Prove that lim $(sqrt{n^2+n}-n) = frac{1}{2}$
$begingroup$
Here's the question: Prove that lim $(sqrt{n^2+n}-n) = frac{1}{2}$
Here's my attempt at a solution, but for some reason, the $N$ that I arrive at is incorrect (I ran a computer program to test my solution against some test cases, and it spits out an error). Can anyone spot the error for me?
$left|sqrt{n^2+n}-n-frac{1}{2}right| < epsilon$
$Rightarrow left|frac{n}{sqrt{n^2+n}+n} - frac{1}{2}right| < epsilon$
$Rightarrow frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1} < epsilon$
$Rightarrow frac{1}{sqrt{1+frac{1}{n}}+1} > frac{1}{2} - epsilon = frac{1-2 epsilon}{2}$
$Rightarrow frac{1}{sqrt{1+frac{1}{n}}} > frac{1-2 epsilon}{2}$
$Rightarrow frac{1}{sqrt{frac{1}{n}}} > frac{1-2 epsilon}{2}$
$Rightarrow sqrt{n} > frac{1-2 epsilon}{2}$
$Rightarrow n > frac{4 {epsilon}^2-4 epsilon +1}{4}$
real-analysis limits radicals
$endgroup$
add a comment |
$begingroup$
Here's the question: Prove that lim $(sqrt{n^2+n}-n) = frac{1}{2}$
Here's my attempt at a solution, but for some reason, the $N$ that I arrive at is incorrect (I ran a computer program to test my solution against some test cases, and it spits out an error). Can anyone spot the error for me?
$left|sqrt{n^2+n}-n-frac{1}{2}right| < epsilon$
$Rightarrow left|frac{n}{sqrt{n^2+n}+n} - frac{1}{2}right| < epsilon$
$Rightarrow frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1} < epsilon$
$Rightarrow frac{1}{sqrt{1+frac{1}{n}}+1} > frac{1}{2} - epsilon = frac{1-2 epsilon}{2}$
$Rightarrow frac{1}{sqrt{1+frac{1}{n}}} > frac{1-2 epsilon}{2}$
$Rightarrow frac{1}{sqrt{frac{1}{n}}} > frac{1-2 epsilon}{2}$
$Rightarrow sqrt{n} > frac{1-2 epsilon}{2}$
$Rightarrow n > frac{4 {epsilon}^2-4 epsilon +1}{4}$
real-analysis limits radicals
$endgroup$
3
$begingroup$
You need the implications in the other direction, and $$frac{1}{sqrt{frac{1}{n}}} > frac{1-2epsilon}{2} notRightarrow frac{1}{sqrt{1+frac{1}{n}}} > frac{1-2epsilon}{2}.$$
$endgroup$
– Daniel Fischer
May 6 '14 at 12:42
3
$begingroup$
Btw. unless you are explicitly asked to find $N$ for given $epsilon$ etc., you should more or less stop after reaching transforming $sqrt {n^2+n}-n$ to $frac1{1+sqrt{1+frac1n}}$. Then note $frac1nto 0$, hence $1+frac1nto 1$, hence $sqrt{1+frac1n}to 1$, hence $1+sqrt{1+frac1n}to 2$, hence $frac1{1+sqrt{1+frac1n}}tofrac12$.
$endgroup$
– Hagen von Eitzen
May 6 '14 at 12:48
add a comment |
$begingroup$
Here's the question: Prove that lim $(sqrt{n^2+n}-n) = frac{1}{2}$
Here's my attempt at a solution, but for some reason, the $N$ that I arrive at is incorrect (I ran a computer program to test my solution against some test cases, and it spits out an error). Can anyone spot the error for me?
$left|sqrt{n^2+n}-n-frac{1}{2}right| < epsilon$
$Rightarrow left|frac{n}{sqrt{n^2+n}+n} - frac{1}{2}right| < epsilon$
$Rightarrow frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1} < epsilon$
$Rightarrow frac{1}{sqrt{1+frac{1}{n}}+1} > frac{1}{2} - epsilon = frac{1-2 epsilon}{2}$
$Rightarrow frac{1}{sqrt{1+frac{1}{n}}} > frac{1-2 epsilon}{2}$
$Rightarrow frac{1}{sqrt{frac{1}{n}}} > frac{1-2 epsilon}{2}$
$Rightarrow sqrt{n} > frac{1-2 epsilon}{2}$
$Rightarrow n > frac{4 {epsilon}^2-4 epsilon +1}{4}$
real-analysis limits radicals
$endgroup$
Here's the question: Prove that lim $(sqrt{n^2+n}-n) = frac{1}{2}$
Here's my attempt at a solution, but for some reason, the $N$ that I arrive at is incorrect (I ran a computer program to test my solution against some test cases, and it spits out an error). Can anyone spot the error for me?
$left|sqrt{n^2+n}-n-frac{1}{2}right| < epsilon$
$Rightarrow left|frac{n}{sqrt{n^2+n}+n} - frac{1}{2}right| < epsilon$
$Rightarrow frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1} < epsilon$
$Rightarrow frac{1}{sqrt{1+frac{1}{n}}+1} > frac{1}{2} - epsilon = frac{1-2 epsilon}{2}$
$Rightarrow frac{1}{sqrt{1+frac{1}{n}}} > frac{1-2 epsilon}{2}$
$Rightarrow frac{1}{sqrt{frac{1}{n}}} > frac{1-2 epsilon}{2}$
$Rightarrow sqrt{n} > frac{1-2 epsilon}{2}$
$Rightarrow n > frac{4 {epsilon}^2-4 epsilon +1}{4}$
real-analysis limits radicals
real-analysis limits radicals
edited Jan 30 '16 at 4:14


Martin Sleziak
45k10122277
45k10122277
asked May 6 '14 at 12:39
Ryan StilesRyan Stiles
169126
169126
3
$begingroup$
You need the implications in the other direction, and $$frac{1}{sqrt{frac{1}{n}}} > frac{1-2epsilon}{2} notRightarrow frac{1}{sqrt{1+frac{1}{n}}} > frac{1-2epsilon}{2}.$$
$endgroup$
– Daniel Fischer
May 6 '14 at 12:42
3
$begingroup$
Btw. unless you are explicitly asked to find $N$ for given $epsilon$ etc., you should more or less stop after reaching transforming $sqrt {n^2+n}-n$ to $frac1{1+sqrt{1+frac1n}}$. Then note $frac1nto 0$, hence $1+frac1nto 1$, hence $sqrt{1+frac1n}to 1$, hence $1+sqrt{1+frac1n}to 2$, hence $frac1{1+sqrt{1+frac1n}}tofrac12$.
$endgroup$
– Hagen von Eitzen
May 6 '14 at 12:48
add a comment |
3
$begingroup$
You need the implications in the other direction, and $$frac{1}{sqrt{frac{1}{n}}} > frac{1-2epsilon}{2} notRightarrow frac{1}{sqrt{1+frac{1}{n}}} > frac{1-2epsilon}{2}.$$
$endgroup$
– Daniel Fischer
May 6 '14 at 12:42
3
$begingroup$
Btw. unless you are explicitly asked to find $N$ for given $epsilon$ etc., you should more or less stop after reaching transforming $sqrt {n^2+n}-n$ to $frac1{1+sqrt{1+frac1n}}$. Then note $frac1nto 0$, hence $1+frac1nto 1$, hence $sqrt{1+frac1n}to 1$, hence $1+sqrt{1+frac1n}to 2$, hence $frac1{1+sqrt{1+frac1n}}tofrac12$.
$endgroup$
– Hagen von Eitzen
May 6 '14 at 12:48
3
3
$begingroup$
You need the implications in the other direction, and $$frac{1}{sqrt{frac{1}{n}}} > frac{1-2epsilon}{2} notRightarrow frac{1}{sqrt{1+frac{1}{n}}} > frac{1-2epsilon}{2}.$$
$endgroup$
– Daniel Fischer
May 6 '14 at 12:42
$begingroup$
You need the implications in the other direction, and $$frac{1}{sqrt{frac{1}{n}}} > frac{1-2epsilon}{2} notRightarrow frac{1}{sqrt{1+frac{1}{n}}} > frac{1-2epsilon}{2}.$$
$endgroup$
– Daniel Fischer
May 6 '14 at 12:42
3
3
$begingroup$
Btw. unless you are explicitly asked to find $N$ for given $epsilon$ etc., you should more or less stop after reaching transforming $sqrt {n^2+n}-n$ to $frac1{1+sqrt{1+frac1n}}$. Then note $frac1nto 0$, hence $1+frac1nto 1$, hence $sqrt{1+frac1n}to 1$, hence $1+sqrt{1+frac1n}to 2$, hence $frac1{1+sqrt{1+frac1n}}tofrac12$.
$endgroup$
– Hagen von Eitzen
May 6 '14 at 12:48
$begingroup$
Btw. unless you are explicitly asked to find $N$ for given $epsilon$ etc., you should more or less stop after reaching transforming $sqrt {n^2+n}-n$ to $frac1{1+sqrt{1+frac1n}}$. Then note $frac1nto 0$, hence $1+frac1nto 1$, hence $sqrt{1+frac1n}to 1$, hence $1+sqrt{1+frac1n}to 2$, hence $frac1{1+sqrt{1+frac1n}}tofrac12$.
$endgroup$
– Hagen von Eitzen
May 6 '14 at 12:48
add a comment |
7 Answers
7
active
oldest
votes
$begingroup$
From $a^2-b^2=(a+b)(a-b)$ we have
$$sqrt{n^2+n}-n=frac{n^2+n-n^2}{sqrt{n^2+n}+n}=frac{n}{sqrt{n^2+n}+n}=
frac{1}{sqrt{1+frac{1}{n}}+1}$$
from which the result follows immediately.
$endgroup$
add a comment |
$begingroup$
Here is another solution. Remark that
$$
sqrt{n^2+n}-n=sqrt{n^2+n}-sqrt{n^2}=frac{(sqrt{n^2+n}-sqrt{n^2})(sqrt{n^2+n}+sqrt{n^2})}{sqrt{n^2+n}+sqrt{n^2}}
$$
Then
$$
sqrt{n^2+n}-n=frac{n}{sqrt{n^2+n}+n}=frac{1}{sqrt{1+frac{1}{n}}+1}.
$$
Since $limlimits_{nto infty} sqrt{1+frac{1}{n}}=1$, for $delta>0$, exists $N$ ($N>frac{1}{2delta+delta^2}$) such that $1<sqrt{1+frac{1}{n}}<1+delta$, for all $n>N$. Then
$$
2<sqrt{1+frac{1}{n}}+1<2+delta
$$
So
$$
frac{1}{2}>frac{1}{sqrt{1+frac{1}{n}}+1}>frac{1}{2+delta}.
$$
Then
$$
frac{delta}{4}>frac{1}{2}-frac{1}{2+delta}>frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1}>0
$$
Let $varepsilon>0$, define $delta:=4varepsilon$. So, for $N>frac{1}{2delta+delta^2}=frac{1}{8varepsilon+16varepsilon^2}$,
$$
varepsilon>frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1}>0,
$$
i.e.,
$$
limlimits_{nto infty}sqrt{n^2+n}-n=limlimits_{nto infty}frac{1}{sqrt{1+frac{1}{n}}+1}=frac{1}{1+1}=frac{1}{2}
$$
$endgroup$
add a comment |
$begingroup$
You can simply solve the inequality $frac{1}{sqrt{1+frac{1}{n}}+1}>frac{1-2epsilon}{2}$and find pick N = $frac{(1-2epsilon)}{8epsilon^2}$
$endgroup$
add a comment |
$begingroup$
In general, be wary of the proofs by implications of that sort -- it is easy to miss a step, or to think an implication is an equivalence. Most of the time, what you want can be written as a succession of (in)equalities, but less tricky to handle.
For here, a way to handle this limit, if you have seen what equivalents or $o(cdot)$'s are: you can start by writing
$$
sqrt{n^2+n}-n = nsqrt{1+frac{1}{n}}-n = nleft(sqrt{1+frac{1}{n}} - 1right)
$$
and use the fact that
$$
(1+x)^alpha operatorname*{=}_{xto 0} 1+alpha x + o(x)
$$
to show that the term in the parentheses is equivalent to ("behaves like") $frac{1}{2n}$.
$endgroup$
add a comment |
$begingroup$
Maybe the answer that gives the direct clue about what is going on is going through a proof that
$$lim_{n to +infty} (sqrt{n^2+n+c_2}-n)-(sqrt{n^2+n+c_1}-n)=0$$
or equally
$$lim_{n to +infty} sqrt{n^2+n+c_2}-sqrt{n^2+n+c_1}=0$$
Now write this to make it obvious as
$$lim_{n to +infty} frac{1}{sqrt{n^2+n+c_1}}(frac{sqrt{1+frac{1}{n}+frac{c_2}{n^2}}}{sqrt{1+frac{1}{n}+frac{c_1}{n^2}}}-1)=0$$
So we can pick whatever constant we want. We pick $frac{1}{4}$ and have
$$lim_{n to +infty} sqrt{n^2+n}-n=lim_{n to +infty} (sqrt{n^2+n+frac{1}{4}}-n)=$$ $$lim_{n to +infty} (sqrt{(n+frac{1}{2})^2}-n)=lim_{n to +infty} n+frac{1}{2}-n=frac{1}{2}$$
$endgroup$
add a comment |
$begingroup$
Since this post became active after a long period of time and there are many linked questions, here is a generalization for such kinds of limits. Consider the set of functions in the following form:
$$
f(x) = sqrt[n]{(x + a_1)(x+a_2)cdots (x+a_n)} - x
$$
where
$$
n,k in Bbb N \
a_k in Bbb R
$$
Consider the following expansion:
$$
a^n – b^n = (a – b)left(a^{n – 1} + a^{n – 2}b + a^{n – 3}b^2 +
cdots + ab^{n – 2} + b^{n – 1}right) tag1
$$
Define a function in the form:
$$
g(x) = sqrt[n]{(x + a_1)(x+a_2)cdots (x+a_n)}
$$
Thus $f(x)$ may be rewritten as:
$$
f(x) = g(x) - x
$$
Now using $(1)$ we may rewrite $f(x)$ as:
$$
f(x) = frac{(g(x))^n-x^n}{sqrt[n]{(g(x))^{n-1}} +sqrt[n]{(g(x))^{n-2}}x + sqrt[n]{(g(x))^{n-3}}x^2 + cdots + sqrt[n]{g(x)}x^{n-2} +x^{n-1}} tag2
$$
Now taking the limit of $(2)$ one may obtain:
$$
begin{align*}
&lim_{xtoinfty}frac{x^{n-1}a_1 + x^{n-1}a_2+ cdots + x^{n-1}a_n }{x^{n-1}left(sqrt[n]{1+oleft({1over x}right)+cdots} + sqrt[n]{1+oleft({1over x}right) +cdots} +cdots + 1right)} \
= &lim_{xtoinfty}frac{a_1 + a_2+ cdots + a_n}{sqrt[n]{1+oleft({1over x}right)+cdots} + sqrt[n]{1+oleft({1over x}right) +cdots} +cdots + 1} \
= &frac{a_1 + a_2 + cdots + a_n}{n} tag3
end{align*}
$$
Or summarizing:
$$
boxed{lim_{xtoinfty}f(x) = frac{a_1 + a_2 + cdots + a_n}{n}}
$$
Lets now use that result in your limit:
$$
sqrt{n^2 + n} - n = sqrt{n(n+1)} - n = sqrt{(n+0)(n+1)} - n
$$
Which gives $a_1 = 0$ and $a_2 = 1$ and the highest power is $2$ meaning $n = 2$ in $(3)$. Thus we get:
$$
boxed{lim_{ntoinfty}x_n = frac{a_1 + a_2}{2} = frac{0 + 1}{2} = {1over 2}}
$$
As desired.
$endgroup$
add a comment |
$begingroup$
(Yet another solution - sorry!)
$$
left(1 + frac1{2n}right)^2 = 1 + frac1n + frac1{4n^2} > 1 + frac1n,
$$
therefore
$$
sqrt{1 + frac1n} < 1 + frac1{2n},
$$
therefore
$$
sqrt{n^2 + n} - n = nleft(sqrt{1 + frac1n} - 1right) < frac12,
$$
but also
$$
sqrt{n^2 + n} - n = frac1{sqrt{1 + frac1n} + 1} > frac1{2left(1 + frac1{4n}right)}
> frac{1 - frac1{4n}}{2} = frac12 - frac1{8n},
$$
therefore
$$
frac12 - epsilon < sqrt{n^2 + n} - n < frac12
quad left(epsilon > 0, n geqslant frac1{8epsilon}right).
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f783536%2fprove-that-lim-sqrtn2n-n-frac12%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
7 Answers
7
active
oldest
votes
7 Answers
7
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
From $a^2-b^2=(a+b)(a-b)$ we have
$$sqrt{n^2+n}-n=frac{n^2+n-n^2}{sqrt{n^2+n}+n}=frac{n}{sqrt{n^2+n}+n}=
frac{1}{sqrt{1+frac{1}{n}}+1}$$
from which the result follows immediately.
$endgroup$
add a comment |
$begingroup$
From $a^2-b^2=(a+b)(a-b)$ we have
$$sqrt{n^2+n}-n=frac{n^2+n-n^2}{sqrt{n^2+n}+n}=frac{n}{sqrt{n^2+n}+n}=
frac{1}{sqrt{1+frac{1}{n}}+1}$$
from which the result follows immediately.
$endgroup$
add a comment |
$begingroup$
From $a^2-b^2=(a+b)(a-b)$ we have
$$sqrt{n^2+n}-n=frac{n^2+n-n^2}{sqrt{n^2+n}+n}=frac{n}{sqrt{n^2+n}+n}=
frac{1}{sqrt{1+frac{1}{n}}+1}$$
from which the result follows immediately.
$endgroup$
From $a^2-b^2=(a+b)(a-b)$ we have
$$sqrt{n^2+n}-n=frac{n^2+n-n^2}{sqrt{n^2+n}+n}=frac{n}{sqrt{n^2+n}+n}=
frac{1}{sqrt{1+frac{1}{n}}+1}$$
from which the result follows immediately.
answered May 6 '14 at 13:19
Matt L.Matt L.
9,034922
9,034922
add a comment |
add a comment |
$begingroup$
Here is another solution. Remark that
$$
sqrt{n^2+n}-n=sqrt{n^2+n}-sqrt{n^2}=frac{(sqrt{n^2+n}-sqrt{n^2})(sqrt{n^2+n}+sqrt{n^2})}{sqrt{n^2+n}+sqrt{n^2}}
$$
Then
$$
sqrt{n^2+n}-n=frac{n}{sqrt{n^2+n}+n}=frac{1}{sqrt{1+frac{1}{n}}+1}.
$$
Since $limlimits_{nto infty} sqrt{1+frac{1}{n}}=1$, for $delta>0$, exists $N$ ($N>frac{1}{2delta+delta^2}$) such that $1<sqrt{1+frac{1}{n}}<1+delta$, for all $n>N$. Then
$$
2<sqrt{1+frac{1}{n}}+1<2+delta
$$
So
$$
frac{1}{2}>frac{1}{sqrt{1+frac{1}{n}}+1}>frac{1}{2+delta}.
$$
Then
$$
frac{delta}{4}>frac{1}{2}-frac{1}{2+delta}>frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1}>0
$$
Let $varepsilon>0$, define $delta:=4varepsilon$. So, for $N>frac{1}{2delta+delta^2}=frac{1}{8varepsilon+16varepsilon^2}$,
$$
varepsilon>frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1}>0,
$$
i.e.,
$$
limlimits_{nto infty}sqrt{n^2+n}-n=limlimits_{nto infty}frac{1}{sqrt{1+frac{1}{n}}+1}=frac{1}{1+1}=frac{1}{2}
$$
$endgroup$
add a comment |
$begingroup$
Here is another solution. Remark that
$$
sqrt{n^2+n}-n=sqrt{n^2+n}-sqrt{n^2}=frac{(sqrt{n^2+n}-sqrt{n^2})(sqrt{n^2+n}+sqrt{n^2})}{sqrt{n^2+n}+sqrt{n^2}}
$$
Then
$$
sqrt{n^2+n}-n=frac{n}{sqrt{n^2+n}+n}=frac{1}{sqrt{1+frac{1}{n}}+1}.
$$
Since $limlimits_{nto infty} sqrt{1+frac{1}{n}}=1$, for $delta>0$, exists $N$ ($N>frac{1}{2delta+delta^2}$) such that $1<sqrt{1+frac{1}{n}}<1+delta$, for all $n>N$. Then
$$
2<sqrt{1+frac{1}{n}}+1<2+delta
$$
So
$$
frac{1}{2}>frac{1}{sqrt{1+frac{1}{n}}+1}>frac{1}{2+delta}.
$$
Then
$$
frac{delta}{4}>frac{1}{2}-frac{1}{2+delta}>frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1}>0
$$
Let $varepsilon>0$, define $delta:=4varepsilon$. So, for $N>frac{1}{2delta+delta^2}=frac{1}{8varepsilon+16varepsilon^2}$,
$$
varepsilon>frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1}>0,
$$
i.e.,
$$
limlimits_{nto infty}sqrt{n^2+n}-n=limlimits_{nto infty}frac{1}{sqrt{1+frac{1}{n}}+1}=frac{1}{1+1}=frac{1}{2}
$$
$endgroup$
add a comment |
$begingroup$
Here is another solution. Remark that
$$
sqrt{n^2+n}-n=sqrt{n^2+n}-sqrt{n^2}=frac{(sqrt{n^2+n}-sqrt{n^2})(sqrt{n^2+n}+sqrt{n^2})}{sqrt{n^2+n}+sqrt{n^2}}
$$
Then
$$
sqrt{n^2+n}-n=frac{n}{sqrt{n^2+n}+n}=frac{1}{sqrt{1+frac{1}{n}}+1}.
$$
Since $limlimits_{nto infty} sqrt{1+frac{1}{n}}=1$, for $delta>0$, exists $N$ ($N>frac{1}{2delta+delta^2}$) such that $1<sqrt{1+frac{1}{n}}<1+delta$, for all $n>N$. Then
$$
2<sqrt{1+frac{1}{n}}+1<2+delta
$$
So
$$
frac{1}{2}>frac{1}{sqrt{1+frac{1}{n}}+1}>frac{1}{2+delta}.
$$
Then
$$
frac{delta}{4}>frac{1}{2}-frac{1}{2+delta}>frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1}>0
$$
Let $varepsilon>0$, define $delta:=4varepsilon$. So, for $N>frac{1}{2delta+delta^2}=frac{1}{8varepsilon+16varepsilon^2}$,
$$
varepsilon>frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1}>0,
$$
i.e.,
$$
limlimits_{nto infty}sqrt{n^2+n}-n=limlimits_{nto infty}frac{1}{sqrt{1+frac{1}{n}}+1}=frac{1}{1+1}=frac{1}{2}
$$
$endgroup$
Here is another solution. Remark that
$$
sqrt{n^2+n}-n=sqrt{n^2+n}-sqrt{n^2}=frac{(sqrt{n^2+n}-sqrt{n^2})(sqrt{n^2+n}+sqrt{n^2})}{sqrt{n^2+n}+sqrt{n^2}}
$$
Then
$$
sqrt{n^2+n}-n=frac{n}{sqrt{n^2+n}+n}=frac{1}{sqrt{1+frac{1}{n}}+1}.
$$
Since $limlimits_{nto infty} sqrt{1+frac{1}{n}}=1$, for $delta>0$, exists $N$ ($N>frac{1}{2delta+delta^2}$) such that $1<sqrt{1+frac{1}{n}}<1+delta$, for all $n>N$. Then
$$
2<sqrt{1+frac{1}{n}}+1<2+delta
$$
So
$$
frac{1}{2}>frac{1}{sqrt{1+frac{1}{n}}+1}>frac{1}{2+delta}.
$$
Then
$$
frac{delta}{4}>frac{1}{2}-frac{1}{2+delta}>frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1}>0
$$
Let $varepsilon>0$, define $delta:=4varepsilon$. So, for $N>frac{1}{2delta+delta^2}=frac{1}{8varepsilon+16varepsilon^2}$,
$$
varepsilon>frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1}>0,
$$
i.e.,
$$
limlimits_{nto infty}sqrt{n^2+n}-n=limlimits_{nto infty}frac{1}{sqrt{1+frac{1}{n}}+1}=frac{1}{1+1}=frac{1}{2}
$$
answered May 6 '14 at 13:24
user73454user73454
501314
501314
add a comment |
add a comment |
$begingroup$
You can simply solve the inequality $frac{1}{sqrt{1+frac{1}{n}}+1}>frac{1-2epsilon}{2}$and find pick N = $frac{(1-2epsilon)}{8epsilon^2}$
$endgroup$
add a comment |
$begingroup$
You can simply solve the inequality $frac{1}{sqrt{1+frac{1}{n}}+1}>frac{1-2epsilon}{2}$and find pick N = $frac{(1-2epsilon)}{8epsilon^2}$
$endgroup$
add a comment |
$begingroup$
You can simply solve the inequality $frac{1}{sqrt{1+frac{1}{n}}+1}>frac{1-2epsilon}{2}$and find pick N = $frac{(1-2epsilon)}{8epsilon^2}$
$endgroup$
You can simply solve the inequality $frac{1}{sqrt{1+frac{1}{n}}+1}>frac{1-2epsilon}{2}$and find pick N = $frac{(1-2epsilon)}{8epsilon^2}$
answered Feb 1 at 12:33
user556861user556861
311
311
add a comment |
add a comment |
$begingroup$
In general, be wary of the proofs by implications of that sort -- it is easy to miss a step, or to think an implication is an equivalence. Most of the time, what you want can be written as a succession of (in)equalities, but less tricky to handle.
For here, a way to handle this limit, if you have seen what equivalents or $o(cdot)$'s are: you can start by writing
$$
sqrt{n^2+n}-n = nsqrt{1+frac{1}{n}}-n = nleft(sqrt{1+frac{1}{n}} - 1right)
$$
and use the fact that
$$
(1+x)^alpha operatorname*{=}_{xto 0} 1+alpha x + o(x)
$$
to show that the term in the parentheses is equivalent to ("behaves like") $frac{1}{2n}$.
$endgroup$
add a comment |
$begingroup$
In general, be wary of the proofs by implications of that sort -- it is easy to miss a step, or to think an implication is an equivalence. Most of the time, what you want can be written as a succession of (in)equalities, but less tricky to handle.
For here, a way to handle this limit, if you have seen what equivalents or $o(cdot)$'s are: you can start by writing
$$
sqrt{n^2+n}-n = nsqrt{1+frac{1}{n}}-n = nleft(sqrt{1+frac{1}{n}} - 1right)
$$
and use the fact that
$$
(1+x)^alpha operatorname*{=}_{xto 0} 1+alpha x + o(x)
$$
to show that the term in the parentheses is equivalent to ("behaves like") $frac{1}{2n}$.
$endgroup$
add a comment |
$begingroup$
In general, be wary of the proofs by implications of that sort -- it is easy to miss a step, or to think an implication is an equivalence. Most of the time, what you want can be written as a succession of (in)equalities, but less tricky to handle.
For here, a way to handle this limit, if you have seen what equivalents or $o(cdot)$'s are: you can start by writing
$$
sqrt{n^2+n}-n = nsqrt{1+frac{1}{n}}-n = nleft(sqrt{1+frac{1}{n}} - 1right)
$$
and use the fact that
$$
(1+x)^alpha operatorname*{=}_{xto 0} 1+alpha x + o(x)
$$
to show that the term in the parentheses is equivalent to ("behaves like") $frac{1}{2n}$.
$endgroup$
In general, be wary of the proofs by implications of that sort -- it is easy to miss a step, or to think an implication is an equivalence. Most of the time, what you want can be written as a succession of (in)equalities, but less tricky to handle.
For here, a way to handle this limit, if you have seen what equivalents or $o(cdot)$'s are: you can start by writing
$$
sqrt{n^2+n}-n = nsqrt{1+frac{1}{n}}-n = nleft(sqrt{1+frac{1}{n}} - 1right)
$$
and use the fact that
$$
(1+x)^alpha operatorname*{=}_{xto 0} 1+alpha x + o(x)
$$
to show that the term in the parentheses is equivalent to ("behaves like") $frac{1}{2n}$.
answered May 6 '14 at 12:50


Clement C.Clement C.
51.1k34093
51.1k34093
add a comment |
add a comment |
$begingroup$
Maybe the answer that gives the direct clue about what is going on is going through a proof that
$$lim_{n to +infty} (sqrt{n^2+n+c_2}-n)-(sqrt{n^2+n+c_1}-n)=0$$
or equally
$$lim_{n to +infty} sqrt{n^2+n+c_2}-sqrt{n^2+n+c_1}=0$$
Now write this to make it obvious as
$$lim_{n to +infty} frac{1}{sqrt{n^2+n+c_1}}(frac{sqrt{1+frac{1}{n}+frac{c_2}{n^2}}}{sqrt{1+frac{1}{n}+frac{c_1}{n^2}}}-1)=0$$
So we can pick whatever constant we want. We pick $frac{1}{4}$ and have
$$lim_{n to +infty} sqrt{n^2+n}-n=lim_{n to +infty} (sqrt{n^2+n+frac{1}{4}}-n)=$$ $$lim_{n to +infty} (sqrt{(n+frac{1}{2})^2}-n)=lim_{n to +infty} n+frac{1}{2}-n=frac{1}{2}$$
$endgroup$
add a comment |
$begingroup$
Maybe the answer that gives the direct clue about what is going on is going through a proof that
$$lim_{n to +infty} (sqrt{n^2+n+c_2}-n)-(sqrt{n^2+n+c_1}-n)=0$$
or equally
$$lim_{n to +infty} sqrt{n^2+n+c_2}-sqrt{n^2+n+c_1}=0$$
Now write this to make it obvious as
$$lim_{n to +infty} frac{1}{sqrt{n^2+n+c_1}}(frac{sqrt{1+frac{1}{n}+frac{c_2}{n^2}}}{sqrt{1+frac{1}{n}+frac{c_1}{n^2}}}-1)=0$$
So we can pick whatever constant we want. We pick $frac{1}{4}$ and have
$$lim_{n to +infty} sqrt{n^2+n}-n=lim_{n to +infty} (sqrt{n^2+n+frac{1}{4}}-n)=$$ $$lim_{n to +infty} (sqrt{(n+frac{1}{2})^2}-n)=lim_{n to +infty} n+frac{1}{2}-n=frac{1}{2}$$
$endgroup$
add a comment |
$begingroup$
Maybe the answer that gives the direct clue about what is going on is going through a proof that
$$lim_{n to +infty} (sqrt{n^2+n+c_2}-n)-(sqrt{n^2+n+c_1}-n)=0$$
or equally
$$lim_{n to +infty} sqrt{n^2+n+c_2}-sqrt{n^2+n+c_1}=0$$
Now write this to make it obvious as
$$lim_{n to +infty} frac{1}{sqrt{n^2+n+c_1}}(frac{sqrt{1+frac{1}{n}+frac{c_2}{n^2}}}{sqrt{1+frac{1}{n}+frac{c_1}{n^2}}}-1)=0$$
So we can pick whatever constant we want. We pick $frac{1}{4}$ and have
$$lim_{n to +infty} sqrt{n^2+n}-n=lim_{n to +infty} (sqrt{n^2+n+frac{1}{4}}-n)=$$ $$lim_{n to +infty} (sqrt{(n+frac{1}{2})^2}-n)=lim_{n to +infty} n+frac{1}{2}-n=frac{1}{2}$$
$endgroup$
Maybe the answer that gives the direct clue about what is going on is going through a proof that
$$lim_{n to +infty} (sqrt{n^2+n+c_2}-n)-(sqrt{n^2+n+c_1}-n)=0$$
or equally
$$lim_{n to +infty} sqrt{n^2+n+c_2}-sqrt{n^2+n+c_1}=0$$
Now write this to make it obvious as
$$lim_{n to +infty} frac{1}{sqrt{n^2+n+c_1}}(frac{sqrt{1+frac{1}{n}+frac{c_2}{n^2}}}{sqrt{1+frac{1}{n}+frac{c_1}{n^2}}}-1)=0$$
So we can pick whatever constant we want. We pick $frac{1}{4}$ and have
$$lim_{n to +infty} sqrt{n^2+n}-n=lim_{n to +infty} (sqrt{n^2+n+frac{1}{4}}-n)=$$ $$lim_{n to +infty} (sqrt{(n+frac{1}{2})^2}-n)=lim_{n to +infty} n+frac{1}{2}-n=frac{1}{2}$$
answered Apr 7 '18 at 19:29
user318107
add a comment |
add a comment |
$begingroup$
Since this post became active after a long period of time and there are many linked questions, here is a generalization for such kinds of limits. Consider the set of functions in the following form:
$$
f(x) = sqrt[n]{(x + a_1)(x+a_2)cdots (x+a_n)} - x
$$
where
$$
n,k in Bbb N \
a_k in Bbb R
$$
Consider the following expansion:
$$
a^n – b^n = (a – b)left(a^{n – 1} + a^{n – 2}b + a^{n – 3}b^2 +
cdots + ab^{n – 2} + b^{n – 1}right) tag1
$$
Define a function in the form:
$$
g(x) = sqrt[n]{(x + a_1)(x+a_2)cdots (x+a_n)}
$$
Thus $f(x)$ may be rewritten as:
$$
f(x) = g(x) - x
$$
Now using $(1)$ we may rewrite $f(x)$ as:
$$
f(x) = frac{(g(x))^n-x^n}{sqrt[n]{(g(x))^{n-1}} +sqrt[n]{(g(x))^{n-2}}x + sqrt[n]{(g(x))^{n-3}}x^2 + cdots + sqrt[n]{g(x)}x^{n-2} +x^{n-1}} tag2
$$
Now taking the limit of $(2)$ one may obtain:
$$
begin{align*}
&lim_{xtoinfty}frac{x^{n-1}a_1 + x^{n-1}a_2+ cdots + x^{n-1}a_n }{x^{n-1}left(sqrt[n]{1+oleft({1over x}right)+cdots} + sqrt[n]{1+oleft({1over x}right) +cdots} +cdots + 1right)} \
= &lim_{xtoinfty}frac{a_1 + a_2+ cdots + a_n}{sqrt[n]{1+oleft({1over x}right)+cdots} + sqrt[n]{1+oleft({1over x}right) +cdots} +cdots + 1} \
= &frac{a_1 + a_2 + cdots + a_n}{n} tag3
end{align*}
$$
Or summarizing:
$$
boxed{lim_{xtoinfty}f(x) = frac{a_1 + a_2 + cdots + a_n}{n}}
$$
Lets now use that result in your limit:
$$
sqrt{n^2 + n} - n = sqrt{n(n+1)} - n = sqrt{(n+0)(n+1)} - n
$$
Which gives $a_1 = 0$ and $a_2 = 1$ and the highest power is $2$ meaning $n = 2$ in $(3)$. Thus we get:
$$
boxed{lim_{ntoinfty}x_n = frac{a_1 + a_2}{2} = frac{0 + 1}{2} = {1over 2}}
$$
As desired.
$endgroup$
add a comment |
$begingroup$
Since this post became active after a long period of time and there are many linked questions, here is a generalization for such kinds of limits. Consider the set of functions in the following form:
$$
f(x) = sqrt[n]{(x + a_1)(x+a_2)cdots (x+a_n)} - x
$$
where
$$
n,k in Bbb N \
a_k in Bbb R
$$
Consider the following expansion:
$$
a^n – b^n = (a – b)left(a^{n – 1} + a^{n – 2}b + a^{n – 3}b^2 +
cdots + ab^{n – 2} + b^{n – 1}right) tag1
$$
Define a function in the form:
$$
g(x) = sqrt[n]{(x + a_1)(x+a_2)cdots (x+a_n)}
$$
Thus $f(x)$ may be rewritten as:
$$
f(x) = g(x) - x
$$
Now using $(1)$ we may rewrite $f(x)$ as:
$$
f(x) = frac{(g(x))^n-x^n}{sqrt[n]{(g(x))^{n-1}} +sqrt[n]{(g(x))^{n-2}}x + sqrt[n]{(g(x))^{n-3}}x^2 + cdots + sqrt[n]{g(x)}x^{n-2} +x^{n-1}} tag2
$$
Now taking the limit of $(2)$ one may obtain:
$$
begin{align*}
&lim_{xtoinfty}frac{x^{n-1}a_1 + x^{n-1}a_2+ cdots + x^{n-1}a_n }{x^{n-1}left(sqrt[n]{1+oleft({1over x}right)+cdots} + sqrt[n]{1+oleft({1over x}right) +cdots} +cdots + 1right)} \
= &lim_{xtoinfty}frac{a_1 + a_2+ cdots + a_n}{sqrt[n]{1+oleft({1over x}right)+cdots} + sqrt[n]{1+oleft({1over x}right) +cdots} +cdots + 1} \
= &frac{a_1 + a_2 + cdots + a_n}{n} tag3
end{align*}
$$
Or summarizing:
$$
boxed{lim_{xtoinfty}f(x) = frac{a_1 + a_2 + cdots + a_n}{n}}
$$
Lets now use that result in your limit:
$$
sqrt{n^2 + n} - n = sqrt{n(n+1)} - n = sqrt{(n+0)(n+1)} - n
$$
Which gives $a_1 = 0$ and $a_2 = 1$ and the highest power is $2$ meaning $n = 2$ in $(3)$. Thus we get:
$$
boxed{lim_{ntoinfty}x_n = frac{a_1 + a_2}{2} = frac{0 + 1}{2} = {1over 2}}
$$
As desired.
$endgroup$
add a comment |
$begingroup$
Since this post became active after a long period of time and there are many linked questions, here is a generalization for such kinds of limits. Consider the set of functions in the following form:
$$
f(x) = sqrt[n]{(x + a_1)(x+a_2)cdots (x+a_n)} - x
$$
where
$$
n,k in Bbb N \
a_k in Bbb R
$$
Consider the following expansion:
$$
a^n – b^n = (a – b)left(a^{n – 1} + a^{n – 2}b + a^{n – 3}b^2 +
cdots + ab^{n – 2} + b^{n – 1}right) tag1
$$
Define a function in the form:
$$
g(x) = sqrt[n]{(x + a_1)(x+a_2)cdots (x+a_n)}
$$
Thus $f(x)$ may be rewritten as:
$$
f(x) = g(x) - x
$$
Now using $(1)$ we may rewrite $f(x)$ as:
$$
f(x) = frac{(g(x))^n-x^n}{sqrt[n]{(g(x))^{n-1}} +sqrt[n]{(g(x))^{n-2}}x + sqrt[n]{(g(x))^{n-3}}x^2 + cdots + sqrt[n]{g(x)}x^{n-2} +x^{n-1}} tag2
$$
Now taking the limit of $(2)$ one may obtain:
$$
begin{align*}
&lim_{xtoinfty}frac{x^{n-1}a_1 + x^{n-1}a_2+ cdots + x^{n-1}a_n }{x^{n-1}left(sqrt[n]{1+oleft({1over x}right)+cdots} + sqrt[n]{1+oleft({1over x}right) +cdots} +cdots + 1right)} \
= &lim_{xtoinfty}frac{a_1 + a_2+ cdots + a_n}{sqrt[n]{1+oleft({1over x}right)+cdots} + sqrt[n]{1+oleft({1over x}right) +cdots} +cdots + 1} \
= &frac{a_1 + a_2 + cdots + a_n}{n} tag3
end{align*}
$$
Or summarizing:
$$
boxed{lim_{xtoinfty}f(x) = frac{a_1 + a_2 + cdots + a_n}{n}}
$$
Lets now use that result in your limit:
$$
sqrt{n^2 + n} - n = sqrt{n(n+1)} - n = sqrt{(n+0)(n+1)} - n
$$
Which gives $a_1 = 0$ and $a_2 = 1$ and the highest power is $2$ meaning $n = 2$ in $(3)$. Thus we get:
$$
boxed{lim_{ntoinfty}x_n = frac{a_1 + a_2}{2} = frac{0 + 1}{2} = {1over 2}}
$$
As desired.
$endgroup$
Since this post became active after a long period of time and there are many linked questions, here is a generalization for such kinds of limits. Consider the set of functions in the following form:
$$
f(x) = sqrt[n]{(x + a_1)(x+a_2)cdots (x+a_n)} - x
$$
where
$$
n,k in Bbb N \
a_k in Bbb R
$$
Consider the following expansion:
$$
a^n – b^n = (a – b)left(a^{n – 1} + a^{n – 2}b + a^{n – 3}b^2 +
cdots + ab^{n – 2} + b^{n – 1}right) tag1
$$
Define a function in the form:
$$
g(x) = sqrt[n]{(x + a_1)(x+a_2)cdots (x+a_n)}
$$
Thus $f(x)$ may be rewritten as:
$$
f(x) = g(x) - x
$$
Now using $(1)$ we may rewrite $f(x)$ as:
$$
f(x) = frac{(g(x))^n-x^n}{sqrt[n]{(g(x))^{n-1}} +sqrt[n]{(g(x))^{n-2}}x + sqrt[n]{(g(x))^{n-3}}x^2 + cdots + sqrt[n]{g(x)}x^{n-2} +x^{n-1}} tag2
$$
Now taking the limit of $(2)$ one may obtain:
$$
begin{align*}
&lim_{xtoinfty}frac{x^{n-1}a_1 + x^{n-1}a_2+ cdots + x^{n-1}a_n }{x^{n-1}left(sqrt[n]{1+oleft({1over x}right)+cdots} + sqrt[n]{1+oleft({1over x}right) +cdots} +cdots + 1right)} \
= &lim_{xtoinfty}frac{a_1 + a_2+ cdots + a_n}{sqrt[n]{1+oleft({1over x}right)+cdots} + sqrt[n]{1+oleft({1over x}right) +cdots} +cdots + 1} \
= &frac{a_1 + a_2 + cdots + a_n}{n} tag3
end{align*}
$$
Or summarizing:
$$
boxed{lim_{xtoinfty}f(x) = frac{a_1 + a_2 + cdots + a_n}{n}}
$$
Lets now use that result in your limit:
$$
sqrt{n^2 + n} - n = sqrt{n(n+1)} - n = sqrt{(n+0)(n+1)} - n
$$
Which gives $a_1 = 0$ and $a_2 = 1$ and the highest power is $2$ meaning $n = 2$ in $(3)$. Thus we get:
$$
boxed{lim_{ntoinfty}x_n = frac{a_1 + a_2}{2} = frac{0 + 1}{2} = {1over 2}}
$$
As desired.
edited Feb 1 at 13:22
answered Feb 1 at 13:15
romanroman
2,50521226
2,50521226
add a comment |
add a comment |
$begingroup$
(Yet another solution - sorry!)
$$
left(1 + frac1{2n}right)^2 = 1 + frac1n + frac1{4n^2} > 1 + frac1n,
$$
therefore
$$
sqrt{1 + frac1n} < 1 + frac1{2n},
$$
therefore
$$
sqrt{n^2 + n} - n = nleft(sqrt{1 + frac1n} - 1right) < frac12,
$$
but also
$$
sqrt{n^2 + n} - n = frac1{sqrt{1 + frac1n} + 1} > frac1{2left(1 + frac1{4n}right)}
> frac{1 - frac1{4n}}{2} = frac12 - frac1{8n},
$$
therefore
$$
frac12 - epsilon < sqrt{n^2 + n} - n < frac12
quad left(epsilon > 0, n geqslant frac1{8epsilon}right).
$$
$endgroup$
add a comment |
$begingroup$
(Yet another solution - sorry!)
$$
left(1 + frac1{2n}right)^2 = 1 + frac1n + frac1{4n^2} > 1 + frac1n,
$$
therefore
$$
sqrt{1 + frac1n} < 1 + frac1{2n},
$$
therefore
$$
sqrt{n^2 + n} - n = nleft(sqrt{1 + frac1n} - 1right) < frac12,
$$
but also
$$
sqrt{n^2 + n} - n = frac1{sqrt{1 + frac1n} + 1} > frac1{2left(1 + frac1{4n}right)}
> frac{1 - frac1{4n}}{2} = frac12 - frac1{8n},
$$
therefore
$$
frac12 - epsilon < sqrt{n^2 + n} - n < frac12
quad left(epsilon > 0, n geqslant frac1{8epsilon}right).
$$
$endgroup$
add a comment |
$begingroup$
(Yet another solution - sorry!)
$$
left(1 + frac1{2n}right)^2 = 1 + frac1n + frac1{4n^2} > 1 + frac1n,
$$
therefore
$$
sqrt{1 + frac1n} < 1 + frac1{2n},
$$
therefore
$$
sqrt{n^2 + n} - n = nleft(sqrt{1 + frac1n} - 1right) < frac12,
$$
but also
$$
sqrt{n^2 + n} - n = frac1{sqrt{1 + frac1n} + 1} > frac1{2left(1 + frac1{4n}right)}
> frac{1 - frac1{4n}}{2} = frac12 - frac1{8n},
$$
therefore
$$
frac12 - epsilon < sqrt{n^2 + n} - n < frac12
quad left(epsilon > 0, n geqslant frac1{8epsilon}right).
$$
$endgroup$
(Yet another solution - sorry!)
$$
left(1 + frac1{2n}right)^2 = 1 + frac1n + frac1{4n^2} > 1 + frac1n,
$$
therefore
$$
sqrt{1 + frac1n} < 1 + frac1{2n},
$$
therefore
$$
sqrt{n^2 + n} - n = nleft(sqrt{1 + frac1n} - 1right) < frac12,
$$
but also
$$
sqrt{n^2 + n} - n = frac1{sqrt{1 + frac1n} + 1} > frac1{2left(1 + frac1{4n}right)}
> frac{1 - frac1{4n}}{2} = frac12 - frac1{8n},
$$
therefore
$$
frac12 - epsilon < sqrt{n^2 + n} - n < frac12
quad left(epsilon > 0, n geqslant frac1{8epsilon}right).
$$
answered Feb 1 at 14:06


Calum GilhooleyCalum Gilhooley
5,119730
5,119730
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f783536%2fprove-that-lim-sqrtn2n-n-frac12%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
You need the implications in the other direction, and $$frac{1}{sqrt{frac{1}{n}}} > frac{1-2epsilon}{2} notRightarrow frac{1}{sqrt{1+frac{1}{n}}} > frac{1-2epsilon}{2}.$$
$endgroup$
– Daniel Fischer
May 6 '14 at 12:42
3
$begingroup$
Btw. unless you are explicitly asked to find $N$ for given $epsilon$ etc., you should more or less stop after reaching transforming $sqrt {n^2+n}-n$ to $frac1{1+sqrt{1+frac1n}}$. Then note $frac1nto 0$, hence $1+frac1nto 1$, hence $sqrt{1+frac1n}to 1$, hence $1+sqrt{1+frac1n}to 2$, hence $frac1{1+sqrt{1+frac1n}}tofrac12$.
$endgroup$
– Hagen von Eitzen
May 6 '14 at 12:48