Inverse trig function integration by parts.
$begingroup$
- $$int tan^{-1}{2y}dy$$
if I choose $u = tan^{-1}{2y}$ then $du = frac{2}{1 + (2y)^2} dy$
and
$dv = dy$ and $v = y$
But I have a more complicated du. What else can I do?
real-analysis integration
$endgroup$
add a comment |
$begingroup$
- $$int tan^{-1}{2y}dy$$
if I choose $u = tan^{-1}{2y}$ then $du = frac{2}{1 + (2y)^2} dy$
and
$dv = dy$ and $v = y$
But I have a more complicated du. What else can I do?
real-analysis integration
$endgroup$
$begingroup$
math.stackexchange.com/questions/768332/liate-how-does-it-work
$endgroup$
– lab bhattacharjee
Jan 30 at 5:50
add a comment |
$begingroup$
- $$int tan^{-1}{2y}dy$$
if I choose $u = tan^{-1}{2y}$ then $du = frac{2}{1 + (2y)^2} dy$
and
$dv = dy$ and $v = y$
But I have a more complicated du. What else can I do?
real-analysis integration
$endgroup$
- $$int tan^{-1}{2y}dy$$
if I choose $u = tan^{-1}{2y}$ then $du = frac{2}{1 + (2y)^2} dy$
and
$dv = dy$ and $v = y$
But I have a more complicated du. What else can I do?
real-analysis integration
real-analysis integration
edited Jan 30 at 17:18


Larry
2,53031131
2,53031131
asked Jan 30 at 5:40


Jwan622Jwan622
2,34811632
2,34811632
$begingroup$
math.stackexchange.com/questions/768332/liate-how-does-it-work
$endgroup$
– lab bhattacharjee
Jan 30 at 5:50
add a comment |
$begingroup$
math.stackexchange.com/questions/768332/liate-how-does-it-work
$endgroup$
– lab bhattacharjee
Jan 30 at 5:50
$begingroup$
math.stackexchange.com/questions/768332/liate-how-does-it-work
$endgroup$
– lab bhattacharjee
Jan 30 at 5:50
$begingroup$
math.stackexchange.com/questions/768332/liate-how-does-it-work
$endgroup$
– lab bhattacharjee
Jan 30 at 5:50
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Another approach. Let $2y = tan(theta) rightarrow 2frac{dy}{dtheta} = sec^2(theta)$ and finally $dy = frac{1}{2}sec^2(theta)dtheta$.
Thus,
begin{align}
I =int arctan(2y):dy = int arctanleft(tan(theta)right) cdot frac{1}{2}sec^2(theta):dtheta = frac{1}{2}int theta sec^2(theta):dtheta
end{align}
Now, integrate by parts:
begin{align}
v'(theta) &= sec^2(theta) & u(theta) &= theta \
v(theta) &= tan(theta) & u'(theta) &= 1
end{align}
Thus:
begin{align}
I &= frac{1}{2}int theta sec^2(theta):dtheta = frac{1}{2}left[thetatan(theta) - int tan(theta) :dtheta right] \
&= frac{1}{2}left[thetatan(theta) - lnleft|sec(theta) right| right] + C
end{align}
Where $C$ is the constant of integration. Recall that $2y = tan(theta)$ and hence $theta = arctan(2y)$. For $sec(theta)$ we use the identity $sec(theta) = sqrt{tan^2(theta)+ 1} = sqrt{left(2yright)^2 + 1} = sqrt{4y^2 + 1}$. Hence we arrive at
begin{equation}
I = int arctan(2y):dy = frac{1}{2}left[2y arctan(2y) - lnleft| sqrt{4y^2 + 1} right|right] + C = y arctan(2y) - frac{1}{4}lnleft| 4y^2 + 1 right| + C
end{equation}
$endgroup$
add a comment |
$begingroup$
A neat identity.
Given some continuous inverse function $f^{-1}(x)$, we can find the antiderivative of this inverse function. Here's how.
