Integral involving $u^{-u}$
$begingroup$
I'm trying to solve the following definite integral
$$int_0^{infty}u^{-u+a},du$$
with $a>0$.
Using integration by parts I've arrived
$$int_0^{infty}u^{-u+a},du=frac{1}{1+a}int_0^{infty}u^{-u+a+1}(1+ln(u)),du$$
which is a worst integral.
Maybe a change of variable, but I don't know how to follow.
definite-integrals
$endgroup$
add a comment |
$begingroup$
I'm trying to solve the following definite integral
$$int_0^{infty}u^{-u+a},du$$
with $a>0$.
Using integration by parts I've arrived
$$int_0^{infty}u^{-u+a},du=frac{1}{1+a}int_0^{infty}u^{-u+a+1}(1+ln(u)),du$$
which is a worst integral.
Maybe a change of variable, but I don't know how to follow.
definite-integrals
$endgroup$
1
$begingroup$
I'm afraid there is no elementary integral for $u^{-u}$
$endgroup$
– Bernard Massé
Jan 31 at 1:26
$begingroup$
Do you wanna say that it's not possible express in terms of elementary functions? And...in terms of special functions?
$endgroup$
– popi
Jan 31 at 1:28
$begingroup$
Notice that the minimum value of the integral correspond to $a approx log(2)$. Why ? This is a question.
$endgroup$
– Claude Leibovici
Jan 31 at 6:07
add a comment |
$begingroup$
I'm trying to solve the following definite integral
$$int_0^{infty}u^{-u+a},du$$
with $a>0$.
Using integration by parts I've arrived
$$int_0^{infty}u^{-u+a},du=frac{1}{1+a}int_0^{infty}u^{-u+a+1}(1+ln(u)),du$$
which is a worst integral.
Maybe a change of variable, but I don't know how to follow.
definite-integrals
$endgroup$
I'm trying to solve the following definite integral
$$int_0^{infty}u^{-u+a},du$$
with $a>0$.
Using integration by parts I've arrived
$$int_0^{infty}u^{-u+a},du=frac{1}{1+a}int_0^{infty}u^{-u+a+1}(1+ln(u)),du$$
which is a worst integral.
Maybe a change of variable, but I don't know how to follow.
definite-integrals
definite-integrals
asked Jan 31 at 1:15
popipopi
14512
14512
1
$begingroup$
I'm afraid there is no elementary integral for $u^{-u}$
$endgroup$
– Bernard Massé
Jan 31 at 1:26
$begingroup$
Do you wanna say that it's not possible express in terms of elementary functions? And...in terms of special functions?
$endgroup$
– popi
Jan 31 at 1:28
$begingroup$
Notice that the minimum value of the integral correspond to $a approx log(2)$. Why ? This is a question.
$endgroup$
– Claude Leibovici
Jan 31 at 6:07
add a comment |
1
$begingroup$
I'm afraid there is no elementary integral for $u^{-u}$
$endgroup$
– Bernard Massé
Jan 31 at 1:26
$begingroup$
Do you wanna say that it's not possible express in terms of elementary functions? And...in terms of special functions?
$endgroup$
– popi
Jan 31 at 1:28
$begingroup$
Notice that the minimum value of the integral correspond to $a approx log(2)$. Why ? This is a question.
$endgroup$
– Claude Leibovici
Jan 31 at 6:07
1
1
$begingroup$
I'm afraid there is no elementary integral for $u^{-u}$
$endgroup$
– Bernard Massé
Jan 31 at 1:26
$begingroup$
I'm afraid there is no elementary integral for $u^{-u}$
$endgroup$
– Bernard Massé
Jan 31 at 1:26
$begingroup$
Do you wanna say that it's not possible express in terms of elementary functions? And...in terms of special functions?
$endgroup$
– popi
Jan 31 at 1:28
$begingroup$
Do you wanna say that it's not possible express in terms of elementary functions? And...in terms of special functions?
$endgroup$
– popi
Jan 31 at 1:28
$begingroup$
Notice that the minimum value of the integral correspond to $a approx log(2)$. Why ? This is a question.
$endgroup$
– Claude Leibovici
Jan 31 at 6:07
$begingroup$
Notice that the minimum value of the integral correspond to $a approx log(2)$. Why ? This is a question.
$endgroup$
– Claude Leibovici
Jan 31 at 6:07
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
This looks even worse than the sophomore's dream and only numerical methods could be used.
Let $$I_a=int_0^{infty}u^{-u+a},du$$
For small values of $a$, you would get
$$left(
begin{array}{cc}
a & I_a \
0.00 & 1.99546 \
0.25 & 1.81433 \
0.50 & 1.73133 \
0.75 & 1.71513 \
1.00 & 1.75183 \
1.25 & 1.83622 \
1.50 & 1.96842 \
1.75 & 2.15247 \
2.00 & 2.39609
end{array}
right)$$
For large values of $a$, the integral varies extremely fast
$$left(
begin{array}{cc}
a & I_a \
0 & 1.99546 \
1 & 1.75183 \
2 & 2.39609 \
3 & 4.27169 \
4 & 9.22902 \
5 & 23.2062 \
6 & 66.1712 \
7 & 210.120 \
8 & 733.083 \
9 & 2781.12 \
10 & 11378.2
end{array}
right)$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094357%2fintegral-involving-u-u%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This looks even worse than the sophomore's dream and only numerical methods could be used.
Let $$I_a=int_0^{infty}u^{-u+a},du$$
For small values of $a$, you would get
$$left(
begin{array}{cc}
a & I_a \
0.00 & 1.99546 \
0.25 & 1.81433 \
0.50 & 1.73133 \
0.75 & 1.71513 \
1.00 & 1.75183 \
1.25 & 1.83622 \
1.50 & 1.96842 \
1.75 & 2.15247 \
2.00 & 2.39609
end{array}
right)$$
For large values of $a$, the integral varies extremely fast
$$left(
begin{array}{cc}
a & I_a \
0 & 1.99546 \
1 & 1.75183 \
2 & 2.39609 \
3 & 4.27169 \
4 & 9.22902 \
5 & 23.2062 \
6 & 66.1712 \
7 & 210.120 \
8 & 733.083 \
9 & 2781.12 \
10 & 11378.2
end{array}
right)$$
$endgroup$
add a comment |
$begingroup$
This looks even worse than the sophomore's dream and only numerical methods could be used.
Let $$I_a=int_0^{infty}u^{-u+a},du$$
For small values of $a$, you would get
$$left(
begin{array}{cc}
a & I_a \
0.00 & 1.99546 \
0.25 & 1.81433 \
0.50 & 1.73133 \
0.75 & 1.71513 \
1.00 & 1.75183 \
1.25 & 1.83622 \
1.50 & 1.96842 \
1.75 & 2.15247 \
2.00 & 2.39609
end{array}
right)$$
For large values of $a$, the integral varies extremely fast
$$left(
begin{array}{cc}
a & I_a \
0 & 1.99546 \
1 & 1.75183 \
2 & 2.39609 \
3 & 4.27169 \
4 & 9.22902 \
5 & 23.2062 \
6 & 66.1712 \
7 & 210.120 \
8 & 733.083 \
9 & 2781.12 \
10 & 11378.2
end{array}
right)$$
$endgroup$
add a comment |
$begingroup$
This looks even worse than the sophomore's dream and only numerical methods could be used.
Let $$I_a=int_0^{infty}u^{-u+a},du$$
For small values of $a$, you would get
$$left(
begin{array}{cc}
a & I_a \
0.00 & 1.99546 \
0.25 & 1.81433 \
0.50 & 1.73133 \
0.75 & 1.71513 \
1.00 & 1.75183 \
1.25 & 1.83622 \
1.50 & 1.96842 \
1.75 & 2.15247 \
2.00 & 2.39609
end{array}
right)$$
For large values of $a$, the integral varies extremely fast
$$left(
begin{array}{cc}
a & I_a \
0 & 1.99546 \
1 & 1.75183 \
2 & 2.39609 \
3 & 4.27169 \
4 & 9.22902 \
5 & 23.2062 \
6 & 66.1712 \
7 & 210.120 \
8 & 733.083 \
9 & 2781.12 \
10 & 11378.2
end{array}
right)$$
$endgroup$
This looks even worse than the sophomore's dream and only numerical methods could be used.
Let $$I_a=int_0^{infty}u^{-u+a},du$$
For small values of $a$, you would get
$$left(
begin{array}{cc}
a & I_a \
0.00 & 1.99546 \
0.25 & 1.81433 \
0.50 & 1.73133 \
0.75 & 1.71513 \
1.00 & 1.75183 \
1.25 & 1.83622 \
1.50 & 1.96842 \
1.75 & 2.15247 \
2.00 & 2.39609
end{array}
right)$$
For large values of $a$, the integral varies extremely fast
$$left(
begin{array}{cc}
a & I_a \
0 & 1.99546 \
1 & 1.75183 \
2 & 2.39609 \
3 & 4.27169 \
4 & 9.22902 \
5 & 23.2062 \
6 & 66.1712 \
7 & 210.120 \
8 & 733.083 \
9 & 2781.12 \
10 & 11378.2
end{array}
right)$$
answered Jan 31 at 5:28
Claude LeiboviciClaude Leibovici
125k1158135
125k1158135
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094357%2fintegral-involving-u-u%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
I'm afraid there is no elementary integral for $u^{-u}$
$endgroup$
– Bernard Massé
Jan 31 at 1:26
$begingroup$
Do you wanna say that it's not possible express in terms of elementary functions? And...in terms of special functions?
$endgroup$
– popi
Jan 31 at 1:28
$begingroup$
Notice that the minimum value of the integral correspond to $a approx log(2)$. Why ? This is a question.
$endgroup$
– Claude Leibovici
Jan 31 at 6:07