Inverse trig function integration by parts.












-1












$begingroup$



  1. $$int tan^{-1}{2y}dy$$


if I choose $u = tan^{-1}{2y}$ then $du = frac{2}{1 + (2y)^2} dy$



and



$dv = dy$ and $v = y$



But I have a more complicated du. What else can I do?










share|cite|improve this question











$endgroup$












  • $begingroup$
    math.stackexchange.com/questions/768332/liate-how-does-it-work
    $endgroup$
    – lab bhattacharjee
    Jan 30 at 5:50
















-1












$begingroup$



  1. $$int tan^{-1}{2y}dy$$


if I choose $u = tan^{-1}{2y}$ then $du = frac{2}{1 + (2y)^2} dy$



and



$dv = dy$ and $v = y$



But I have a more complicated du. What else can I do?










share|cite|improve this question











$endgroup$












  • $begingroup$
    math.stackexchange.com/questions/768332/liate-how-does-it-work
    $endgroup$
    – lab bhattacharjee
    Jan 30 at 5:50














-1












-1








-1





$begingroup$



  1. $$int tan^{-1}{2y}dy$$


if I choose $u = tan^{-1}{2y}$ then $du = frac{2}{1 + (2y)^2} dy$



and



$dv = dy$ and $v = y$



But I have a more complicated du. What else can I do?










share|cite|improve this question











$endgroup$





  1. $$int tan^{-1}{2y}dy$$


if I choose $u = tan^{-1}{2y}$ then $du = frac{2}{1 + (2y)^2} dy$



and



$dv = dy$ and $v = y$



But I have a more complicated du. What else can I do?







real-analysis integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 30 at 17:18









Larry

2,53031131




2,53031131










asked Jan 30 at 5:40









Jwan622Jwan622

2,34811632




2,34811632












  • $begingroup$
    math.stackexchange.com/questions/768332/liate-how-does-it-work
    $endgroup$
    – lab bhattacharjee
    Jan 30 at 5:50


















  • $begingroup$
    math.stackexchange.com/questions/768332/liate-how-does-it-work
    $endgroup$
    – lab bhattacharjee
    Jan 30 at 5:50
















$begingroup$
math.stackexchange.com/questions/768332/liate-how-does-it-work
$endgroup$
– lab bhattacharjee
Jan 30 at 5:50




$begingroup$
math.stackexchange.com/questions/768332/liate-how-does-it-work
$endgroup$
– lab bhattacharjee
Jan 30 at 5:50










4 Answers
4






active

oldest

votes


















1












$begingroup$

Another approach. Let $2y = tan(theta) rightarrow 2frac{dy}{dtheta} = sec^2(theta)$ and finally $dy = frac{1}{2}sec^2(theta)dtheta$.



Thus,



begin{align}
I =int arctan(2y):dy = int arctanleft(tan(theta)right) cdot frac{1}{2}sec^2(theta):dtheta = frac{1}{2}int theta sec^2(theta):dtheta
end{align}



Now, integrate by parts:



begin{align}
v'(theta) &= sec^2(theta) & u(theta) &= theta \
v(theta) &= tan(theta) & u'(theta) &= 1
end{align}



Thus:



begin{align}
I &= frac{1}{2}int theta sec^2(theta):dtheta = frac{1}{2}left[thetatan(theta) - int tan(theta) :dtheta right] \
&= frac{1}{2}left[thetatan(theta) - lnleft|sec(theta) right| right] + C
end{align}



Where $C$ is the constant of integration. Recall that $2y = tan(theta)$ and hence $theta = arctan(2y)$. For $sec(theta)$ we use the identity $sec(theta) = sqrt{tan^2(theta)+ 1} = sqrt{left(2yright)^2 + 1} = sqrt{4y^2 + 1}$. Hence we arrive at



begin{equation}
I = int arctan(2y):dy = frac{1}{2}left[2y arctan(2y) - lnleft| sqrt{4y^2 + 1} right|right] + C = y arctan(2y) - frac{1}{4}lnleft| 4y^2 + 1 right| + C
end{equation}






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    A neat identity.



    Given some continuous inverse function $f^{-1}(x)$, we can find the antiderivative of this inverse function. Here's how.



    Consider the integral
    $$I=int f^{-1}(x)mathrm dx$$
    Assuming that we know what $f(x)$ is, we may preform the substitution $x=f(t)$ meaning that $mathrm dx=f'(t)mathrm dt$. Hence we have
    $$I=int f^{-1}left[f(t)right]f'(t)mathrm dt$$
    $$I=int tf'(t)mathrm dt$$
    We then integrate by parts:
    $$mathrm dv=f'(t)mathrm dtRightarrow v=f(t)\
    u=tRightarrow mathrm du=mathrm dt$$

    Which gives
    $$I=tf(t)-int f(t)mathrm dt$$
    And assuming that $F'(x)=f(x)$,
    $$I=tf(t)-F(t)+C$$
    And since $x=f(t)$ we have that $t=f^{-1}(x)$ which gives
    $$I=xf^{-1}(x)-Fleft[f^{-1}(x)right]+C$$





    So, choosing $f^{-1}(x)=arctan ax$ for some constant $aneq 0$, we have that $f(x)=frac1atan x$. Hence
    $$begin{align}
    I&=xarctan ax-frac1aint tan t ,mathrm dt\
    &=xarctan ax+frac1alnleft|cos tright|+C\
    &=xarctan ax+frac1alnleft|cos[arctan ax]right|+C
    end{align}$$

    And from $$cos[arctan z]=frac1{sqrt{1+z^2}}$$
    We have, after some simplification,
    $$intarctan(ax)mathrm dx=xarctan(ax)-frac1{2a}ln(1+a^2x^2)+C$$
    And your integral is given by the case $a=2$.






    share|cite|improve this answer









    $endgroup$





















      0












      $begingroup$

      $$intarctan2ydy=yarctan2y-intfrac{2y}{1+4y^2}dy=yarctan2y-frac{1}{4}ln(1+4y^2)+C.$$






      share|cite|improve this answer











      $endgroup$





















        0












        $begingroup$

        Integrating by parts, $int tan^{-1}(2y), dy=y, tan^{-1}(2y) -int frac {2y} {1+4y^{2}} , dy+c$. Put $1+4y^{2}=u$ to evaluate this.






        share|cite|improve this answer











        $endgroup$














          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093140%2finverse-trig-function-integration-by-parts%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          Another approach. Let $2y = tan(theta) rightarrow 2frac{dy}{dtheta} = sec^2(theta)$ and finally $dy = frac{1}{2}sec^2(theta)dtheta$.



          Thus,



          begin{align}
          I =int arctan(2y):dy = int arctanleft(tan(theta)right) cdot frac{1}{2}sec^2(theta):dtheta = frac{1}{2}int theta sec^2(theta):dtheta
          end{align}



          Now, integrate by parts:



          begin{align}
          v'(theta) &= sec^2(theta) & u(theta) &= theta \
          v(theta) &= tan(theta) & u'(theta) &= 1
          end{align}



          Thus:



          begin{align}
          I &= frac{1}{2}int theta sec^2(theta):dtheta = frac{1}{2}left[thetatan(theta) - int tan(theta) :dtheta right] \
          &= frac{1}{2}left[thetatan(theta) - lnleft|sec(theta) right| right] + C
          end{align}



          Where $C$ is the constant of integration. Recall that $2y = tan(theta)$ and hence $theta = arctan(2y)$. For $sec(theta)$ we use the identity $sec(theta) = sqrt{tan^2(theta)+ 1} = sqrt{left(2yright)^2 + 1} = sqrt{4y^2 + 1}$. Hence we arrive at



          begin{equation}
          I = int arctan(2y):dy = frac{1}{2}left[2y arctan(2y) - lnleft| sqrt{4y^2 + 1} right|right] + C = y arctan(2y) - frac{1}{4}lnleft| 4y^2 + 1 right| + C
          end{equation}






          share|cite|improve this answer









          $endgroup$


















            1












            $begingroup$

            Another approach. Let $2y = tan(theta) rightarrow 2frac{dy}{dtheta} = sec^2(theta)$ and finally $dy = frac{1}{2}sec^2(theta)dtheta$.



            Thus,



            begin{align}
            I =int arctan(2y):dy = int arctanleft(tan(theta)right) cdot frac{1}{2}sec^2(theta):dtheta = frac{1}{2}int theta sec^2(theta):dtheta
            end{align}



            Now, integrate by parts:



            begin{align}
            v'(theta) &= sec^2(theta) & u(theta) &= theta \
            v(theta) &= tan(theta) & u'(theta) &= 1
            end{align}



            Thus:



            begin{align}
            I &= frac{1}{2}int theta sec^2(theta):dtheta = frac{1}{2}left[thetatan(theta) - int tan(theta) :dtheta right] \
            &= frac{1}{2}left[thetatan(theta) - lnleft|sec(theta) right| right] + C
            end{align}



            Where $C$ is the constant of integration. Recall that $2y = tan(theta)$ and hence $theta = arctan(2y)$. For $sec(theta)$ we use the identity $sec(theta) = sqrt{tan^2(theta)+ 1} = sqrt{left(2yright)^2 + 1} = sqrt{4y^2 + 1}$. Hence we arrive at



            begin{equation}
            I = int arctan(2y):dy = frac{1}{2}left[2y arctan(2y) - lnleft| sqrt{4y^2 + 1} right|right] + C = y arctan(2y) - frac{1}{4}lnleft| 4y^2 + 1 right| + C
            end{equation}






            share|cite|improve this answer









            $endgroup$
















              1












              1








              1





              $begingroup$

              Another approach. Let $2y = tan(theta) rightarrow 2frac{dy}{dtheta} = sec^2(theta)$ and finally $dy = frac{1}{2}sec^2(theta)dtheta$.



              Thus,



              begin{align}
              I =int arctan(2y):dy = int arctanleft(tan(theta)right) cdot frac{1}{2}sec^2(theta):dtheta = frac{1}{2}int theta sec^2(theta):dtheta
              end{align}



              Now, integrate by parts:



              begin{align}
              v'(theta) &= sec^2(theta) & u(theta) &= theta \
              v(theta) &= tan(theta) & u'(theta) &= 1
              end{align}



              Thus:



              begin{align}
              I &= frac{1}{2}int theta sec^2(theta):dtheta = frac{1}{2}left[thetatan(theta) - int tan(theta) :dtheta right] \
              &= frac{1}{2}left[thetatan(theta) - lnleft|sec(theta) right| right] + C
              end{align}



              Where $C$ is the constant of integration. Recall that $2y = tan(theta)$ and hence $theta = arctan(2y)$. For $sec(theta)$ we use the identity $sec(theta) = sqrt{tan^2(theta)+ 1} = sqrt{left(2yright)^2 + 1} = sqrt{4y^2 + 1}$. Hence we arrive at



              begin{equation}
              I = int arctan(2y):dy = frac{1}{2}left[2y arctan(2y) - lnleft| sqrt{4y^2 + 1} right|right] + C = y arctan(2y) - frac{1}{4}lnleft| 4y^2 + 1 right| + C
              end{equation}






              share|cite|improve this answer









              $endgroup$



              Another approach. Let $2y = tan(theta) rightarrow 2frac{dy}{dtheta} = sec^2(theta)$ and finally $dy = frac{1}{2}sec^2(theta)dtheta$.



              Thus,



              begin{align}
              I =int arctan(2y):dy = int arctanleft(tan(theta)right) cdot frac{1}{2}sec^2(theta):dtheta = frac{1}{2}int theta sec^2(theta):dtheta
              end{align}



              Now, integrate by parts:



              begin{align}
              v'(theta) &= sec^2(theta) & u(theta) &= theta \
              v(theta) &= tan(theta) & u'(theta) &= 1
              end{align}



              Thus:



              begin{align}
              I &= frac{1}{2}int theta sec^2(theta):dtheta = frac{1}{2}left[thetatan(theta) - int tan(theta) :dtheta right] \
              &= frac{1}{2}left[thetatan(theta) - lnleft|sec(theta) right| right] + C
              end{align}



              Where $C$ is the constant of integration. Recall that $2y = tan(theta)$ and hence $theta = arctan(2y)$. For $sec(theta)$ we use the identity $sec(theta) = sqrt{tan^2(theta)+ 1} = sqrt{left(2yright)^2 + 1} = sqrt{4y^2 + 1}$. Hence we arrive at



              begin{equation}
              I = int arctan(2y):dy = frac{1}{2}left[2y arctan(2y) - lnleft| sqrt{4y^2 + 1} right|right] + C = y arctan(2y) - frac{1}{4}lnleft| 4y^2 + 1 right| + C
              end{equation}







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Jan 30 at 6:36







              user150203






























                  1












                  $begingroup$

                  A neat identity.



                  Given some continuous inverse function $f^{-1}(x)$, we can find the antiderivative of this inverse function. Here's how.



                  Consider the integral
                  $$I=int f^{-1}(x)mathrm dx$$
                  Assuming that we know what $f(x)$ is, we may preform the substitution $x=f(t)$ meaning that $mathrm dx=f'(t)mathrm dt$. Hence we have
                  $$I=int f^{-1}left[f(t)right]f'(t)mathrm dt$$
                  $$I=int tf'(t)mathrm dt$$
                  We then integrate by parts:
                  $$mathrm dv=f'(t)mathrm dtRightarrow v=f(t)\
                  u=tRightarrow mathrm du=mathrm dt$$

                  Which gives
                  $$I=tf(t)-int f(t)mathrm dt$$
                  And assuming that $F'(x)=f(x)$,
                  $$I=tf(t)-F(t)+C$$
                  And since $x=f(t)$ we have that $t=f^{-1}(x)$ which gives
                  $$I=xf^{-1}(x)-Fleft[f^{-1}(x)right]+C$$





                  So, choosing $f^{-1}(x)=arctan ax$ for some constant $aneq 0$, we have that $f(x)=frac1atan x$. Hence
                  $$begin{align}
                  I&=xarctan ax-frac1aint tan t ,mathrm dt\
                  &=xarctan ax+frac1alnleft|cos tright|+C\
                  &=xarctan ax+frac1alnleft|cos[arctan ax]right|+C
                  end{align}$$

                  And from $$cos[arctan z]=frac1{sqrt{1+z^2}}$$
                  We have, after some simplification,
                  $$intarctan(ax)mathrm dx=xarctan(ax)-frac1{2a}ln(1+a^2x^2)+C$$
                  And your integral is given by the case $a=2$.






                  share|cite|improve this answer









                  $endgroup$


















                    1












                    $begingroup$

                    A neat identity.



                    Given some continuous inverse function $f^{-1}(x)$, we can find the antiderivative of this inverse function. Here's how.



                    Consider the integral
                    $$I=int f^{-1}(x)mathrm dx$$
                    Assuming that we know what $f(x)$ is, we may preform the substitution $x=f(t)$ meaning that $mathrm dx=f'(t)mathrm dt$. Hence we have
                    $$I=int f^{-1}left[f(t)right]f'(t)mathrm dt$$
                    $$I=int tf'(t)mathrm dt$$
                    We then integrate by parts:
                    $$mathrm dv=f'(t)mathrm dtRightarrow v=f(t)\
                    u=tRightarrow mathrm du=mathrm dt$$

                    Which gives
                    $$I=tf(t)-int f(t)mathrm dt$$
                    And assuming that $F'(x)=f(x)$,
                    $$I=tf(t)-F(t)+C$$
                    And since $x=f(t)$ we have that $t=f^{-1}(x)$ which gives
                    $$I=xf^{-1}(x)-Fleft[f^{-1}(x)right]+C$$





                    So, choosing $f^{-1}(x)=arctan ax$ for some constant $aneq 0$, we have that $f(x)=frac1atan x$. Hence
                    $$begin{align}
                    I&=xarctan ax-frac1aint tan t ,mathrm dt\
                    &=xarctan ax+frac1alnleft|cos tright|+C\
                    &=xarctan ax+frac1alnleft|cos[arctan ax]right|+C
                    end{align}$$

                    And from $$cos[arctan z]=frac1{sqrt{1+z^2}}$$
                    We have, after some simplification,
                    $$intarctan(ax)mathrm dx=xarctan(ax)-frac1{2a}ln(1+a^2x^2)+C$$
                    And your integral is given by the case $a=2$.






                    share|cite|improve this answer









                    $endgroup$
















                      1












                      1








                      1





                      $begingroup$

                      A neat identity.



                      Given some continuous inverse function $f^{-1}(x)$, we can find the antiderivative of this inverse function. Here's how.



                      Consider the integral
                      $$I=int f^{-1}(x)mathrm dx$$
                      Assuming that we know what $f(x)$ is, we may preform the substitution $x=f(t)$ meaning that $mathrm dx=f'(t)mathrm dt$. Hence we have
                      $$I=int f^{-1}left[f(t)right]f'(t)mathrm dt$$
                      $$I=int tf'(t)mathrm dt$$
                      We then integrate by parts:
                      $$mathrm dv=f'(t)mathrm dtRightarrow v=f(t)\
                      u=tRightarrow mathrm du=mathrm dt$$

                      Which gives
                      $$I=tf(t)-int f(t)mathrm dt$$
                      And assuming that $F'(x)=f(x)$,
                      $$I=tf(t)-F(t)+C$$
                      And since $x=f(t)$ we have that $t=f^{-1}(x)$ which gives
                      $$I=xf^{-1}(x)-Fleft[f^{-1}(x)right]+C$$





                      So, choosing $f^{-1}(x)=arctan ax$ for some constant $aneq 0$, we have that $f(x)=frac1atan x$. Hence
                      $$begin{align}
                      I&=xarctan ax-frac1aint tan t ,mathrm dt\
                      &=xarctan ax+frac1alnleft|cos tright|+C\
                      &=xarctan ax+frac1alnleft|cos[arctan ax]right|+C
                      end{align}$$

                      And from $$cos[arctan z]=frac1{sqrt{1+z^2}}$$
                      We have, after some simplification,
                      $$intarctan(ax)mathrm dx=xarctan(ax)-frac1{2a}ln(1+a^2x^2)+C$$
                      And your integral is given by the case $a=2$.






                      share|cite|improve this answer









                      $endgroup$



                      A neat identity.



                      Given some continuous inverse function $f^{-1}(x)$, we can find the antiderivative of this inverse function. Here's how.



                      Consider the integral
                      $$I=int f^{-1}(x)mathrm dx$$
                      Assuming that we know what $f(x)$ is, we may preform the substitution $x=f(t)$ meaning that $mathrm dx=f'(t)mathrm dt$. Hence we have
                      $$I=int f^{-1}left[f(t)right]f'(t)mathrm dt$$
                      $$I=int tf'(t)mathrm dt$$
                      We then integrate by parts:
                      $$mathrm dv=f'(t)mathrm dtRightarrow v=f(t)\
                      u=tRightarrow mathrm du=mathrm dt$$

                      Which gives
                      $$I=tf(t)-int f(t)mathrm dt$$
                      And assuming that $F'(x)=f(x)$,
                      $$I=tf(t)-F(t)+C$$
                      And since $x=f(t)$ we have that $t=f^{-1}(x)$ which gives
                      $$I=xf^{-1}(x)-Fleft[f^{-1}(x)right]+C$$





                      So, choosing $f^{-1}(x)=arctan ax$ for some constant $aneq 0$, we have that $f(x)=frac1atan x$. Hence
                      $$begin{align}
                      I&=xarctan ax-frac1aint tan t ,mathrm dt\
                      &=xarctan ax+frac1alnleft|cos tright|+C\
                      &=xarctan ax+frac1alnleft|cos[arctan ax]right|+C
                      end{align}$$

                      And from $$cos[arctan z]=frac1{sqrt{1+z^2}}$$
                      We have, after some simplification,
                      $$intarctan(ax)mathrm dx=xarctan(ax)-frac1{2a}ln(1+a^2x^2)+C$$
                      And your integral is given by the case $a=2$.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Jan 31 at 16:48









                      clathratusclathratus

                      5,0641439




                      5,0641439























                          0












                          $begingroup$

                          $$intarctan2ydy=yarctan2y-intfrac{2y}{1+4y^2}dy=yarctan2y-frac{1}{4}ln(1+4y^2)+C.$$






                          share|cite|improve this answer











                          $endgroup$


















                            0












                            $begingroup$

                            $$intarctan2ydy=yarctan2y-intfrac{2y}{1+4y^2}dy=yarctan2y-frac{1}{4}ln(1+4y^2)+C.$$






                            share|cite|improve this answer











                            $endgroup$
















                              0












                              0








                              0





                              $begingroup$

                              $$intarctan2ydy=yarctan2y-intfrac{2y}{1+4y^2}dy=yarctan2y-frac{1}{4}ln(1+4y^2)+C.$$






                              share|cite|improve this answer











                              $endgroup$



                              $$intarctan2ydy=yarctan2y-intfrac{2y}{1+4y^2}dy=yarctan2y-frac{1}{4}ln(1+4y^2)+C.$$







                              share|cite|improve this answer














                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited Jan 30 at 5:51

























                              answered Jan 30 at 5:45









                              Michael RozenbergMichael Rozenberg

                              109k1896201




                              109k1896201























                                  0












                                  $begingroup$

                                  Integrating by parts, $int tan^{-1}(2y), dy=y, tan^{-1}(2y) -int frac {2y} {1+4y^{2}} , dy+c$. Put $1+4y^{2}=u$ to evaluate this.






                                  share|cite|improve this answer











                                  $endgroup$


















                                    0












                                    $begingroup$

                                    Integrating by parts, $int tan^{-1}(2y), dy=y, tan^{-1}(2y) -int frac {2y} {1+4y^{2}} , dy+c$. Put $1+4y^{2}=u$ to evaluate this.






                                    share|cite|improve this answer











                                    $endgroup$
















                                      0












                                      0








                                      0





                                      $begingroup$

                                      Integrating by parts, $int tan^{-1}(2y), dy=y, tan^{-1}(2y) -int frac {2y} {1+4y^{2}} , dy+c$. Put $1+4y^{2}=u$ to evaluate this.






                                      share|cite|improve this answer











                                      $endgroup$



                                      Integrating by parts, $int tan^{-1}(2y), dy=y, tan^{-1}(2y) -int frac {2y} {1+4y^{2}} , dy+c$. Put $1+4y^{2}=u$ to evaluate this.







                                      share|cite|improve this answer














                                      share|cite|improve this answer



                                      share|cite|improve this answer








                                      edited Jan 30 at 8:13

























                                      answered Jan 30 at 5:47









                                      Kavi Rama MurthyKavi Rama Murthy

                                      71.9k53170




                                      71.9k53170






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093140%2finverse-trig-function-integration-by-parts%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          MongoDB - Not Authorized To Execute Command

                                          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                                          How to fix TextFormField cause rebuild widget in Flutter