Consider the integral
$$I=int f^{-1}(x)mathrm dx$$
Assuming that we know what $f(x)$ is, we may preform the substitution $x=f(t)$ meaning that $mathrm dx=f'(t)mathrm dt$. Hence we have
$$I=int f^{-1}left[f(t)right]f'(t)mathrm dt$$
$$I=int tf'(t)mathrm dt$$
We then integrate by parts:
$$mathrm dv=f'(t)mathrm dtRightarrow v=f(t)\
u=tRightarrow mathrm du=mathrm dt$$
Which gives
$$I=tf(t)-int f(t)mathrm dt$$
And assuming that $F'(x)=f(x)$,
$$I=tf(t)-F(t)+C$$
And since $x=f(t)$ we have that $t=f^{-1}(x)$ which gives
$$I=xf^{-1}(x)-Fleft[f^{-1}(x)right]+C$$
So, choosing $f^{-1}(x)=arctan ax$ for some constant $aneq 0$, we have that $f(x)=frac1atan x$. Hence
$$begin{align}
I&=xarctan ax-frac1aint tan t ,mathrm dt\
&=xarctan ax+frac1alnleft|cos tright|+C\
&=xarctan ax+frac1alnleft|cos[arctan ax]right|+C
end{align}$$
And from $$cos[arctan z]=frac1{sqrt{1+z^2}}$$
We have, after some simplification,
$$intarctan(ax)mathrm dx=xarctan(ax)-frac1{2a}ln(1+a^2x^2)+C$$
And your integral is given by the case $a=2$.
$endgroup$
add a comment |
$begingroup$
$$intarctan2ydy=yarctan2y-intfrac{2y}{1+4y^2}dy=yarctan2y-frac{1}{4}ln(1+4y^2)+C.$$
$endgroup$
add a comment |
$begingroup$
Integrating by parts, $int tan^{-1}(2y), dy=y, tan^{-1}(2y) -int frac {2y} {1+4y^{2}} , dy+c$. Put $1+4y^{2}=u$ to evaluate this.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093140%2finverse-trig-function-integration-by-parts%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Another approach. Let $2y = tan(theta) rightarrow 2frac{dy}{dtheta} = sec^2(theta)$ and finally $dy = frac{1}{2}sec^2(theta)dtheta$.
Thus,
begin{align}
I =int arctan(2y):dy = int arctanleft(tan(theta)right) cdot frac{1}{2}sec^2(theta):dtheta = frac{1}{2}int theta sec^2(theta):dtheta
end{align}
Now, integrate by parts:
begin{align}
v'(theta) &= sec^2(theta) & u(theta) &= theta \
v(theta) &= tan(theta) & u'(theta) &= 1
end{align}
Thus:
begin{align}
I &= frac{1}{2}int theta sec^2(theta):dtheta = frac{1}{2}left[thetatan(theta) - int tan(theta) :dtheta right] \
&= frac{1}{2}left[thetatan(theta) - lnleft|sec(theta) right| right] + C
end{align}
Where $C$ is the constant of integration. Recall that $2y = tan(theta)$ and hence $theta = arctan(2y)$. For $sec(theta)$ we use the identity $sec(theta) = sqrt{tan^2(theta)+ 1} = sqrt{left(2yright)^2 + 1} = sqrt{4y^2 + 1}$. Hence we arrive at
begin{equation}
I = int arctan(2y):dy = frac{1}{2}left[2y arctan(2y) - lnleft| sqrt{4y^2 + 1} right|right] + C = y arctan(2y) - frac{1}{4}lnleft| 4y^2 + 1 right| + C
end{equation}
$endgroup$
add a comment |
$begingroup$
Another approach. Let $2y = tan(theta) rightarrow 2frac{dy}{dtheta} = sec^2(theta)$ and finally $dy = frac{1}{2}sec^2(theta)dtheta$.
Thus,
begin{align}
I =int arctan(2y):dy = int arctanleft(tan(theta)right) cdot frac{1}{2}sec^2(theta):dtheta = frac{1}{2}int theta sec^2(theta):dtheta
end{align}
Now, integrate by parts:
begin{align}
v'(theta) &= sec^2(theta) & u(theta) &= theta \
v(theta) &= tan(theta) & u'(theta) &= 1
end{align}
Thus:
begin{align}
I &= frac{1}{2}int theta sec^2(theta):dtheta = frac{1}{2}left[thetatan(theta) - int tan(theta) :dtheta right] \
&= frac{1}{2}left[thetatan(theta) - lnleft|sec(theta) right| right] + C
end{align}
Where $C$ is the constant of integration. Recall that $2y = tan(theta)$ and hence $theta = arctan(2y)$. For $sec(theta)$ we use the identity $sec(theta) = sqrt{tan^2(theta)+ 1} = sqrt{left(2yright)^2 + 1} = sqrt{4y^2 + 1}$. Hence we arrive at
begin{equation}
I = int arctan(2y):dy = frac{1}{2}left[2y arctan(2y) - lnleft| sqrt{4y^2 + 1} right|right] + C = y arctan(2y) - frac{1}{4}lnleft| 4y^2 + 1 right| + C
end{equation}
$endgroup$
add a comment |
$begingroup$
Another approach. Let $2y = tan(theta) rightarrow 2frac{dy}{dtheta} = sec^2(theta)$ and finally $dy = frac{1}{2}sec^2(theta)dtheta$.
Thus,
begin{align}
I =int arctan(2y):dy = int arctanleft(tan(theta)right) cdot frac{1}{2}sec^2(theta):dtheta = frac{1}{2}int theta sec^2(theta):dtheta
end{align}
Now, integrate by parts:
begin{align}
v'(theta) &= sec^2(theta) & u(theta) &= theta \
v(theta) &= tan(theta) & u'(theta) &= 1
end{align}
Thus:
begin{align}
I &= frac{1}{2}int theta sec^2(theta):dtheta = frac{1}{2}left[thetatan(theta) - int tan(theta) :dtheta right] \
&= frac{1}{2}left[thetatan(theta) - lnleft|sec(theta) right| right] + C
end{align}
Where $C$ is the constant of integration. Recall that $2y = tan(theta)$ and hence $theta = arctan(2y)$. For $sec(theta)$ we use the identity $sec(theta) = sqrt{tan^2(theta)+ 1} = sqrt{left(2yright)^2 + 1} = sqrt{4y^2 + 1}$. Hence we arrive at
begin{equation}
I = int arctan(2y):dy = frac{1}{2}left[2y arctan(2y) - lnleft| sqrt{4y^2 + 1} right|right] + C = y arctan(2y) - frac{1}{4}lnleft| 4y^2 + 1 right| + C
end{equation}
$endgroup$
Another approach. Let $2y = tan(theta) rightarrow 2frac{dy}{dtheta} = sec^2(theta)$ and finally $dy = frac{1}{2}sec^2(theta)dtheta$.
Thus,
begin{align}
I =int arctan(2y):dy = int arctanleft(tan(theta)right) cdot frac{1}{2}sec^2(theta):dtheta = frac{1}{2}int theta sec^2(theta):dtheta
end{align}
Now, integrate by parts:
begin{align}
v'(theta) &= sec^2(theta) & u(theta) &= theta \
v(theta) &= tan(theta) & u'(theta) &= 1
end{align}
Thus:
begin{align}
I &= frac{1}{2}int theta sec^2(theta):dtheta = frac{1}{2}left[thetatan(theta) - int tan(theta) :dtheta right] \
&= frac{1}{2}left[thetatan(theta) - lnleft|sec(theta) right| right] + C
end{align}
Where $C$ is the constant of integration. Recall that $2y = tan(theta)$ and hence $theta = arctan(2y)$. For $sec(theta)$ we use the identity $sec(theta) = sqrt{tan^2(theta)+ 1} = sqrt{left(2yright)^2 + 1} = sqrt{4y^2 + 1}$. Hence we arrive at
begin{equation}
I = int arctan(2y):dy = frac{1}{2}left[2y arctan(2y) - lnleft| sqrt{4y^2 + 1} right|right] + C = y arctan(2y) - frac{1}{4}lnleft| 4y^2 + 1 right| + C
end{equation}
answered Jan 30 at 6:36
user150203
add a comment |
add a comment |
$begingroup$
A neat identity.
Given some continuous inverse function $f^{-1}(x)$, we can find the antiderivative of this inverse function. Here's how.
