you did; thanks for showing what you've done.
    $endgroup$
    – Namaste
    Nov 4 '12 at 17:10














14












14








14


1



$begingroup$



Convert



$$((p wedge q) → r) wedge (¬(p wedge q) → r)$$



to DNF.




This is what I've already done:



$$((p wedge q) → r) wedge (¬(p wedge q) → r)$$



$$(¬(p wedge q) vee r) wedge ((p wedge q) vee r)$$



$$((¬p vee ¬q) vee r) wedge ((p wedge q) vee r)$$



And from this point I'm not sure how to proceed. Help would be appreciated.



Sorry, but the last line was written badly (I think). It's fixed now.










share|cite|improve this question











$endgroup$





Convert



$$((p wedge q) → r) wedge (¬(p wedge q) → r)$$



to DNF.




This is what I've already done:



$$((p wedge q) → r) wedge (¬(p wedge q) → r)$$



$$(¬(p wedge q) vee r) wedge ((p wedge q) vee r)$$



$$((¬p vee ¬q) vee r) wedge ((p wedge q) vee r)$$



And from this point I'm not sure how to proceed. Help would be appreciated.



Sorry, but the last line was written badly (I think). It's fixed now.







discrete-mathematics propositional-calculus disjunctive-normal-form






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Oct 19 '16 at 10:51









Rodrigo de Azevedo

13.1k41960




13.1k41960










asked Nov 4 '12 at 16:49









user1242967user1242967

7452719




7452719












  • $begingroup$
    It's really great you got as far as you did; thanks for showing what you've done.
    $endgroup$
    – Namaste
    Nov 4 '12 at 17:10


















  • $begingroup$
    It's really great you got as far as you did; thanks for showing what you've done.
    $endgroup$
    – Namaste
    Nov 4 '12 at 17:10
















$begingroup$
It's really great you got as far as you did; thanks for showing what you've done.
$endgroup$
– Namaste
Nov 4 '12 at 17:10




$begingroup$
It's really great you got as far as you did; thanks for showing what you've done.
$endgroup$
– Namaste
Nov 4 '12 at 17:10










2 Answers
2






active

oldest

votes


















10












$begingroup$

You can continue by using Distributivity of the boolean algebra:



$((¬p vee ¬q) vee r) wedge ((p wedge q) vee r)$



$ Leftrightarrow (¬p vee ¬q vee r) wedge ((p wedge q) vee r)$



Here we apply distributivity:



$ Leftrightarrow (¬p wedge p wedge q) vee (¬q wedge p wedge q) vee (r wedge p wedge q) vee (¬p wedge r) vee (¬q wedge r) vee (r wedge r)$



Formally, this is in disjunctive normal form now.
We could further simplify:



$ Leftrightarrow (r wedge p wedge q) vee (¬p wedge r) vee (¬q wedge r) vee r$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Sorry for asking, but how did you use distributivity law to get the third line? All I can think of is to use this identity: a∧(b∨c)=(a∧b)∨(a∧c) to get this: ((¬p∨¬q∨r)∧(p∧q))∨((¬p∨¬q∨r)∧r)
    $endgroup$
    – user1242967
    Nov 6 '12 at 18:39










  • $begingroup$
    Here you use: (a∨b∨c)∧(d∨e)=(a∧d)∨(b∧d)∨(c∧d)∨(a∧e)∨(b∧e)∨(c∧e)
    $endgroup$
    – user48415
    Nov 6 '12 at 18:59








  • 3




    $begingroup$
    The above can be seen as follows: (a∨b∨c)∧(d∨e) = ((a∨b∨c)∧d) ∨ ((a∨b∨c)∧e) = (a∧d)∨(b∧d)∨(c∧d)∨(a∧e)∨(b∧e)∨(c∧e)
    $endgroup$
    – user48415
    Nov 6 '12 at 19:06










  • $begingroup$
    brother, how did you simplified further the last statement using disjunctive normal form
    $endgroup$
    – Humoyun
    Jun 23 '16 at 4:07



















1












$begingroup$

$$((p land q) to r) land (neg(p land q)to r) equiv (neg(p land q) lor r) land ((p land q) lor r)$$



using the distributive law



$$r lor (neg (p land q) land (p land q)) equiv r lor text{False} equiv r$$



because $s land neg s equiv text{False}$.






share|cite|improve this answer











$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f228969%2fhow-to-convert-formula-to-disjunctive-normal-form%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    10












    $begingroup$

    You can continue by using Distributivity of the boolean algebra:



    $((¬p vee ¬q) vee r) wedge ((p wedge q) vee r)$



    $ Leftrightarrow (¬p vee ¬q vee r) wedge ((p wedge q) vee r)$



    Here we apply distributivity:



    $ Leftrightarrow (¬p wedge p wedge q) vee (¬q wedge p wedge q) vee (r wedge p wedge q) vee (¬p wedge r) vee (¬q wedge r) vee (r wedge r)$



    Formally, this is in disjunctive normal form now.
    We could further simplify:



    $ Leftrightarrow (r wedge p wedge q) vee (¬p wedge r) vee (¬q wedge r) vee r$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Sorry for asking, but how did you use distributivity law to get the third line? All I can think of is to use this identity: a∧(b∨c)=(a∧b)∨(a∧c) to get this: ((¬p∨¬q∨r)∧(p∧q))∨((¬p∨¬q∨r)∧r)
      $endgroup$
      – user1242967
      Nov 6 '12 at 18:39










    • $begingroup$
      Here you use: (a∨b∨c)∧(d∨e)=(a∧d)∨(b∧d)∨(c∧d)∨(a∧e)∨(b∧e)∨(c∧e)
      $endgroup$
      – user48415
      Nov 6 '12 at 18:59








    • 3




      $begingroup$
      The above can be seen as follows: (a∨b∨c)∧(d∨e) = ((a∨b∨c)∧d) ∨ ((a∨b∨c)∧e) = (a∧d)∨(b∧d)∨(c∧d)∨(a∧e)∨(b∧e)∨(c∧e)
      $endgroup$
      – user48415
      Nov 6 '12 at 19:06










    • $begingroup$
      brother, how did you simplified further the last statement using disjunctive normal form
      $endgroup$
      – Humoyun
      Jun 23 '16 at 4:07
















    10












    $begingroup$

    You can continue by using Distributivity of the boolean algebra:



    $((¬p vee ¬q) vee r) wedge ((p wedge q) vee r)$



    $ Leftrightarrow (¬p vee ¬q vee r) wedge ((p wedge q) vee r)$



    Here we apply distributivity:



    $ Leftrightarrow (¬p wedge p wedge q) vee (¬q wedge p wedge q) vee (r wedge p wedge q) vee (¬p wedge r) vee (¬q wedge r) vee (r wedge r)$



    Formally, this is in disjunctive normal form now.
    We could further simplify:



    $ Leftrightarrow (r wedge p wedge q) vee (¬p wedge r) vee (¬q wedge r) vee r$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Sorry for asking, but how did you use distributivity law to get the third line? All I can think of is to use this identity: a∧(b∨c)=(a∧b)∨(a∧c) to get this: ((¬p∨¬q∨r)∧(p∧q))∨((¬p∨¬q∨r)∧r)
      $endgroup$
      – user1242967
      Nov 6 '12 at 18:39










    • $begingroup$
      Here you use: (a∨b∨c)∧(d∨e)=(a∧d)∨(b∧d)∨(c∧d)∨(a∧e)∨(b∧e)∨(c∧e)
      $endgroup$
      – user48415
      Nov 6 '12 at 18:59








    • 3




      $begingroup$
      The above can be seen as follows: (a∨b∨c)∧(d∨e) = ((a∨b∨c)∧d) ∨ ((a∨b∨c)∧e) = (a∧d)∨(b∧d)∨(c∧d)∨(a∧e)∨(b∧e)∨(c∧e)
      $endgroup$
      – user48415
      Nov 6 '12 at 19:06










    • $begingroup$
      brother, how did you simplified further the last statement using disjunctive normal form
      $endgroup$
      – Humoyun
      Jun 23 '16 at 4:07














    10












    10








    10





    $begingroup$

    You can continue by using Distributivity of the boolean algebra:



    $((¬p vee ¬q) vee r) wedge ((p wedge q) vee r)$



    $ Leftrightarrow (¬p vee ¬q vee r) wedge ((p wedge q) vee r)$



    Here we apply distributivity:



    $ Leftrightarrow (¬p wedge p wedge q) vee (¬q wedge p wedge q) vee (r wedge p wedge q) vee (¬p wedge r) vee (¬q wedge r) vee (r wedge r)$



    Formally, this is in disjunctive normal form now.
    We could further simplify:



    $ Leftrightarrow (r wedge p wedge q) vee (¬p wedge r) vee (¬q wedge r) vee r$






    share|cite|improve this answer









    $endgroup$



    You can continue by using Distributivity of the boolean algebra:



    $((¬p vee ¬q) vee r) wedge ((p wedge q) vee r)$



    $ Leftrightarrow (¬p vee ¬q vee r) wedge ((p wedge q) vee r)$



    Here we apply distributivity:



    $ Leftrightarrow (¬p wedge p wedge q) vee (¬q wedge p wedge q) vee (r wedge p wedge q) vee (¬p wedge r) vee (¬q wedge r) vee (r wedge r)$



    Formally, this is in disjunctive normal form now.
    We could further simplify:



    $ Leftrightarrow (r wedge p wedge q) vee (¬p wedge r) vee (¬q wedge r) vee r$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Nov 6 '12 at 17:44









    user48415user48415

    11613




    11613












    • $begingroup$
      Sorry for asking, but how did you use distributivity law to get the third line? All I can think of is to use this identity: a∧(b∨c)=(a∧b)∨(a∧c) to get this: ((¬p∨¬q∨r)∧(p∧q))∨((¬p∨¬q∨r)∧r)
      $endgroup$
      – user1242967
      Nov 6 '12 at 18:39










    • $begingroup$
      Here you use: (a∨b∨c)∧(d∨e)=(a∧d)∨(b∧d)∨(c∧d)∨(a∧e)∨(b∧e)∨(c∧e)
      $endgroup$
      – user48415
      Nov 6 '12 at 18:59








    • 3




      $begingroup$
      The above can be seen as follows: (a∨b∨c)∧(d∨e) = ((a∨b∨c)∧d) ∨ ((a∨b∨c)∧e) = (a∧d)∨(b∧d)∨(c∧d)∨(a∧e)∨(b∧e)∨(c∧e)
      $endgroup$
      – user48415
      Nov 6 '12 at 19:06










    • $begingroup$
      brother, how did you simplified further the last statement using disjunctive normal form
      $endgroup$
      – Humoyun
      Jun 23 '16 at 4:07


















    • $begingroup$
      Sorry for asking, but how did you use distributivity law to get the third line? All I can think of is to use this identity: a∧(b∨c)=(a∧b)∨(a∧c) to get this: ((¬p∨¬q∨r)∧(p∧q))∨((¬p∨¬q∨r)∧r)
      $endgroup$
      – user1242967
      Nov 6 '12 at 18:39










    • $begingroup$
      Here you use: (a∨b∨c)∧(d∨e)=(a∧d)∨(b∧d)∨(c∧d)∨(a∧e)∨(b∧e)∨(c∧e)
      $endgroup$
      – user48415
      Nov 6 '12 at 18:59








    • 3




      $begingroup$
      The above can be seen as follows: (a∨b∨c)∧(d∨e) = ((a∨b∨c)∧d) ∨ ((a∨b∨c)∧e) = (a∧d)∨(b∧d)∨(c∧d)∨(a∧e)∨(b∧e)∨(c∧e)
      $endgroup$
      – user48415
      Nov 6 '12 at 19:06










    • $begingroup$
      brother, how did you simplified further the last statement using disjunctive normal form
      $endgroup$
      – Humoyun
      Jun 23 '16 at 4:07
















    $begingroup$
    Sorry for asking, but how did you use distributivity law to get the third line? All I can think of is to use this identity: a∧(b∨c)=(a∧b)∨(a∧c) to get this: ((¬p∨¬q∨r)∧(p∧q))∨((¬p∨¬q∨r)∧r)
    $endgroup$
    – user1242967
    Nov 6 '12 at 18:39




    $begingroup$
    Sorry for asking, but how did you use distributivity law to get the third line? All I can think of is to use this identity: a∧(b∨c)=(a∧b)∨(a∧c) to get this: ((¬p∨¬q∨r)∧(p∧q))∨((¬p∨¬q∨r)∧r)
    $endgroup$
    – user1242967
    Nov 6 '12 at 18:39












    $begingroup$
    Here you use: (a∨b∨c)∧(d∨e)=(a∧d)∨(b∧d)∨(c∧d)∨(a∧e)∨(b∧e)∨(c∧e)
    $endgroup$
    – user48415
    Nov 6 '12 at 18:59






    $begingroup$
    Here you use: (a∨b∨c)∧(d∨e)=(a∧d)∨(b∧d)∨(c∧d)∨(a∧e)∨(b∧e)∨(c∧e)
    $endgroup$
    – user48415
    Nov 6 '12 at 18:59






    3




    3




    $begingroup$
    The above can be seen as follows: (a∨b∨c)∧(d∨e) = ((a∨b∨c)∧d) ∨ ((a∨b∨c)∧e) = (a∧d)∨(b∧d)∨(c∧d)∨(a∧e)∨(b∧e)∨(c∧e)
    $endgroup$
    – user48415
    Nov 6 '12 at 19:06




    $begingroup$
    The above can be seen as follows: (a∨b∨c)∧(d∨e) = ((a∨b∨c)∧d) ∨ ((a∨b∨c)∧e) = (a∧d)∨(b∧d)∨(c∧d)∨(a∧e)∨(b∧e)∨(c∧e)
    $endgroup$
    – user48415
    Nov 6 '12 at 19:06












    $begingroup$
    brother, how did you simplified further the last statement using disjunctive normal form
    $endgroup$
    – Humoyun
    Jun 23 '16 at 4:07




    $begingroup$
    brother, how did you simplified further the last statement using disjunctive normal form
    $endgroup$
    – Humoyun
    Jun 23 '16 at 4:07











    1












    $begingroup$

    $$((p land q) to r) land (neg(p land q)to r) equiv (neg(p land q) lor r) land ((p land q) lor r)$$



    using the distributive law



    $$r lor (neg (p land q) land (p land q)) equiv r lor text{False} equiv r$$



    because $s land neg s equiv text{False}$.






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      $$((p land q) to r) land (neg(p land q)to r) equiv (neg(p land q) lor r) land ((p land q) lor r)$$



      using the distributive law



      $$r lor (neg (p land q) land (p land q)) equiv r lor text{False} equiv r$$



      because $s land neg s equiv text{False}$.






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        $$((p land q) to r) land (neg(p land q)to r) equiv (neg(p land q) lor r) land ((p land q) lor r)$$



        using the distributive law



        $$r lor (neg (p land q) land (p land q)) equiv r lor text{False} equiv r$$



        because $s land neg s equiv text{False}$.






        share|cite|improve this answer











        $endgroup$



        $$((p land q) to r) land (neg(p land q)to r) equiv (neg(p land q) lor r) land ((p land q) lor r)$$



        using the distributive law



        $$r lor (neg (p land q) land (p land q)) equiv r lor text{False} equiv r$$



        because $s land neg s equiv text{False}$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Oct 19 '16 at 11:53









        Rodrigo de Azevedo

        13.1k41960




        13.1k41960










        answered Nov 10 '15 at 10:07









        Renuka PiyumalRenuka Piyumal

        112




        112






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f228969%2fhow-to-convert-formula-to-disjunctive-normal-form%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith