Integrate $frac{dx}{x^{2n}+1}$ for $n in mathbb{N}$ from $-infty$ to $infty$ [duplicate]
$begingroup$
This question already has an answer here:
Prove $int_0^{infty}! frac{mathbb{d}x}{1+x^n}=frac{pi}{n sinfrac{pi}{n}}$ using real analysis techniques only
4 answers
How can one calculate
$$
int_{- infty}^{infty} frac{dx}{x^{2n} + 1}, ;n in mathbb{N}
$$
without using complex plane and Residue theorem?
real-analysis calculus integration definite-integrals
$endgroup$
marked as duplicate by Jean Marie, mrtaurho, RRL
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 31 at 3:00
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
Prove $int_0^{infty}! frac{mathbb{d}x}{1+x^n}=frac{pi}{n sinfrac{pi}{n}}$ using real analysis techniques only
4 answers
How can one calculate
$$
int_{- infty}^{infty} frac{dx}{x^{2n} + 1}, ;n in mathbb{N}
$$
without using complex plane and Residue theorem?
real-analysis calculus integration definite-integrals
$endgroup$
marked as duplicate by Jean Marie, mrtaurho, RRL
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 31 at 3:00
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
$begingroup$
See here: math.stackexchange.com/q/110457/515527
$endgroup$
– Zacky
Jan 30 at 19:39
add a comment |
$begingroup$
This question already has an answer here:
Prove $int_0^{infty}! frac{mathbb{d}x}{1+x^n}=frac{pi}{n sinfrac{pi}{n}}$ using real analysis techniques only
4 answers
How can one calculate
$$
int_{- infty}^{infty} frac{dx}{x^{2n} + 1}, ;n in mathbb{N}
$$
without using complex plane and Residue theorem?
real-analysis calculus integration definite-integrals
$endgroup$
This question already has an answer here:
Prove $int_0^{infty}! frac{mathbb{d}x}{1+x^n}=frac{pi}{n sinfrac{pi}{n}}$ using real analysis techniques only
4 answers
How can one calculate
$$
int_{- infty}^{infty} frac{dx}{x^{2n} + 1}, ;n in mathbb{N}
$$
without using complex plane and Residue theorem?
This question already has an answer here:
Prove $int_0^{infty}! frac{mathbb{d}x}{1+x^n}=frac{pi}{n sinfrac{pi}{n}}$ using real analysis techniques only
4 answers
real-analysis calculus integration definite-integrals
real-analysis calculus integration definite-integrals
edited Jan 30 at 19:41
Adrian Keister
5,26971933
5,26971933
asked Jan 30 at 19:38
NikromNikrom
1376
1376
marked as duplicate by Jean Marie, mrtaurho, RRL
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 31 at 3:00
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by Jean Marie, mrtaurho, RRL
StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Jan 31 at 3:00
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
1
$begingroup$
See here: math.stackexchange.com/q/110457/515527
$endgroup$
– Zacky
Jan 30 at 19:39
add a comment |
1
$begingroup$
See here: math.stackexchange.com/q/110457/515527
$endgroup$
– Zacky
Jan 30 at 19:39
1
1
$begingroup$
See here: math.stackexchange.com/q/110457/515527
$endgroup$
– Zacky
Jan 30 at 19:39
$begingroup$
See here: math.stackexchange.com/q/110457/515527
$endgroup$
– Zacky
Jan 30 at 19:39
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
With $x=tan^{1/n} t$ and some well-known properties of the Gamma function, you can prove the answer is $2/operatorname{sinc}frac{pi}{2n}$. The case $n=1$ is an easy sanity check.
$endgroup$
add a comment |
$begingroup$
Consider the integral
$$F(a,b,c)=int_0^inftyfrac{t^a}{(t^b+1)^c}mathrm dt$$
Set $x^{1/b}=t$:
$$F(a,b,c)=frac1bint_0^inftyfrac{x^{
frac{a+1}b}}{(x+1)^c}mathrm dx$$
Then $u=frac1{x+1}$ gives
$$begin{align}
F(a,b,c)&=frac1bint_0^1 left[frac{1-u}{u}right]^{
frac{a+1}b}u^cfrac{mathrm du}{u^2}\
&=frac1bint_0^1u^{c-2-frac{a+1}{b}}(1-u)^{frac{a+1}b}mathrm du
end{align}$$
Then recall the definition of the Beta function:
$$mathrm{B}(x,y)=int_0^1t^{x-1}(1-t)^{y-1}mathrm dt=frac{Gamma(x)Gamma(y)}{Gamma(x+y)}$$
Where $Gamma(s)$ is the gamma function. So of course we have
$$F(a,b,c)=frac1bmathrm{B}left(c-1-frac{a+1}b,1+frac{a+1}bright)$$
We then have your integral as
$$int_0^infty frac{mathrm dt}{t^{2n}+1}=F(0,2n,1)$$
$endgroup$
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
With $x=tan^{1/n} t$ and some well-known properties of the Gamma function, you can prove the answer is $2/operatorname{sinc}frac{pi}{2n}$. The case $n=1$ is an easy sanity check.
$endgroup$
add a comment |
$begingroup$
With $x=tan^{1/n} t$ and some well-known properties of the Gamma function, you can prove the answer is $2/operatorname{sinc}frac{pi}{2n}$. The case $n=1$ is an easy sanity check.
$endgroup$
add a comment |
$begingroup$
With $x=tan^{1/n} t$ and some well-known properties of the Gamma function, you can prove the answer is $2/operatorname{sinc}frac{pi}{2n}$. The case $n=1$ is an easy sanity check.