Consider the integral
$$I=int f^{-1}(x)mathrm dx$$
Assuming that we know what $f(x)$ is, we may preform the substitution $x=f(t)$ meaning that $mathrm dx=f'(t)mathrm dt$. Hence we have
$$I=int f^{-1}left[f(t)right]f'(t)mathrm dt$$
$$I=int tf'(t)mathrm dt$$
We then integrate by parts:
$$mathrm dv=f'(t)mathrm dtRightarrow v=f(t)\
u=tRightarrow mathrm du=mathrm dt$$
Which gives
$$I=tf(t)-int f(t)mathrm dt$$
And assuming that $F'(x)=f(x)$,
$$I=tf(t)-F(t)+C$$
And since $x=f(t)$ we have that $t=f^{-1}(x)$ which gives
$$I=xf^{-1}(x)-Fleft[f^{-1}(x)right]+C$$
So, choosing $f^{-1}(x)=arctan ax$ for some constant $aneq 0$, we have that $f(x)=frac1atan x$. Hence
$$begin{align}
I&=xarctan ax-frac1aint tan t ,mathrm dt\
&=xarctan ax+frac1alnleft|cos tright|+C\
&=xarctan ax+frac1alnleft|cos[arctan ax]right|+C
end{align}$$
And from $$cos[arctan z]=frac1{sqrt{1+z^2}}$$
We have, after some simplification,
$$intarctan(ax)mathrm dx=xarctan(ax)-frac1{2a}ln(1+a^2x^2)+C$$
And your integral is given by the case $a=2$.
$endgroup$
add a comment |
$begingroup$
A neat identity.
Given some continuous inverse function $f^{-1}(x)$, we can find the antiderivative of this inverse function. Here's how.
Consider the integral
$$I=int f^{-1}(x)mathrm dx$$
Assuming that we know what $f(x)$ is, we may preform the substitution $x=f(t)$ meaning that $mathrm dx=f'(t)mathrm dt$. Hence we have
$$I=int f^{-1}left[f(t)right]f'(t)mathrm dt$$
$$I=int tf'(t)mathrm dt$$
We then integrate by parts:
$$mathrm dv=f'(t)mathrm dtRightarrow v=f(t)\
u=tRightarrow mathrm du=mathrm dt$$
Which gives
$$I=tf(t)-int f(t)mathrm dt$$
And assuming that $F'(x)=f(x)$,
$$I=tf(t)-F(t)+C$$
And since $x=f(t)$ we have that $t=f^{-1}(x)$ which gives
$$I=xf^{-1}(x)-Fleft[f^{-1}(x)right]+C$$
So, choosing $f^{-1}(x)=arctan ax$ for some constant $aneq 0$, we have that $f(x)=frac1atan x$. Hence
$$begin{align}
I&=xarctan ax-frac1aint tan t ,mathrm dt\
&=xarctan ax+frac1alnleft|cos tright|+C\
&=xarctan ax+frac1alnleft|cos[arctan ax]right|+C
end{align}$$
And from $$cos[arctan z]=frac1{sqrt{1+z^2}}$$
We have, after some simplification,
$$intarctan(ax)mathrm dx=xarctan(ax)-frac1{2a}ln(1+a^2x^2)+C$$
And your integral is given by the case $a=2$.
$endgroup$
add a comment |
$begingroup$
A neat identity.
Given some continuous inverse function $f^{-1}(x)$, we can find the antiderivative of this inverse function. Here's how.
Consider the integral
$$I=int f^{-1}(x)mathrm dx$$
Assuming that we know what $f(x)$ is, we may preform the substitution $x=f(t)$ meaning that $mathrm dx=f'(t)mathrm dt$. Hence we have
$$I=int f^{-1}left[f(t)right]f'(t)mathrm dt$$
$$I=int tf'(t)mathrm dt$$
We then integrate by parts:
$$mathrm dv=f'(t)mathrm dtRightarrow v=f(t)\
u=tRightarrow mathrm du=mathrm dt$$
Which gives
$$I=tf(t)-int f(t)mathrm dt$$
And assuming that $F'(x)=f(x)$,
$$I=tf(t)-F(t)+C$$
And since $x=f(t)$ we have that $t=f^{-1}(x)$ which gives
$$I=xf^{-1}(x)-Fleft[f^{-1}(x)right]+C$$
So, choosing $f^{-1}(x)=arctan ax$ for some constant $aneq 0$, we have that $f(x)=frac1atan x$. Hence
$$begin{align}
I&=xarctan ax-frac1aint tan t ,mathrm dt\
&=xarctan ax+frac1alnleft|cos tright|+C\
&=xarctan ax+frac1alnleft|cos[arctan ax]right|+C
end{align}$$
And from $$cos[arctan z]=frac1{sqrt{1+z^2}}$$
We have, after some simplification,
$$intarctan(ax)mathrm dx=xarctan(ax)-frac1{2a}ln(1+a^2x^2)+C$$
And your integral is given by the case $a=2$.
$endgroup$
A neat identity.
Given some continuous inverse function $f^{-1}(x)$, we can find the antiderivative of this inverse function. Here's how.
Consider the integral
$$I=int f^{-1}(x)mathrm dx$$
Assuming that we know what $f(x)$ is, we may preform the substitution $x=f(t)$ meaning that $mathrm dx=f'(t)mathrm dt$. Hence we have
$$I=int f^{-1}left[f(t)right]f'(t)mathrm dt$$
$$I=int tf'(t)mathrm dt$$
We then integrate by parts:
$$mathrm dv=f'(t)mathrm dtRightarrow v=f(t)\
u=tRightarrow mathrm du=mathrm dt$$
Which gives
$$I=tf(t)-int f(t)mathrm dt$$
And assuming that $F'(x)=f(x)$,
$$I=tf(t)-F(t)+C$$
And since $x=f(t)$ we have that $t=f^{-1}(x)$ which gives
$$I=xf^{-1}(x)-Fleft[f^{-1}(x)right]+C$$
So, choosing $f^{-1}(x)=arctan ax$ for some constant $aneq 0$, we have that $f(x)=frac1atan x$. Hence
$$begin{align}
I&=xarctan ax-frac1aint tan t ,mathrm dt\
&=xarctan ax+frac1alnleft|cos tright|+C\
&=xarctan ax+frac1alnleft|cos[arctan ax]right|+C
end{align}$$
And from $$cos[arctan z]=frac1{sqrt{1+z^2}}$$
We have, after some simplification,
$$intarctan(ax)mathrm dx=xarctan(ax)-frac1{2a}ln(1+a^2x^2)+C$$
And your integral is given by the case $a=2$.
answered Jan 31 at 16:48


clathratusclathratus
5,0641439
5,0641439
add a comment |
add a comment |
$begingroup$
$$intarctan2ydy=yarctan2y-intfrac{2y}{1+4y^2}dy=yarctan2y-frac{1}{4}ln(1+4y^2)+C.$$
$endgroup$
add a comment |
$begingroup$
$$intarctan2ydy=yarctan2y-intfrac{2y}{1+4y^2}dy=yarctan2y-frac{1}{4}ln(1+4y^2)+C.$$
$endgroup$
add a comment |
$begingroup$
$$intarctan2ydy=yarctan2y-intfrac{2y}{1+4y^2}dy=yarctan2y-frac{1}{4}ln(1+4y^2)+C.$$
$endgroup$
$$intarctan2ydy=yarctan2y-intfrac{2y}{1+4y^2}dy=yarctan2y-frac{1}{4}ln(1+4y^2)+C.$$
edited Jan 30 at 5:51
answered Jan 30 at 5:45
Michael RozenbergMichael Rozenberg
109k1896201
109k1896201
add a comment |
add a comment |
$begingroup$
Integrating by parts, $int tan^{-1}(2y), dy=y, tan^{-1}(2y) -int frac {2y} {1+4y^{2}} , dy+c$. Put $1+4y^{2}=u$ to evaluate this.
$endgroup$
add a comment |
$begingroup$
Integrating by parts, $int tan^{-1}(2y), dy=y, tan^{-1}(2y) -int frac {2y} {1+4y^{2}} , dy+c$. Put $1+4y^{2}=u$ to evaluate this.
$endgroup$
add a comment |
$begingroup$
Integrating by parts, $int tan^{-1}(2y), dy=y, tan^{-1}(2y) -int frac {2y} {1+4y^{2}} , dy+c$. Put $1+4y^{2}=u$ to evaluate this.
$endgroup$
Integrating by parts, $int tan^{-1}(2y), dy=y, tan^{-1}(2y) -int frac {2y} {1+4y^{2}} , dy+c$. Put $1+4y^{2}=u$ to evaluate this.
edited Jan 30 at 8:13
answered Jan 30 at 5:47


Kavi Rama MurthyKavi Rama Murthy
71.9k53170
71.9k53170
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093140%2finverse-trig-function-integration-by-parts%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
math.stackexchange.com/questions/768332/liate-how-does-it-work
$endgroup$
– lab bhattacharjee
Jan 30 at 5:50