Let $(X, {cal E}, mu)$ be a measure space and let $B,C in {cal E}$. Show $mu_B + mu_C leq mu$.
$begingroup$
Let $(X, {cal E}, mu)$ be a measure space and let $B,C in {cal E}$. Define $mu_B:{cal E} to [0,infty]$ by $mu_B (E) = mu(Ecap B)$. (I have already proved that this does indeed define a new measure).
Find a necessary and sufficient condition on sets $B,C in mathcal{E}$ such that $mu_B + mu_C leq mu$.
Any ideas?
measure-theory
$endgroup$
add a comment |
$begingroup$
Let $(X, {cal E}, mu)$ be a measure space and let $B,C in {cal E}$. Define $mu_B:{cal E} to [0,infty]$ by $mu_B (E) = mu(Ecap B)$. (I have already proved that this does indeed define a new measure).
Find a necessary and sufficient condition on sets $B,C in mathcal{E}$ such that $mu_B + mu_C leq mu$.
Any ideas?
measure-theory
$endgroup$
$begingroup$
If $mathrm{B}$ and $mathrm{C}$ are disjoint then $mu_{mathrm{B} cup mathrm{C}} = mu_{mathrm{B}} + mu_{mathrm{C}}.$ This is a sufficient condition. Likely, it is also necessary but that needs more thought.
$endgroup$
– Will M.
Jan 31 at 6:04
$begingroup$
Thanks, I did find this condition but struggled to find a proof that shows it is necessary.
$endgroup$
– johnny133253
Jan 31 at 6:05
add a comment |
$begingroup$
Let $(X, {cal E}, mu)$ be a measure space and let $B,C in {cal E}$. Define $mu_B:{cal E} to [0,infty]$ by $mu_B (E) = mu(Ecap B)$. (I have already proved that this does indeed define a new measure).
Find a necessary and sufficient condition on sets $B,C in mathcal{E}$ such that $mu_B + mu_C leq mu$.
Any ideas?
measure-theory
$endgroup$
Let $(X, {cal E}, mu)$ be a measure space and let $B,C in {cal E}$. Define $mu_B:{cal E} to [0,infty]$ by $mu_B (E) = mu(Ecap B)$. (I have already proved that this does indeed define a new measure).
Find a necessary and sufficient condition on sets $B,C in mathcal{E}$ such that $mu_B + mu_C leq mu$.
Any ideas?
measure-theory
measure-theory
asked Jan 31 at 6:01
johnny133253johnny133253
470111
470111
$begingroup$
If $mathrm{B}$ and $mathrm{C}$ are disjoint then $mu_{mathrm{B} cup mathrm{C}} = mu_{mathrm{B}} + mu_{mathrm{C}}.$ This is a sufficient condition. Likely, it is also necessary but that needs more thought.
$endgroup$
– Will M.
Jan 31 at 6:04
$begingroup$
Thanks, I did find this condition but struggled to find a proof that shows it is necessary.
$endgroup$
– johnny133253
Jan 31 at 6:05
add a comment |
$begingroup$
If $mathrm{B}$ and $mathrm{C}$ are disjoint then $mu_{mathrm{B} cup mathrm{C}} = mu_{mathrm{B}} + mu_{mathrm{C}}.$ This is a sufficient condition. Likely, it is also necessary but that needs more thought.
$endgroup$
– Will M.
Jan 31 at 6:04
$begingroup$
Thanks, I did find this condition but struggled to find a proof that shows it is necessary.
$endgroup$
– johnny133253
Jan 31 at 6:05
$begingroup$
If $mathrm{B}$ and $mathrm{C}$ are disjoint then $mu_{mathrm{B} cup mathrm{C}} = mu_{mathrm{B}} + mu_{mathrm{C}}.$ This is a sufficient condition. Likely, it is also necessary but that needs more thought.
$endgroup$
– Will M.
Jan 31 at 6:04
$begingroup$
If $mathrm{B}$ and $mathrm{C}$ are disjoint then $mu_{mathrm{B} cup mathrm{C}} = mu_{mathrm{B}} + mu_{mathrm{C}}.$ This is a sufficient condition. Likely, it is also necessary but that needs more thought.
$endgroup$
– Will M.
Jan 31 at 6:04
$begingroup$
Thanks, I did find this condition but struggled to find a proof that shows it is necessary.
$endgroup$
– johnny133253
Jan 31 at 6:05
$begingroup$
Thanks, I did find this condition but struggled to find a proof that shows it is necessary.
$endgroup$
– johnny133253
Jan 31 at 6:05
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Claim. For $mu_{mathrm{B}} + mu_{mathrm{C}} leq mu$ it is a necessary and sufficient condition that $mu(mathrm{B} cap mathrm{C}) = 0.$
Proof. If $mu(mathrm{B} cap mathrm{C}) = 0$ then $mu_{mathrm{B}} = mu_{mathrm{B} setminus mathrm{C}},$ and similarly interchanging the rôles of $mathrm{B}$ and $mathrm{C}.$ Hence, $mu_{mathrm{B}} + mu_{mathrm{C}} = mu_{(mathrm{B} setminus mathrm{C}) cup (mathrm{C} setminus mathrm{B})} leq mu_{mathrm{X}} = mu;$ the condition is therefore sufficient. It is also necessary for we can evaluate the inequality $mu_{mathrm{B}} + mu_{mathrm{C}} leq mu$ in $mathrm{B} cap mathrm{C}$ to reach $0 leq 2 mu(mathrm{B} cap mathrm{C}) leq mu(mathrm{B} cap mathrm{C}),$ hence $mu(mathrm{B} cap mathrm{C}) = 0.$ Q.E.D.
$endgroup$
$begingroup$
How did you show $mu_B = mu_{Bsetminus C}$?
$endgroup$
– johnny133253
Jan 31 at 7:16
$begingroup$
Because $mu_mathrm{B}(mathrm{E}) = mu(mathrm{E} cap (mathrm{B} setminus mathrm{C})) + mu(mathrm{E} cap mathrm{B} cap mathrm{C}).$
$endgroup$
– Will M.
Jan 31 at 7:43
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094567%2flet-x-cal-e-mu-be-a-measure-space-and-let-b-c-in-cal-e-show-m%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Claim. For $mu_{mathrm{B}} + mu_{mathrm{C}} leq mu$ it is a necessary and sufficient condition that $mu(mathrm{B} cap mathrm{C}) = 0.$
Proof. If $mu(mathrm{B} cap mathrm{C}) = 0$ then $mu_{mathrm{B}} = mu_{mathrm{B} setminus mathrm{C}},$ and similarly interchanging the rôles of $mathrm{B}$ and $mathrm{C}.$ Hence, $mu_{mathrm{B}} + mu_{mathrm{C}} = mu_{(mathrm{B} setminus mathrm{C}) cup (mathrm{C} setminus mathrm{B})} leq mu_{mathrm{X}} = mu;$ the condition is therefore sufficient. It is also necessary for we can evaluate the inequality $mu_{mathrm{B}} + mu_{mathrm{C}} leq mu$ in $mathrm{B} cap mathrm{C}$ to reach $0 leq 2 mu(mathrm{B} cap mathrm{C}) leq mu(mathrm{B} cap mathrm{C}),$ hence $mu(mathrm{B} cap mathrm{C}) = 0.$ Q.E.D.
$endgroup$
$begingroup$
How did you show $mu_B = mu_{Bsetminus C}$?
$endgroup$
– johnny133253
Jan 31 at 7:16
$begingroup$
Because $mu_mathrm{B}(mathrm{E}) = mu(mathrm{E} cap (mathrm{B} setminus mathrm{C})) + mu(mathrm{E} cap mathrm{B} cap mathrm{C}).$
$endgroup$
– Will M.
Jan 31 at 7:43
add a comment |
$begingroup$
Claim. For $mu_{mathrm{B}} + mu_{mathrm{C}} leq mu$ it is a necessary and sufficient condition that $mu(mathrm{B} cap mathrm{C}) = 0.$
Proof. If $mu(mathrm{B} cap mathrm{C}) = 0$ then $mu_{mathrm{B}} = mu_{mathrm{B} setminus mathrm{C}},$ and similarly interchanging the rôles of $mathrm{B}$ and $mathrm{C}.$ Hence, $mu_{mathrm{B}} + mu_{mathrm{C}} = mu_{(mathrm{B} setminus mathrm{C}) cup (mathrm{C} setminus mathrm{B})} leq mu_{mathrm{X}} = mu;$ the condition is therefore sufficient. It is also necessary for we can evaluate the inequality $mu_{mathrm{B}} + mu_{mathrm{C}} leq mu$ in $mathrm{B} cap mathrm{C}$ to reach $0 leq 2 mu(mathrm{B} cap mathrm{C}) leq mu(mathrm{B} cap mathrm{C}),$ hence $mu(mathrm{B} cap mathrm{C}) = 0.$ Q.E.D.
$endgroup$
$begingroup$
How did you show $mu_B = mu_{Bsetminus C}$?
$endgroup$
– johnny133253
Jan 31 at 7:16
$begingroup$
Because $mu_mathrm{B}(mathrm{E}) = mu(mathrm{E} cap (mathrm{B} setminus mathrm{C})) + mu(mathrm{E} cap mathrm{B} cap mathrm{C}).$
$endgroup$
– Will M.
Jan 31 at 7:43
add a comment |
$begingroup$
Claim. For $mu_{mathrm{B}} + mu_{mathrm{C}} leq mu$ it is a necessary and sufficient condition that $mu(mathrm{B} cap mathrm{C}) = 0.$
Proof. If $mu(mathrm{B} cap mathrm{C}) = 0$ then $mu_{mathrm{B}} = mu_{mathrm{B} setminus mathrm{C}},$ and similarly interchanging the rôles of $mathrm{B}$ and $mathrm{C}.$ Hence, $mu_{mathrm{B}} + mu_{mathrm{C}} = mu_{(mathrm{B} setminus mathrm{C}) cup (mathrm{C} setminus mathrm{B})} leq mu_{mathrm{X}} = mu;$ the condition is therefore sufficient. It is also necessary for we can evaluate the inequality $mu_{mathrm{B}} + mu_{mathrm{C}} leq mu$ in $mathrm{B} cap mathrm{C}$ to reach $0 leq 2 mu(mathrm{B} cap mathrm{C}) leq mu(mathrm{B} cap mathrm{C}),$ hence $mu(mathrm{B} cap mathrm{C}) = 0.$ Q.E.D.
$endgroup$
Claim. For $mu_{mathrm{B}} + mu_{mathrm{C}} leq mu$ it is a necessary and sufficient condition that $mu(mathrm{B} cap mathrm{C}) = 0.$
Proof. If $mu(mathrm{B} cap mathrm{C}) = 0$ then $mu_{mathrm{B}} = mu_{mathrm{B} setminus mathrm{C}},$ and similarly interchanging the rôles of $mathrm{B}$ and $mathrm{C}.$ Hence, $mu_{mathrm{B}} + mu_{mathrm{C}} = mu_{(mathrm{B} setminus mathrm{C}) cup (mathrm{C} setminus mathrm{B})} leq mu_{mathrm{X}} = mu;$ the condition is therefore sufficient. It is also necessary for we can evaluate the inequality $mu_{mathrm{B}} + mu_{mathrm{C}} leq mu$ in $mathrm{B} cap mathrm{C}$ to reach $0 leq 2 mu(mathrm{B} cap mathrm{C}) leq mu(mathrm{B} cap mathrm{C}),$ hence $mu(mathrm{B} cap mathrm{C}) = 0.$ Q.E.D.
answered Jan 31 at 6:11


Will M.Will M.
2,890315
2,890315
$begingroup$
How did you show $mu_B = mu_{Bsetminus C}$?
$endgroup$
– johnny133253
Jan 31 at 7:16
$begingroup$
Because $mu_mathrm{B}(mathrm{E}) = mu(mathrm{E} cap (mathrm{B} setminus mathrm{C})) + mu(mathrm{E} cap mathrm{B} cap mathrm{C}).$
$endgroup$
– Will M.
Jan 31 at 7:43
add a comment |
$begingroup$
How did you show $mu_B = mu_{Bsetminus C}$?
$endgroup$
– johnny133253
Jan 31 at 7:16
$begingroup$
Because $mu_mathrm{B}(mathrm{E}) = mu(mathrm{E} cap (mathrm{B} setminus mathrm{C})) + mu(mathrm{E} cap mathrm{B} cap mathrm{C}).$
$endgroup$
– Will M.
Jan 31 at 7:43
$begingroup$
How did you show $mu_B = mu_{Bsetminus C}$?
$endgroup$
– johnny133253
Jan 31 at 7:16
$begingroup$
How did you show $mu_B = mu_{Bsetminus C}$?
$endgroup$
– johnny133253
Jan 31 at 7:16
$begingroup$
Because $mu_mathrm{B}(mathrm{E}) = mu(mathrm{E} cap (mathrm{B} setminus mathrm{C})) + mu(mathrm{E} cap mathrm{B} cap mathrm{C}).$
$endgroup$
– Will M.
Jan 31 at 7:43
$begingroup$
Because $mu_mathrm{B}(mathrm{E}) = mu(mathrm{E} cap (mathrm{B} setminus mathrm{C})) + mu(mathrm{E} cap mathrm{B} cap mathrm{C}).$
$endgroup$
– Will M.
Jan 31 at 7:43
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094567%2flet-x-cal-e-mu-be-a-measure-space-and-let-b-c-in-cal-e-show-m%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
If $mathrm{B}$ and $mathrm{C}$ are disjoint then $mu_{mathrm{B} cup mathrm{C}} = mu_{mathrm{B}} + mu_{mathrm{C}}.$ This is a sufficient condition. Likely, it is also necessary but that needs more thought.
$endgroup$
– Will M.
Jan 31 at 6:04
$begingroup$
Thanks, I did find this condition but struggled to find a proof that shows it is necessary.
$endgroup$
– johnny133253
Jan 31 at 6:05