Nested CV with Keras Deep Learning





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}







0















Should one use Nested CV when creating a deep learning model in Keras? I have been running the following code which takes a very long time. I don't have a very large dataset (50K rows) and the task is a binary classification one if it matters at all.



from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import GridSearchCV

def create_model():
# create model
model = Sequential()
model.add(Dense(12, input_dim=20, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model

estimator = KerasClassifier(build_fn=create_model, epochs=100, batch_size=5, verbose=0)

param_grid = dict(epochs=[10,20,30])
gs = GridSearchCV(estimator=estimator, param_grid=param_grid, n_jobs=-1)

results = cross_val_score(gs, X_train, y_train, cv=2)#, n_jobs = -1)
print("Results: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))









share|improve this question





























    0















    Should one use Nested CV when creating a deep learning model in Keras? I have been running the following code which takes a very long time. I don't have a very large dataset (50K rows) and the task is a binary classification one if it matters at all.



    from keras.wrappers.scikit_learn import KerasClassifier
    from sklearn.model_selection import GridSearchCV

    def create_model():
    # create model
    model = Sequential()
    model.add(Dense(12, input_dim=20, activation='relu'))
    model.add(Dense(1, activation='sigmoid'))
    # Compile model
    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model

    estimator = KerasClassifier(build_fn=create_model, epochs=100, batch_size=5, verbose=0)

    param_grid = dict(epochs=[10,20,30])
    gs = GridSearchCV(estimator=estimator, param_grid=param_grid, n_jobs=-1)

    results = cross_val_score(gs, X_train, y_train, cv=2)#, n_jobs = -1)
    print("Results: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))









    share|improve this question

























      0












      0








      0








      Should one use Nested CV when creating a deep learning model in Keras? I have been running the following code which takes a very long time. I don't have a very large dataset (50K rows) and the task is a binary classification one if it matters at all.



      from keras.wrappers.scikit_learn import KerasClassifier
      from sklearn.model_selection import GridSearchCV

      def create_model():
      # create model
      model = Sequential()
      model.add(Dense(12, input_dim=20, activation='relu'))
      model.add(Dense(1, activation='sigmoid'))
      # Compile model
      model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
      return model

      estimator = KerasClassifier(build_fn=create_model, epochs=100, batch_size=5, verbose=0)

      param_grid = dict(epochs=[10,20,30])
      gs = GridSearchCV(estimator=estimator, param_grid=param_grid, n_jobs=-1)

      results = cross_val_score(gs, X_train, y_train, cv=2)#, n_jobs = -1)
      print("Results: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))









      share|improve this question














      Should one use Nested CV when creating a deep learning model in Keras? I have been running the following code which takes a very long time. I don't have a very large dataset (50K rows) and the task is a binary classification one if it matters at all.



      from keras.wrappers.scikit_learn import KerasClassifier
      from sklearn.model_selection import GridSearchCV

      def create_model():
      # create model
      model = Sequential()
      model.add(Dense(12, input_dim=20, activation='relu'))
      model.add(Dense(1, activation='sigmoid'))
      # Compile model
      model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
      return model

      estimator = KerasClassifier(build_fn=create_model, epochs=100, batch_size=5, verbose=0)

      param_grid = dict(epochs=[10,20,30])
      gs = GridSearchCV(estimator=estimator, param_grid=param_grid, n_jobs=-1)

      results = cross_val_score(gs, X_train, y_train, cv=2)#, n_jobs = -1)
      print("Results: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))






      machine-learning keras deep-learning cross-validation






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Jan 3 at 3:53









      OdisseoOdisseo

      184113




      184113
























          0






          active

          oldest

          votes












          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54016136%2fnested-cv-with-keras-deep-learning%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54016136%2fnested-cv-with-keras-deep-learning%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

          How to fix TextFormField cause rebuild widget in Flutter