$endgroup$
With $x=tan^{1/n} t$ and some well-known properties of the Gamma function, you can prove the answer is $2/operatorname{sinc}frac{pi}{2n}$. The case $n=1$ is an easy sanity check.
answered Jan 30 at 19:40
J.G.J.G.
32.6k23250
32.6k23250
add a comment |
add a comment |
$begingroup$
Consider the integral
$$F(a,b,c)=int_0^inftyfrac{t^a}{(t^b+1)^c}mathrm dt$$
Set $x^{1/b}=t$:
$$F(a,b,c)=frac1bint_0^inftyfrac{x^{
frac{a+1}b}}{(x+1)^c}mathrm dx$$
Then $u=frac1{x+1}$ gives
$$begin{align}
F(a,b,c)&=frac1bint_0^1 left[frac{1-u}{u}right]^{
frac{a+1}b}u^cfrac{mathrm du}{u^2}\
&=frac1bint_0^1u^{c-2-frac{a+1}{b}}(1-u)^{frac{a+1}b}mathrm du
end{align}$$
Then recall the definition of the Beta function:
$$mathrm{B}(x,y)=int_0^1t^{x-1}(1-t)^{y-1}mathrm dt=frac{Gamma(x)Gamma(y)}{Gamma(x+y)}$$
Where $Gamma(s)$ is the gamma function. So of course we have
$$F(a,b,c)=frac1bmathrm{B}left(c-1-frac{a+1}b,1+frac{a+1}bright)$$
We then have your integral as
$$int_0^infty frac{mathrm dt}{t^{2n}+1}=F(0,2n,1)$$
$endgroup$
add a comment |
$begingroup$
Consider the integral
$$F(a,b,c)=int_0^inftyfrac{t^a}{(t^b+1)^c}mathrm dt$$
Set $x^{1/b}=t$:
$$F(a,b,c)=frac1bint_0^inftyfrac{x^{
frac{a+1}b}}{(x+1)^c}mathrm dx$$
Then $u=frac1{x+1}$ gives
$$begin{align}
F(a,b,c)&=frac1bint_0^1 left[frac{1-u}{u}right]^{
frac{a+1}b}u^cfrac{mathrm du}{u^2}\
&=frac1bint_0^1u^{c-2-frac{a+1}{b}}(1-u)^{frac{a+1}b}mathrm du
end{align}$$
Then recall the definition of the Beta function:
$$mathrm{B}(x,y)=int_0^1t^{x-1}(1-t)^{y-1}mathrm dt=frac{Gamma(x)Gamma(y)}{Gamma(x+y)}$$
Where $Gamma(s)$ is the gamma function. So of course we have
$$F(a,b,c)=frac1bmathrm{B}left(c-1-frac{a+1}b,1+frac{a+1}bright)$$
We then have your integral as
$$int_0^infty frac{mathrm dt}{t^{2n}+1}=F(0,2n,1)$$
$endgroup$
add a comment |
$begingroup$
Consider the integral
$$F(a,b,c)=int_0^inftyfrac{t^a}{(t^b+1)^c}mathrm dt$$
Set $x^{1/b}=t$:
$$F(a,b,c)=frac1bint_0^inftyfrac{x^{
frac{a+1}b}}{(x+1)^c}mathrm dx$$
Then $u=frac1{x+1}$ gives
$$begin{align}
F(a,b,c)&=frac1bint_0^1 left[frac{1-u}{u}right]^{
frac{a+1}b}u^cfrac{mathrm du}{u^2}\
&=frac1bint_0^1u^{c-2-frac{a+1}{b}}(1-u)^{frac{a+1}b}mathrm du
end{align}$$
Then recall the definition of the Beta function:
$$mathrm{B}(x,y)=int_0^1t^{x-1}(1-t)^{y-1}mathrm dt=frac{Gamma(x)Gamma(y)}{Gamma(x+y)}$$
Where $Gamma(s)$ is the gamma function. So of course we have
$$F(a,b,c)=frac1bmathrm{B}left(c-1-frac{a+1}b,1+frac{a+1}bright)$$
We then have your integral as
$$int_0^infty frac{mathrm dt}{t^{2n}+1}=F(0,2n,1)$$
$endgroup$
Consider the integral
$$F(a,b,c)=int_0^inftyfrac{t^a}{(t^b+1)^c}mathrm dt$$
Set $x^{1/b}=t$:
$$F(a,b,c)=frac1bint_0^inftyfrac{x^{
frac{a+1}b}}{(x+1)^c}mathrm dx$$
Then $u=frac1{x+1}$ gives
$$begin{align}
F(a,b,c)&=frac1bint_0^1 left[frac{1-u}{u}right]^{
frac{a+1}b}u^cfrac{mathrm du}{u^2}\
&=frac1bint_0^1u^{c-2-frac{a+1}{b}}(1-u)^{frac{a+1}b}mathrm du
end{align}$$
Then recall the definition of the Beta function:
$$mathrm{B}(x,y)=int_0^1t^{x-1}(1-t)^{y-1}mathrm dt=frac{Gamma(x)Gamma(y)}{Gamma(x+y)}$$
Where $Gamma(s)$ is the gamma function. So of course we have
$$F(a,b,c)=frac1bmathrm{B}left(c-1-frac{a+1}b,1+frac{a+1}bright)$$
We then have your integral as
$$int_0^infty frac{mathrm dt}{t^{2n}+1}=F(0,2n,1)$$
answered Jan 31 at 4:23


clathratusclathratus
5,0891439
5,0891439
add a comment |
add a comment |
1
$begingroup$
See here: math.stackexchange.com/q/110457/515527
$endgroup$
– Zacky
Jan 30 at 19:39