Let $(X, {cal E}, mu)$ be a measure space and let $B,C in {cal E}$. Show $mu_B + mu_C leq mu$.












1












$begingroup$


Let $(X, {cal E}, mu)$ be a measure space and let $B,C in {cal E}$. Define $mu_B:{cal E} to [0,infty]$ by $mu_B (E) = mu(Ecap B)$. (I have already proved that this does indeed define a new measure).



Find a necessary and sufficient condition on sets $B,C in mathcal{E}$ such that $mu_B + mu_C leq mu$.



Any ideas?










share|cite|improve this question









$endgroup$












  • $begingroup$
    If $mathrm{B}$ and $mathrm{C}$ are disjoint then $mu_{mathrm{B} cup mathrm{C}} = mu_{mathrm{B}} + mu_{mathrm{C}}.$ This is a sufficient condition. Likely, it is also necessary but that needs more thought.
    $endgroup$
    – Will M.
    Jan 31 at 6:04










  • $begingroup$
    Thanks, I did find this condition but struggled to find a proof that shows it is necessary.
    $endgroup$
    – johnny133253
    Jan 31 at 6:05
















1












$begingroup$


Let $(X, {cal E}, mu)$ be a measure space and let $B,C in {cal E}$. Define $mu_B:{cal E} to [0,infty]$ by $mu_B (E) = mu(Ecap B)$. (I have already proved that this does indeed define a new measure).



Find a necessary and sufficient condition on sets $B,C in mathcal{E}$ such that $mu_B + mu_C leq mu$.



Any ideas?










share|cite|improve this question









$endgroup$












  • $begingroup$
    If $mathrm{B}$ and $mathrm{C}$ are disjoint then $mu_{mathrm{B} cup mathrm{C}} = mu_{mathrm{B}} + mu_{mathrm{C}}.$ This is a sufficient condition. Likely, it is also necessary but that needs more thought.
    $endgroup$
    – Will M.
    Jan 31 at 6:04










  • $begingroup$
    Thanks, I did find this condition but struggled to find a proof that shows it is necessary.
    $endgroup$
    – johnny133253
    Jan 31 at 6:05














1












1








1





$begingroup$


Let $(X, {cal E}, mu)$ be a measure space and let $B,C in {cal E}$. Define $mu_B:{cal E} to [0,infty]$ by $mu_B (E) = mu(Ecap B)$. (I have already proved that this does indeed define a new measure).



Find a necessary and sufficient condition on sets $B,C in mathcal{E}$ such that $mu_B + mu_C leq mu$.



Any ideas?










share|cite|improve this question









$endgroup$




Let $(X, {cal E}, mu)$ be a measure space and let $B,C in {cal E}$. Define $mu_B:{cal E} to [0,infty]$ by $mu_B (E) = mu(Ecap B)$. (I have already proved that this does indeed define a new measure).



Find a necessary and sufficient condition on sets $B,C in mathcal{E}$ such that $mu_B + mu_C leq mu$.



Any ideas?







measure-theory






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 31 at 6:01









johnny133253johnny133253

470111




470111












  • $begingroup$
    If $mathrm{B}$ and $mathrm{C}$ are disjoint then $mu_{mathrm{B} cup mathrm{C}} = mu_{mathrm{B}} + mu_{mathrm{C}}.$ This is a sufficient condition. Likely, it is also necessary but that needs more thought.
    $endgroup$
    – Will M.
    Jan 31 at 6:04










  • $begingroup$
    Thanks, I did find this condition but struggled to find a proof that shows it is necessary.
    $endgroup$
    – johnny133253
    Jan 31 at 6:05


















  • $begingroup$
    If $mathrm{B}$ and $mathrm{C}$ are disjoint then $mu_{mathrm{B} cup mathrm{C}} = mu_{mathrm{B}} + mu_{mathrm{C}}.$ This is a sufficient condition. Likely, it is also necessary but that needs more thought.
    $endgroup$
    – Will M.
    Jan 31 at 6:04










  • $begingroup$
    Thanks, I did find this condition but struggled to find a proof that shows it is necessary.
    $endgroup$
    – johnny133253
    Jan 31 at 6:05
















$begingroup$
If $mathrm{B}$ and $mathrm{C}$ are disjoint then $mu_{mathrm{B} cup mathrm{C}} = mu_{mathrm{B}} + mu_{mathrm{C}}.$ This is a sufficient condition. Likely, it is also necessary but that needs more thought.
$endgroup$
– Will M.
Jan 31 at 6:04




$begingroup$
If $mathrm{B}$ and $mathrm{C}$ are disjoint then $mu_{mathrm{B} cup mathrm{C}} = mu_{mathrm{B}} + mu_{mathrm{C}}.$ This is a sufficient condition. Likely, it is also necessary but that needs more thought.
$endgroup$
– Will M.
Jan 31 at 6:04












$begingroup$
Thanks, I did find this condition but struggled to find a proof that shows it is necessary.
$endgroup$
– johnny133253
Jan 31 at 6:05




$begingroup$
Thanks, I did find this condition but struggled to find a proof that shows it is necessary.
$endgroup$
– johnny133253
Jan 31 at 6:05










1 Answer
1






active

oldest

votes


















0












$begingroup$

Claim. For $mu_{mathrm{B}} + mu_{mathrm{C}} leq mu$ it is a necessary and sufficient condition that $mu(mathrm{B} cap mathrm{C}) = 0.$



Proof. If $mu(mathrm{B} cap mathrm{C}) = 0$ then $mu_{mathrm{B}} = mu_{mathrm{B} setminus mathrm{C}},$ and similarly interchanging the rôles of $mathrm{B}$ and $mathrm{C}.$ Hence, $mu_{mathrm{B}} + mu_{mathrm{C}} = mu_{(mathrm{B} setminus mathrm{C}) cup (mathrm{C} setminus mathrm{B})} leq mu_{mathrm{X}} = mu;$ the condition is therefore sufficient. It is also necessary for we can evaluate the inequality $mu_{mathrm{B}} + mu_{mathrm{C}} leq mu$ in $mathrm{B} cap mathrm{C}$ to reach $0 leq 2 mu(mathrm{B} cap mathrm{C}) leq mu(mathrm{B} cap mathrm{C}),$ hence $mu(mathrm{B} cap mathrm{C}) = 0.$ Q.E.D.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    How did you show $mu_B = mu_{Bsetminus C}$?
    $endgroup$
    – johnny133253
    Jan 31 at 7:16










  • $begingroup$
    Because $mu_mathrm{B}(mathrm{E}) = mu(mathrm{E} cap (mathrm{B} setminus mathrm{C})) + mu(mathrm{E} cap mathrm{B} cap mathrm{C}).$
    $endgroup$
    – Will M.
    Jan 31 at 7:43














Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094567%2flet-x-cal-e-mu-be-a-measure-space-and-let-b-c-in-cal-e-show-m%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

Claim. For $mu_{mathrm{B}} + mu_{mathrm{C}} leq mu$ it is a necessary and sufficient condition that $mu(mathrm{B} cap mathrm{C}) = 0.$



Proof. If $mu(mathrm{B} cap mathrm{C}) = 0$ then $mu_{mathrm{B}} = mu_{mathrm{B} setminus mathrm{C}},$ and similarly interchanging the rôles of $mathrm{B}$ and $mathrm{C}.$ Hence, $mu_{mathrm{B}} + mu_{mathrm{C}} = mu_{(mathrm{B} setminus mathrm{C}) cup (mathrm{C} setminus mathrm{B})} leq mu_{mathrm{X}} = mu;$ the condition is therefore sufficient. It is also necessary for we can evaluate the inequality $mu_{mathrm{B}} + mu_{mathrm{C}} leq mu$ in $mathrm{B} cap mathrm{C}$ to reach $0 leq 2 mu(mathrm{B} cap mathrm{C}) leq mu(mathrm{B} cap mathrm{C}),$ hence $mu(mathrm{B} cap mathrm{C}) = 0.$ Q.E.D.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    How did you show $mu_B = mu_{Bsetminus C}$?
    $endgroup$
    – johnny133253
    Jan 31 at 7:16










  • $begingroup$
    Because $mu_mathrm{B}(mathrm{E}) = mu(mathrm{E} cap (mathrm{B} setminus mathrm{C})) + mu(mathrm{E} cap mathrm{B} cap mathrm{C}).$
    $endgroup$
    – Will M.
    Jan 31 at 7:43


















0












$begingroup$

Claim. For $mu_{mathrm{B}} + mu_{mathrm{C}} leq mu$ it is a necessary and sufficient condition that $mu(mathrm{B} cap mathrm{C}) = 0.$



Proof. If $mu(mathrm{B} cap mathrm{C}) = 0$ then $mu_{mathrm{B}} = mu_{mathrm{B} setminus mathrm{C}},$ and similarly interchanging the rôles of $mathrm{B}$ and $mathrm{C}.$ Hence, $mu_{mathrm{B}} + mu_{mathrm{C}} = mu_{(mathrm{B} setminus mathrm{C}) cup (mathrm{C} setminus mathrm{B})} leq mu_{mathrm{X}} = mu;$ the condition is therefore sufficient. It is also necessary for we can evaluate the inequality $mu_{mathrm{B}} + mu_{mathrm{C}} leq mu$ in $mathrm{B} cap mathrm{C}$ to reach $0 leq 2 mu(mathrm{B} cap mathrm{C}) leq mu(mathrm{B} cap mathrm{C}),$ hence $mu(mathrm{B} cap mathrm{C}) = 0.$ Q.E.D.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    How did you show $mu_B = mu_{Bsetminus C}$?
    $endgroup$
    – johnny133253
    Jan 31 at 7:16










  • $begingroup$
    Because $mu_mathrm{B}(mathrm{E}) = mu(mathrm{E} cap (mathrm{B} setminus mathrm{C})) + mu(mathrm{E} cap mathrm{B} cap mathrm{C}).$
    $endgroup$
    – Will M.
    Jan 31 at 7:43
















0












0








0





$begingroup$

Claim. For $mu_{mathrm{B}} + mu_{mathrm{C}} leq mu$ it is a necessary and sufficient condition that $mu(mathrm{B} cap mathrm{C}) = 0.$



Proof. If $mu(mathrm{B} cap mathrm{C}) = 0$ then $mu_{mathrm{B}} = mu_{mathrm{B} setminus mathrm{C}},$ and similarly interchanging the rôles of $mathrm{B}$ and $mathrm{C}.$ Hence, $mu_{mathrm{B}} + mu_{mathrm{C}} = mu_{(mathrm{B} setminus mathrm{C}) cup (mathrm{C} setminus mathrm{B})} leq mu_{mathrm{X}} = mu;$ the condition is therefore sufficient. It is also necessary for we can evaluate the inequality $mu_{mathrm{B}} + mu_{mathrm{C}} leq mu$ in $mathrm{B} cap mathrm{C}$ to reach $0 leq 2 mu(mathrm{B} cap mathrm{C}) leq mu(mathrm{B} cap mathrm{C}),$ hence $mu(mathrm{B} cap mathrm{C}) = 0.$ Q.E.D.






share|cite|improve this answer









$endgroup$



Claim. For $mu_{mathrm{B}} + mu_{mathrm{C}} leq mu$ it is a necessary and sufficient condition that $mu(mathrm{B} cap mathrm{C}) = 0.$



Proof. If $mu(mathrm{B} cap mathrm{C}) = 0$ then $mu_{mathrm{B}} = mu_{mathrm{B} setminus mathrm{C}},$ and similarly interchanging the rôles of $mathrm{B}$ and $mathrm{C}.$ Hence, $mu_{mathrm{B}} + mu_{mathrm{C}} = mu_{(mathrm{B} setminus mathrm{C}) cup (mathrm{C} setminus mathrm{B})} leq mu_{mathrm{X}} = mu;$ the condition is therefore sufficient. It is also necessary for we can evaluate the inequality $mu_{mathrm{B}} + mu_{mathrm{C}} leq mu$ in $mathrm{B} cap mathrm{C}$ to reach $0 leq 2 mu(mathrm{B} cap mathrm{C}) leq mu(mathrm{B} cap mathrm{C}),$ hence $mu(mathrm{B} cap mathrm{C}) = 0.$ Q.E.D.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 31 at 6:11









Will M.Will M.

2,890315




2,890315












  • $begingroup$
    How did you show $mu_B = mu_{Bsetminus C}$?
    $endgroup$
    – johnny133253
    Jan 31 at 7:16










  • $begingroup$
    Because $mu_mathrm{B}(mathrm{E}) = mu(mathrm{E} cap (mathrm{B} setminus mathrm{C})) + mu(mathrm{E} cap mathrm{B} cap mathrm{C}).$
    $endgroup$
    – Will M.
    Jan 31 at 7:43




















  • $begingroup$
    How did you show $mu_B = mu_{Bsetminus C}$?
    $endgroup$
    – johnny133253
    Jan 31 at 7:16










  • $begingroup$
    Because $mu_mathrm{B}(mathrm{E}) = mu(mathrm{E} cap (mathrm{B} setminus mathrm{C})) + mu(mathrm{E} cap mathrm{B} cap mathrm{C}).$
    $endgroup$
    – Will M.
    Jan 31 at 7:43


















$begingroup$
How did you show $mu_B = mu_{Bsetminus C}$?
$endgroup$
– johnny133253
Jan 31 at 7:16




$begingroup$
How did you show $mu_B = mu_{Bsetminus C}$?
$endgroup$
– johnny133253
Jan 31 at 7:16












$begingroup$
Because $mu_mathrm{B}(mathrm{E}) = mu(mathrm{E} cap (mathrm{B} setminus mathrm{C})) + mu(mathrm{E} cap mathrm{B} cap mathrm{C}).$
$endgroup$
– Will M.
Jan 31 at 7:43






$begingroup$
Because $mu_mathrm{B}(mathrm{E}) = mu(mathrm{E} cap (mathrm{B} setminus mathrm{C})) + mu(mathrm{E} cap mathrm{B} cap mathrm{C}).$
$endgroup$
– Will M.
Jan 31 at 7:43




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094567%2flet-x-cal-e-mu-be-a-measure-space-and-let-b-c-in-cal-e-show-m%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

Npm cannot find a required file even through it is in the searched directory

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith