Nested CV with Keras Deep Learning
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}
Should one use Nested CV when creating a deep learning model in Keras? I have been running the following code which takes a very long time. I don't have a very large dataset (50K rows) and the task is a binary classification one if it matters at all.
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import GridSearchCV
def create_model():
# create model
model = Sequential()
model.add(Dense(12, input_dim=20, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
estimator = KerasClassifier(build_fn=create_model, epochs=100, batch_size=5, verbose=0)
param_grid = dict(epochs=[10,20,30])
gs = GridSearchCV(estimator=estimator, param_grid=param_grid, n_jobs=-1)
results = cross_val_score(gs, X_train, y_train, cv=2)#, n_jobs = -1)
print("Results: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
machine-learning keras deep-learning cross-validation
add a comment |
Should one use Nested CV when creating a deep learning model in Keras? I have been running the following code which takes a very long time. I don't have a very large dataset (50K rows) and the task is a binary classification one if it matters at all.
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import GridSearchCV
def create_model():
# create model
model = Sequential()
model.add(Dense(12, input_dim=20, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
estimator = KerasClassifier(build_fn=create_model, epochs=100, batch_size=5, verbose=0)
param_grid = dict(epochs=[10,20,30])
gs = GridSearchCV(estimator=estimator, param_grid=param_grid, n_jobs=-1)
results = cross_val_score(gs, X_train, y_train, cv=2)#, n_jobs = -1)
print("Results: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
machine-learning keras deep-learning cross-validation
add a comment |
Should one use Nested CV when creating a deep learning model in Keras? I have been running the following code which takes a very long time. I don't have a very large dataset (50K rows) and the task is a binary classification one if it matters at all.
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import GridSearchCV
def create_model():
# create model
model = Sequential()
model.add(Dense(12, input_dim=20, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
estimator = KerasClassifier(build_fn=create_model, epochs=100, batch_size=5, verbose=0)
param_grid = dict(epochs=[10,20,30])
gs = GridSearchCV(estimator=estimator, param_grid=param_grid, n_jobs=-1)
results = cross_val_score(gs, X_train, y_train, cv=2)#, n_jobs = -1)
print("Results: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
machine-learning keras deep-learning cross-validation
Should one use Nested CV when creating a deep learning model in Keras? I have been running the following code which takes a very long time. I don't have a very large dataset (50K rows) and the task is a binary classification one if it matters at all.
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import GridSearchCV
def create_model():
# create model
model = Sequential()
model.add(Dense(12, input_dim=20, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
estimator = KerasClassifier(build_fn=create_model, epochs=100, batch_size=5, verbose=0)
param_grid = dict(epochs=[10,20,30])
gs = GridSearchCV(estimator=estimator, param_grid=param_grid, n_jobs=-1)
results = cross_val_score(gs, X_train, y_train, cv=2)#, n_jobs = -1)
print("Results: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
machine-learning keras deep-learning cross-validation
machine-learning keras deep-learning cross-validation
asked Jan 3 at 3:53
OdisseoOdisseo
184113
184113
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54016136%2fnested-cv-with-keras-deep-learning%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54016136%2fnested-cv-with-keras-deep-learning%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown