Prove that lim $(sqrt{n^2+n}-n) = frac{1}{2}$












9












$begingroup$


Here's the question: Prove that lim $(sqrt{n^2+n}-n) = frac{1}{2}$



Here's my attempt at a solution, but for some reason, the $N$ that I arrive at is incorrect (I ran a computer program to test my solution against some test cases, and it spits out an error). Can anyone spot the error for me?



$left|sqrt{n^2+n}-n-frac{1}{2}right| < epsilon$



$Rightarrow left|frac{n}{sqrt{n^2+n}+n} - frac{1}{2}right| < epsilon$



$Rightarrow frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1} < epsilon$



$Rightarrow frac{1}{sqrt{1+frac{1}{n}}+1} > frac{1}{2} - epsilon = frac{1-2 epsilon}{2}$



$Rightarrow frac{1}{sqrt{1+frac{1}{n}}} > frac{1-2 epsilon}{2}$



$Rightarrow frac{1}{sqrt{frac{1}{n}}} > frac{1-2 epsilon}{2}$



$Rightarrow sqrt{n} > frac{1-2 epsilon}{2}$



$Rightarrow n > frac{4 {epsilon}^2-4 epsilon +1}{4}$










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    You need the implications in the other direction, and $$frac{1}{sqrt{frac{1}{n}}} > frac{1-2epsilon}{2} notRightarrow frac{1}{sqrt{1+frac{1}{n}}} > frac{1-2epsilon}{2}.$$
    $endgroup$
    – Daniel Fischer
    May 6 '14 at 12:42








  • 3




    $begingroup$
    Btw. unless you are explicitly asked to find $N$ for given $epsilon$ etc., you should more or less stop after reaching transforming $sqrt {n^2+n}-n$ to $frac1{1+sqrt{1+frac1n}}$. Then note $frac1nto 0$, hence $1+frac1nto 1$, hence $sqrt{1+frac1n}to 1$, hence $1+sqrt{1+frac1n}to 2$, hence $frac1{1+sqrt{1+frac1n}}tofrac12$.
    $endgroup$
    – Hagen von Eitzen
    May 6 '14 at 12:48


















9












$begingroup$


Here's the question: Prove that lim $(sqrt{n^2+n}-n) = frac{1}{2}$



Here's my attempt at a solution, but for some reason, the $N$ that I arrive at is incorrect (I ran a computer program to test my solution against some test cases, and it spits out an error). Can anyone spot the error for me?



$left|sqrt{n^2+n}-n-frac{1}{2}right| < epsilon$



$Rightarrow left|frac{n}{sqrt{n^2+n}+n} - frac{1}{2}right| < epsilon$



$Rightarrow frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1} < epsilon$



$Rightarrow frac{1}{sqrt{1+frac{1}{n}}+1} > frac{1}{2} - epsilon = frac{1-2 epsilon}{2}$



$Rightarrow frac{1}{sqrt{1+frac{1}{n}}} > frac{1-2 epsilon}{2}$



$Rightarrow frac{1}{sqrt{frac{1}{n}}} > frac{1-2 epsilon}{2}$



$Rightarrow sqrt{n} > frac{1-2 epsilon}{2}$



$Rightarrow n > frac{4 {epsilon}^2-4 epsilon +1}{4}$










share|cite|improve this question











$endgroup$








  • 3




    $begingroup$
    You need the implications in the other direction, and $$frac{1}{sqrt{frac{1}{n}}} > frac{1-2epsilon}{2} notRightarrow frac{1}{sqrt{1+frac{1}{n}}} > frac{1-2epsilon}{2}.$$
    $endgroup$
    – Daniel Fischer
    May 6 '14 at 12:42








  • 3




    $begingroup$
    Btw. unless you are explicitly asked to find $N$ for given $epsilon$ etc., you should more or less stop after reaching transforming $sqrt {n^2+n}-n$ to $frac1{1+sqrt{1+frac1n}}$. Then note $frac1nto 0$, hence $1+frac1nto 1$, hence $sqrt{1+frac1n}to 1$, hence $1+sqrt{1+frac1n}to 2$, hence $frac1{1+sqrt{1+frac1n}}tofrac12$.
    $endgroup$
    – Hagen von Eitzen
    May 6 '14 at 12:48
















9












9








9


4



$begingroup$


Here's the question: Prove that lim $(sqrt{n^2+n}-n) = frac{1}{2}$



Here's my attempt at a solution, but for some reason, the $N$ that I arrive at is incorrect (I ran a computer program to test my solution against some test cases, and it spits out an error). Can anyone spot the error for me?



$left|sqrt{n^2+n}-n-frac{1}{2}right| < epsilon$



$Rightarrow left|frac{n}{sqrt{n^2+n}+n} - frac{1}{2}right| < epsilon$



$Rightarrow frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1} < epsilon$



$Rightarrow frac{1}{sqrt{1+frac{1}{n}}+1} > frac{1}{2} - epsilon = frac{1-2 epsilon}{2}$



$Rightarrow frac{1}{sqrt{1+frac{1}{n}}} > frac{1-2 epsilon}{2}$



$Rightarrow frac{1}{sqrt{frac{1}{n}}} > frac{1-2 epsilon}{2}$



$Rightarrow sqrt{n} > frac{1-2 epsilon}{2}$



$Rightarrow n > frac{4 {epsilon}^2-4 epsilon +1}{4}$










share|cite|improve this question











$endgroup$




Here's the question: Prove that lim $(sqrt{n^2+n}-n) = frac{1}{2}$



Here's my attempt at a solution, but for some reason, the $N$ that I arrive at is incorrect (I ran a computer program to test my solution against some test cases, and it spits out an error). Can anyone spot the error for me?



$left|sqrt{n^2+n}-n-frac{1}{2}right| < epsilon$



$Rightarrow left|frac{n}{sqrt{n^2+n}+n} - frac{1}{2}right| < epsilon$



$Rightarrow frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1} < epsilon$



$Rightarrow frac{1}{sqrt{1+frac{1}{n}}+1} > frac{1}{2} - epsilon = frac{1-2 epsilon}{2}$



$Rightarrow frac{1}{sqrt{1+frac{1}{n}}} > frac{1-2 epsilon}{2}$



$Rightarrow frac{1}{sqrt{frac{1}{n}}} > frac{1-2 epsilon}{2}$



$Rightarrow sqrt{n} > frac{1-2 epsilon}{2}$



$Rightarrow n > frac{4 {epsilon}^2-4 epsilon +1}{4}$







real-analysis limits radicals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 30 '16 at 4:14









Martin Sleziak

45k10122277




45k10122277










asked May 6 '14 at 12:39









Ryan StilesRyan Stiles

169126




169126








  • 3




    $begingroup$
    You need the implications in the other direction, and $$frac{1}{sqrt{frac{1}{n}}} > frac{1-2epsilon}{2} notRightarrow frac{1}{sqrt{1+frac{1}{n}}} > frac{1-2epsilon}{2}.$$
    $endgroup$
    – Daniel Fischer
    May 6 '14 at 12:42








  • 3




    $begingroup$
    Btw. unless you are explicitly asked to find $N$ for given $epsilon$ etc., you should more or less stop after reaching transforming $sqrt {n^2+n}-n$ to $frac1{1+sqrt{1+frac1n}}$. Then note $frac1nto 0$, hence $1+frac1nto 1$, hence $sqrt{1+frac1n}to 1$, hence $1+sqrt{1+frac1n}to 2$, hence $frac1{1+sqrt{1+frac1n}}tofrac12$.
    $endgroup$
    – Hagen von Eitzen
    May 6 '14 at 12:48
















  • 3




    $begingroup$
    You need the implications in the other direction, and $$frac{1}{sqrt{frac{1}{n}}} > frac{1-2epsilon}{2} notRightarrow frac{1}{sqrt{1+frac{1}{n}}} > frac{1-2epsilon}{2}.$$
    $endgroup$
    – Daniel Fischer
    May 6 '14 at 12:42








  • 3




    $begingroup$
    Btw. unless you are explicitly asked to find $N$ for given $epsilon$ etc., you should more or less stop after reaching transforming $sqrt {n^2+n}-n$ to $frac1{1+sqrt{1+frac1n}}$. Then note $frac1nto 0$, hence $1+frac1nto 1$, hence $sqrt{1+frac1n}to 1$, hence $1+sqrt{1+frac1n}to 2$, hence $frac1{1+sqrt{1+frac1n}}tofrac12$.
    $endgroup$
    – Hagen von Eitzen
    May 6 '14 at 12:48










3




3




$begingroup$
You need the implications in the other direction, and $$frac{1}{sqrt{frac{1}{n}}} > frac{1-2epsilon}{2} notRightarrow frac{1}{sqrt{1+frac{1}{n}}} > frac{1-2epsilon}{2}.$$
$endgroup$
– Daniel Fischer
May 6 '14 at 12:42






$begingroup$
You need the implications in the other direction, and $$frac{1}{sqrt{frac{1}{n}}} > frac{1-2epsilon}{2} notRightarrow frac{1}{sqrt{1+frac{1}{n}}} > frac{1-2epsilon}{2}.$$
$endgroup$
– Daniel Fischer
May 6 '14 at 12:42






3




3




$begingroup$
Btw. unless you are explicitly asked to find $N$ for given $epsilon$ etc., you should more or less stop after reaching transforming $sqrt {n^2+n}-n$ to $frac1{1+sqrt{1+frac1n}}$. Then note $frac1nto 0$, hence $1+frac1nto 1$, hence $sqrt{1+frac1n}to 1$, hence $1+sqrt{1+frac1n}to 2$, hence $frac1{1+sqrt{1+frac1n}}tofrac12$.
$endgroup$
– Hagen von Eitzen
May 6 '14 at 12:48






$begingroup$
Btw. unless you are explicitly asked to find $N$ for given $epsilon$ etc., you should more or less stop after reaching transforming $sqrt {n^2+n}-n$ to $frac1{1+sqrt{1+frac1n}}$. Then note $frac1nto 0$, hence $1+frac1nto 1$, hence $sqrt{1+frac1n}to 1$, hence $1+sqrt{1+frac1n}to 2$, hence $frac1{1+sqrt{1+frac1n}}tofrac12$.
$endgroup$
– Hagen von Eitzen
May 6 '14 at 12:48












7 Answers
7






active

oldest

votes


















16












$begingroup$

From $a^2-b^2=(a+b)(a-b)$ we have



$$sqrt{n^2+n}-n=frac{n^2+n-n^2}{sqrt{n^2+n}+n}=frac{n}{sqrt{n^2+n}+n}=
frac{1}{sqrt{1+frac{1}{n}}+1}$$



from which the result follows immediately.






share|cite|improve this answer









$endgroup$





















    5












    $begingroup$

    Here is another solution. Remark that
    $$
    sqrt{n^2+n}-n=sqrt{n^2+n}-sqrt{n^2}=frac{(sqrt{n^2+n}-sqrt{n^2})(sqrt{n^2+n}+sqrt{n^2})}{sqrt{n^2+n}+sqrt{n^2}}
    $$
    Then
    $$
    sqrt{n^2+n}-n=frac{n}{sqrt{n^2+n}+n}=frac{1}{sqrt{1+frac{1}{n}}+1}.
    $$
    Since $limlimits_{nto infty} sqrt{1+frac{1}{n}}=1$, for $delta>0$, exists $N$ ($N>frac{1}{2delta+delta^2}$) such that $1<sqrt{1+frac{1}{n}}<1+delta$, for all $n>N$. Then
    $$
    2<sqrt{1+frac{1}{n}}+1<2+delta
    $$
    So
    $$
    frac{1}{2}>frac{1}{sqrt{1+frac{1}{n}}+1}>frac{1}{2+delta}.
    $$
    Then
    $$
    frac{delta}{4}>frac{1}{2}-frac{1}{2+delta}>frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1}>0
    $$
    Let $varepsilon>0$, define $delta:=4varepsilon$. So, for $N>frac{1}{2delta+delta^2}=frac{1}{8varepsilon+16varepsilon^2}$,
    $$
    varepsilon>frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1}>0,
    $$
    i.e.,
    $$
    limlimits_{nto infty}sqrt{n^2+n}-n=limlimits_{nto infty}frac{1}{sqrt{1+frac{1}{n}}+1}=frac{1}{1+1}=frac{1}{2}
    $$






    share|cite|improve this answer









    $endgroup$





















      3












      $begingroup$

      You can simply solve the inequality $frac{1}{sqrt{1+frac{1}{n}}+1}>frac{1-2epsilon}{2}$and find pick N = $frac{(1-2epsilon)}{8epsilon^2}$






      share|cite|improve this answer









      $endgroup$





















        2












        $begingroup$

        In general, be wary of the proofs by implications of that sort -- it is easy to miss a step, or to think an implication is an equivalence. Most of the time, what you want can be written as a succession of (in)equalities, but less tricky to handle.



        For here, a way to handle this limit, if you have seen what equivalents or $o(cdot)$'s are: you can start by writing
        $$
        sqrt{n^2+n}-n = nsqrt{1+frac{1}{n}}-n = nleft(sqrt{1+frac{1}{n}} - 1right)
        $$
        and use the fact that
        $$
        (1+x)^alpha operatorname*{=}_{xto 0} 1+alpha x + o(x)
        $$
        to show that the term in the parentheses is equivalent to ("behaves like") $frac{1}{2n}$.






        share|cite|improve this answer









        $endgroup$





















          0












          $begingroup$

          Maybe the answer that gives the direct clue about what is going on is going through a proof that



          $$lim_{n to +infty} (sqrt{n^2+n+c_2}-n)-(sqrt{n^2+n+c_1}-n)=0$$



          or equally



          $$lim_{n to +infty} sqrt{n^2+n+c_2}-sqrt{n^2+n+c_1}=0$$



          Now write this to make it obvious as



          $$lim_{n to +infty} frac{1}{sqrt{n^2+n+c_1}}(frac{sqrt{1+frac{1}{n}+frac{c_2}{n^2}}}{sqrt{1+frac{1}{n}+frac{c_1}{n^2}}}-1)=0$$



          So we can pick whatever constant we want. We pick $frac{1}{4}$ and have



          $$lim_{n to +infty} sqrt{n^2+n}-n=lim_{n to +infty} (sqrt{n^2+n+frac{1}{4}}-n)=$$ $$lim_{n to +infty} (sqrt{(n+frac{1}{2})^2}-n)=lim_{n to +infty} n+frac{1}{2}-n=frac{1}{2}$$






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            Since this post became active after a long period of time and there are many linked questions, here is a generalization for such kinds of limits. Consider the set of functions in the following form:
            $$
            f(x) = sqrt[n]{(x + a_1)(x+a_2)cdots (x+a_n)} - x
            $$

            where
            $$
            n,k in Bbb N \
            a_k in Bbb R
            $$



            Consider the following expansion:
            $$
            a^n – b^n = (a – b)left(a^{n – 1} + a^{n – 2}b + a^{n – 3}b^2 +
            cdots + ab^{n – 2} + b^{n – 1}right) tag1
            $$



            Define a function in the form:
            $$
            g(x) = sqrt[n]{(x + a_1)(x+a_2)cdots (x+a_n)}
            $$



            Thus $f(x)$ may be rewritten as:



            $$
            f(x) = g(x) - x
            $$



            Now using $(1)$ we may rewrite $f(x)$ as:
            $$
            f(x) = frac{(g(x))^n-x^n}{sqrt[n]{(g(x))^{n-1}} +sqrt[n]{(g(x))^{n-2}}x + sqrt[n]{(g(x))^{n-3}}x^2 + cdots + sqrt[n]{g(x)}x^{n-2} +x^{n-1}} tag2
            $$



            Now taking the limit of $(2)$ one may obtain:
            $$
            begin{align*}
            &lim_{xtoinfty}frac{x^{n-1}a_1 + x^{n-1}a_2+ cdots + x^{n-1}a_n }{x^{n-1}left(sqrt[n]{1+oleft({1over x}right)+cdots} + sqrt[n]{1+oleft({1over x}right) +cdots} +cdots + 1right)} \
            = &lim_{xtoinfty}frac{a_1 + a_2+ cdots + a_n}{sqrt[n]{1+oleft({1over x}right)+cdots} + sqrt[n]{1+oleft({1over x}right) +cdots} +cdots + 1} \
            = &frac{a_1 + a_2 + cdots + a_n}{n} tag3
            end{align*}
            $$



            Or summarizing:
            $$
            boxed{lim_{xtoinfty}f(x) = frac{a_1 + a_2 + cdots + a_n}{n}}
            $$





            Lets now use that result in your limit:
            $$
            sqrt{n^2 + n} - n = sqrt{n(n+1)} - n = sqrt{(n+0)(n+1)} - n
            $$

            Which gives $a_1 = 0$ and $a_2 = 1$ and the highest power is $2$ meaning $n = 2$ in $(3)$. Thus we get:
            $$
            boxed{lim_{ntoinfty}x_n = frac{a_1 + a_2}{2} = frac{0 + 1}{2} = {1over 2}}
            $$



            As desired.






            share|cite|improve this answer











            $endgroup$





















              0












              $begingroup$

              (Yet another solution - sorry!)
              $$
              left(1 + frac1{2n}right)^2 = 1 + frac1n + frac1{4n^2} > 1 + frac1n,
              $$

              therefore
              $$
              sqrt{1 + frac1n} < 1 + frac1{2n},
              $$

              therefore
              $$
              sqrt{n^2 + n} - n = nleft(sqrt{1 + frac1n} - 1right) < frac12,
              $$

              but also
              $$
              sqrt{n^2 + n} - n = frac1{sqrt{1 + frac1n} + 1} > frac1{2left(1 + frac1{4n}right)}
              > frac{1 - frac1{4n}}{2} = frac12 - frac1{8n},
              $$

              therefore
              $$
              frac12 - epsilon < sqrt{n^2 + n} - n < frac12
              quad left(epsilon > 0, n geqslant frac1{8epsilon}right).
              $$






              share|cite|improve this answer









              $endgroup$














                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f783536%2fprove-that-lim-sqrtn2n-n-frac12%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                7 Answers
                7






                active

                oldest

                votes








                7 Answers
                7






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                16












                $begingroup$

                From $a^2-b^2=(a+b)(a-b)$ we have



                $$sqrt{n^2+n}-n=frac{n^2+n-n^2}{sqrt{n^2+n}+n}=frac{n}{sqrt{n^2+n}+n}=
                frac{1}{sqrt{1+frac{1}{n}}+1}$$



                from which the result follows immediately.






                share|cite|improve this answer









                $endgroup$


















                  16












                  $begingroup$

                  From $a^2-b^2=(a+b)(a-b)$ we have



                  $$sqrt{n^2+n}-n=frac{n^2+n-n^2}{sqrt{n^2+n}+n}=frac{n}{sqrt{n^2+n}+n}=
                  frac{1}{sqrt{1+frac{1}{n}}+1}$$



                  from which the result follows immediately.






                  share|cite|improve this answer









                  $endgroup$
















                    16












                    16








                    16





                    $begingroup$

                    From $a^2-b^2=(a+b)(a-b)$ we have



                    $$sqrt{n^2+n}-n=frac{n^2+n-n^2}{sqrt{n^2+n}+n}=frac{n}{sqrt{n^2+n}+n}=
                    frac{1}{sqrt{1+frac{1}{n}}+1}$$



                    from which the result follows immediately.






                    share|cite|improve this answer









                    $endgroup$



                    From $a^2-b^2=(a+b)(a-b)$ we have



                    $$sqrt{n^2+n}-n=frac{n^2+n-n^2}{sqrt{n^2+n}+n}=frac{n}{sqrt{n^2+n}+n}=
                    frac{1}{sqrt{1+frac{1}{n}}+1}$$



                    from which the result follows immediately.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered May 6 '14 at 13:19









                    Matt L.Matt L.

                    9,034922




                    9,034922























                        5












                        $begingroup$

                        Here is another solution. Remark that
                        $$
                        sqrt{n^2+n}-n=sqrt{n^2+n}-sqrt{n^2}=frac{(sqrt{n^2+n}-sqrt{n^2})(sqrt{n^2+n}+sqrt{n^2})}{sqrt{n^2+n}+sqrt{n^2}}
                        $$
                        Then
                        $$
                        sqrt{n^2+n}-n=frac{n}{sqrt{n^2+n}+n}=frac{1}{sqrt{1+frac{1}{n}}+1}.
                        $$
                        Since $limlimits_{nto infty} sqrt{1+frac{1}{n}}=1$, for $delta>0$, exists $N$ ($N>frac{1}{2delta+delta^2}$) such that $1<sqrt{1+frac{1}{n}}<1+delta$, for all $n>N$. Then
                        $$
                        2<sqrt{1+frac{1}{n}}+1<2+delta
                        $$
                        So
                        $$
                        frac{1}{2}>frac{1}{sqrt{1+frac{1}{n}}+1}>frac{1}{2+delta}.
                        $$
                        Then
                        $$
                        frac{delta}{4}>frac{1}{2}-frac{1}{2+delta}>frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1}>0
                        $$
                        Let $varepsilon>0$, define $delta:=4varepsilon$. So, for $N>frac{1}{2delta+delta^2}=frac{1}{8varepsilon+16varepsilon^2}$,
                        $$
                        varepsilon>frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1}>0,
                        $$
                        i.e.,
                        $$
                        limlimits_{nto infty}sqrt{n^2+n}-n=limlimits_{nto infty}frac{1}{sqrt{1+frac{1}{n}}+1}=frac{1}{1+1}=frac{1}{2}
                        $$






                        share|cite|improve this answer









                        $endgroup$


















                          5












                          $begingroup$

                          Here is another solution. Remark that
                          $$
                          sqrt{n^2+n}-n=sqrt{n^2+n}-sqrt{n^2}=frac{(sqrt{n^2+n}-sqrt{n^2})(sqrt{n^2+n}+sqrt{n^2})}{sqrt{n^2+n}+sqrt{n^2}}
                          $$
                          Then
                          $$
                          sqrt{n^2+n}-n=frac{n}{sqrt{n^2+n}+n}=frac{1}{sqrt{1+frac{1}{n}}+1}.
                          $$
                          Since $limlimits_{nto infty} sqrt{1+frac{1}{n}}=1$, for $delta>0$, exists $N$ ($N>frac{1}{2delta+delta^2}$) such that $1<sqrt{1+frac{1}{n}}<1+delta$, for all $n>N$. Then
                          $$
                          2<sqrt{1+frac{1}{n}}+1<2+delta
                          $$
                          So
                          $$
                          frac{1}{2}>frac{1}{sqrt{1+frac{1}{n}}+1}>frac{1}{2+delta}.
                          $$
                          Then
                          $$
                          frac{delta}{4}>frac{1}{2}-frac{1}{2+delta}>frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1}>0
                          $$
                          Let $varepsilon>0$, define $delta:=4varepsilon$. So, for $N>frac{1}{2delta+delta^2}=frac{1}{8varepsilon+16varepsilon^2}$,
                          $$
                          varepsilon>frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1}>0,
                          $$
                          i.e.,
                          $$
                          limlimits_{nto infty}sqrt{n^2+n}-n=limlimits_{nto infty}frac{1}{sqrt{1+frac{1}{n}}+1}=frac{1}{1+1}=frac{1}{2}
                          $$






                          share|cite|improve this answer









                          $endgroup$
















                            5












                            5








                            5





                            $begingroup$

                            Here is another solution. Remark that
                            $$
                            sqrt{n^2+n}-n=sqrt{n^2+n}-sqrt{n^2}=frac{(sqrt{n^2+n}-sqrt{n^2})(sqrt{n^2+n}+sqrt{n^2})}{sqrt{n^2+n}+sqrt{n^2}}
                            $$
                            Then
                            $$
                            sqrt{n^2+n}-n=frac{n}{sqrt{n^2+n}+n}=frac{1}{sqrt{1+frac{1}{n}}+1}.
                            $$
                            Since $limlimits_{nto infty} sqrt{1+frac{1}{n}}=1$, for $delta>0$, exists $N$ ($N>frac{1}{2delta+delta^2}$) such that $1<sqrt{1+frac{1}{n}}<1+delta$, for all $n>N$. Then
                            $$
                            2<sqrt{1+frac{1}{n}}+1<2+delta
                            $$
                            So
                            $$
                            frac{1}{2}>frac{1}{sqrt{1+frac{1}{n}}+1}>frac{1}{2+delta}.
                            $$
                            Then
                            $$
                            frac{delta}{4}>frac{1}{2}-frac{1}{2+delta}>frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1}>0
                            $$
                            Let $varepsilon>0$, define $delta:=4varepsilon$. So, for $N>frac{1}{2delta+delta^2}=frac{1}{8varepsilon+16varepsilon^2}$,
                            $$
                            varepsilon>frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1}>0,
                            $$
                            i.e.,
                            $$
                            limlimits_{nto infty}sqrt{n^2+n}-n=limlimits_{nto infty}frac{1}{sqrt{1+frac{1}{n}}+1}=frac{1}{1+1}=frac{1}{2}
                            $$






                            share|cite|improve this answer









                            $endgroup$



                            Here is another solution. Remark that
                            $$
                            sqrt{n^2+n}-n=sqrt{n^2+n}-sqrt{n^2}=frac{(sqrt{n^2+n}-sqrt{n^2})(sqrt{n^2+n}+sqrt{n^2})}{sqrt{n^2+n}+sqrt{n^2}}
                            $$
                            Then
                            $$
                            sqrt{n^2+n}-n=frac{n}{sqrt{n^2+n}+n}=frac{1}{sqrt{1+frac{1}{n}}+1}.
                            $$
                            Since $limlimits_{nto infty} sqrt{1+frac{1}{n}}=1$, for $delta>0$, exists $N$ ($N>frac{1}{2delta+delta^2}$) such that $1<sqrt{1+frac{1}{n}}<1+delta$, for all $n>N$. Then
                            $$
                            2<sqrt{1+frac{1}{n}}+1<2+delta
                            $$
                            So
                            $$
                            frac{1}{2}>frac{1}{sqrt{1+frac{1}{n}}+1}>frac{1}{2+delta}.
                            $$
                            Then
                            $$
                            frac{delta}{4}>frac{1}{2}-frac{1}{2+delta}>frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1}>0
                            $$
                            Let $varepsilon>0$, define $delta:=4varepsilon$. So, for $N>frac{1}{2delta+delta^2}=frac{1}{8varepsilon+16varepsilon^2}$,
                            $$
                            varepsilon>frac{1}{2}-frac{1}{sqrt{1+frac{1}{n}}+1}>0,
                            $$
                            i.e.,
                            $$
                            limlimits_{nto infty}sqrt{n^2+n}-n=limlimits_{nto infty}frac{1}{sqrt{1+frac{1}{n}}+1}=frac{1}{1+1}=frac{1}{2}
                            $$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered May 6 '14 at 13:24









                            user73454user73454

                            501314




                            501314























                                3












                                $begingroup$

                                You can simply solve the inequality $frac{1}{sqrt{1+frac{1}{n}}+1}>frac{1-2epsilon}{2}$and find pick N = $frac{(1-2epsilon)}{8epsilon^2}$






                                share|cite|improve this answer









                                $endgroup$


















                                  3












                                  $begingroup$

                                  You can simply solve the inequality $frac{1}{sqrt{1+frac{1}{n}}+1}>frac{1-2epsilon}{2}$and find pick N = $frac{(1-2epsilon)}{8epsilon^2}$






                                  share|cite|improve this answer









                                  $endgroup$
















                                    3












                                    3








                                    3





                                    $begingroup$

                                    You can simply solve the inequality $frac{1}{sqrt{1+frac{1}{n}}+1}>frac{1-2epsilon}{2}$and find pick N = $frac{(1-2epsilon)}{8epsilon^2}$






                                    share|cite|improve this answer









                                    $endgroup$



                                    You can simply solve the inequality $frac{1}{sqrt{1+frac{1}{n}}+1}>frac{1-2epsilon}{2}$and find pick N = $frac{(1-2epsilon)}{8epsilon^2}$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Feb 1 at 12:33









                                    user556861user556861

                                    311




                                    311























                                        2












                                        $begingroup$

                                        In general, be wary of the proofs by implications of that sort -- it is easy to miss a step, or to think an implication is an equivalence. Most of the time, what you want can be written as a succession of (in)equalities, but less tricky to handle.



                                        For here, a way to handle this limit, if you have seen what equivalents or $o(cdot)$'s are: you can start by writing
                                        $$
                                        sqrt{n^2+n}-n = nsqrt{1+frac{1}{n}}-n = nleft(sqrt{1+frac{1}{n}} - 1right)
                                        $$
                                        and use the fact that
                                        $$
                                        (1+x)^alpha operatorname*{=}_{xto 0} 1+alpha x + o(x)
                                        $$
                                        to show that the term in the parentheses is equivalent to ("behaves like") $frac{1}{2n}$.






                                        share|cite|improve this answer









                                        $endgroup$


















                                          2












                                          $begingroup$

                                          In general, be wary of the proofs by implications of that sort -- it is easy to miss a step, or to think an implication is an equivalence. Most of the time, what you want can be written as a succession of (in)equalities, but less tricky to handle.



                                          For here, a way to handle this limit, if you have seen what equivalents or $o(cdot)$'s are: you can start by writing
                                          $$
                                          sqrt{n^2+n}-n = nsqrt{1+frac{1}{n}}-n = nleft(sqrt{1+frac{1}{n}} - 1right)
                                          $$
                                          and use the fact that
                                          $$
                                          (1+x)^alpha operatorname*{=}_{xto 0} 1+alpha x + o(x)
                                          $$
                                          to show that the term in the parentheses is equivalent to ("behaves like") $frac{1}{2n}$.






                                          share|cite|improve this answer









                                          $endgroup$
















                                            2












                                            2








                                            2





                                            $begingroup$

                                            In general, be wary of the proofs by implications of that sort -- it is easy to miss a step, or to think an implication is an equivalence. Most of the time, what you want can be written as a succession of (in)equalities, but less tricky to handle.



                                            For here, a way to handle this limit, if you have seen what equivalents or $o(cdot)$'s are: you can start by writing
                                            $$
                                            sqrt{n^2+n}-n = nsqrt{1+frac{1}{n}}-n = nleft(sqrt{1+frac{1}{n}} - 1right)
                                            $$
                                            and use the fact that
                                            $$
                                            (1+x)^alpha operatorname*{=}_{xto 0} 1+alpha x + o(x)
                                            $$
                                            to show that the term in the parentheses is equivalent to ("behaves like") $frac{1}{2n}$.






                                            share|cite|improve this answer









                                            $endgroup$



                                            In general, be wary of the proofs by implications of that sort -- it is easy to miss a step, or to think an implication is an equivalence. Most of the time, what you want can be written as a succession of (in)equalities, but less tricky to handle.



                                            For here, a way to handle this limit, if you have seen what equivalents or $o(cdot)$'s are: you can start by writing
                                            $$
                                            sqrt{n^2+n}-n = nsqrt{1+frac{1}{n}}-n = nleft(sqrt{1+frac{1}{n}} - 1right)
                                            $$
                                            and use the fact that
                                            $$
                                            (1+x)^alpha operatorname*{=}_{xto 0} 1+alpha x + o(x)
                                            $$
                                            to show that the term in the parentheses is equivalent to ("behaves like") $frac{1}{2n}$.







                                            share|cite|improve this answer












                                            share|cite|improve this answer



                                            share|cite|improve this answer










                                            answered May 6 '14 at 12:50









                                            Clement C.Clement C.

                                            51.1k34093




                                            51.1k34093























                                                0












                                                $begingroup$

                                                Maybe the answer that gives the direct clue about what is going on is going through a proof that



                                                $$lim_{n to +infty} (sqrt{n^2+n+c_2}-n)-(sqrt{n^2+n+c_1}-n)=0$$



                                                or equally



                                                $$lim_{n to +infty} sqrt{n^2+n+c_2}-sqrt{n^2+n+c_1}=0$$



                                                Now write this to make it obvious as



                                                $$lim_{n to +infty} frac{1}{sqrt{n^2+n+c_1}}(frac{sqrt{1+frac{1}{n}+frac{c_2}{n^2}}}{sqrt{1+frac{1}{n}+frac{c_1}{n^2}}}-1)=0$$



                                                So we can pick whatever constant we want. We pick $frac{1}{4}$ and have



                                                $$lim_{n to +infty} sqrt{n^2+n}-n=lim_{n to +infty} (sqrt{n^2+n+frac{1}{4}}-n)=$$ $$lim_{n to +infty} (sqrt{(n+frac{1}{2})^2}-n)=lim_{n to +infty} n+frac{1}{2}-n=frac{1}{2}$$






                                                share|cite|improve this answer









                                                $endgroup$


















                                                  0












                                                  $begingroup$

                                                  Maybe the answer that gives the direct clue about what is going on is going through a proof that



                                                  $$lim_{n to +infty} (sqrt{n^2+n+c_2}-n)-(sqrt{n^2+n+c_1}-n)=0$$



                                                  or equally



                                                  $$lim_{n to +infty} sqrt{n^2+n+c_2}-sqrt{n^2+n+c_1}=0$$



                                                  Now write this to make it obvious as



                                                  $$lim_{n to +infty} frac{1}{sqrt{n^2+n+c_1}}(frac{sqrt{1+frac{1}{n}+frac{c_2}{n^2}}}{sqrt{1+frac{1}{n}+frac{c_1}{n^2}}}-1)=0$$



                                                  So we can pick whatever constant we want. We pick $frac{1}{4}$ and have



                                                  $$lim_{n to +infty} sqrt{n^2+n}-n=lim_{n to +infty} (sqrt{n^2+n+frac{1}{4}}-n)=$$ $$lim_{n to +infty} (sqrt{(n+frac{1}{2})^2}-n)=lim_{n to +infty} n+frac{1}{2}-n=frac{1}{2}$$






                                                  share|cite|improve this answer









                                                  $endgroup$
















                                                    0












                                                    0








                                                    0





                                                    $begingroup$

                                                    Maybe the answer that gives the direct clue about what is going on is going through a proof that



                                                    $$lim_{n to +infty} (sqrt{n^2+n+c_2}-n)-(sqrt{n^2+n+c_1}-n)=0$$



                                                    or equally



                                                    $$lim_{n to +infty} sqrt{n^2+n+c_2}-sqrt{n^2+n+c_1}=0$$



                                                    Now write this to make it obvious as



                                                    $$lim_{n to +infty} frac{1}{sqrt{n^2+n+c_1}}(frac{sqrt{1+frac{1}{n}+frac{c_2}{n^2}}}{sqrt{1+frac{1}{n}+frac{c_1}{n^2}}}-1)=0$$



                                                    So we can pick whatever constant we want. We pick $frac{1}{4}$ and have



                                                    $$lim_{n to +infty} sqrt{n^2+n}-n=lim_{n to +infty} (sqrt{n^2+n+frac{1}{4}}-n)=$$ $$lim_{n to +infty} (sqrt{(n+frac{1}{2})^2}-n)=lim_{n to +infty} n+frac{1}{2}-n=frac{1}{2}$$






                                                    share|cite|improve this answer









                                                    $endgroup$



                                                    Maybe the answer that gives the direct clue about what is going on is going through a proof that



                                                    $$lim_{n to +infty} (sqrt{n^2+n+c_2}-n)-(sqrt{n^2+n+c_1}-n)=0$$



                                                    or equally



                                                    $$lim_{n to +infty} sqrt{n^2+n+c_2}-sqrt{n^2+n+c_1}=0$$



                                                    Now write this to make it obvious as



                                                    $$lim_{n to +infty} frac{1}{sqrt{n^2+n+c_1}}(frac{sqrt{1+frac{1}{n}+frac{c_2}{n^2}}}{sqrt{1+frac{1}{n}+frac{c_1}{n^2}}}-1)=0$$



                                                    So we can pick whatever constant we want. We pick $frac{1}{4}$ and have



                                                    $$lim_{n to +infty} sqrt{n^2+n}-n=lim_{n to +infty} (sqrt{n^2+n+frac{1}{4}}-n)=$$ $$lim_{n to +infty} (sqrt{(n+frac{1}{2})^2}-n)=lim_{n to +infty} n+frac{1}{2}-n=frac{1}{2}$$







                                                    share|cite|improve this answer












                                                    share|cite|improve this answer



                                                    share|cite|improve this answer










                                                    answered Apr 7 '18 at 19:29







                                                    user318107






























                                                        0












                                                        $begingroup$

                                                        Since this post became active after a long period of time and there are many linked questions, here is a generalization for such kinds of limits. Consider the set of functions in the following form:
                                                        $$
                                                        f(x) = sqrt[n]{(x + a_1)(x+a_2)cdots (x+a_n)} - x
                                                        $$

                                                        where
                                                        $$
                                                        n,k in Bbb N \
                                                        a_k in Bbb R
                                                        $$



                                                        Consider the following expansion:
                                                        $$
                                                        a^n – b^n = (a – b)left(a^{n – 1} + a^{n – 2}b + a^{n – 3}b^2 +
                                                        cdots + ab^{n – 2} + b^{n – 1}right) tag1
                                                        $$



                                                        Define a function in the form:
                                                        $$
                                                        g(x) = sqrt[n]{(x + a_1)(x+a_2)cdots (x+a_n)}
                                                        $$



                                                        Thus $f(x)$ may be rewritten as:



                                                        $$
                                                        f(x) = g(x) - x
                                                        $$



                                                        Now using $(1)$ we may rewrite $f(x)$ as:
                                                        $$
                                                        f(x) = frac{(g(x))^n-x^n}{sqrt[n]{(g(x))^{n-1}} +sqrt[n]{(g(x))^{n-2}}x + sqrt[n]{(g(x))^{n-3}}x^2 + cdots + sqrt[n]{g(x)}x^{n-2} +x^{n-1}} tag2
                                                        $$



                                                        Now taking the limit of $(2)$ one may obtain:
                                                        $$
                                                        begin{align*}
                                                        &lim_{xtoinfty}frac{x^{n-1}a_1 + x^{n-1}a_2+ cdots + x^{n-1}a_n }{x^{n-1}left(sqrt[n]{1+oleft({1over x}right)+cdots} + sqrt[n]{1+oleft({1over x}right) +cdots} +cdots + 1right)} \
                                                        = &lim_{xtoinfty}frac{a_1 + a_2+ cdots + a_n}{sqrt[n]{1+oleft({1over x}right)+cdots} + sqrt[n]{1+oleft({1over x}right) +cdots} +cdots + 1} \
                                                        = &frac{a_1 + a_2 + cdots + a_n}{n} tag3
                                                        end{align*}
                                                        $$



                                                        Or summarizing:
                                                        $$
                                                        boxed{lim_{xtoinfty}f(x) = frac{a_1 + a_2 + cdots + a_n}{n}}
                                                        $$





                                                        Lets now use that result in your limit:
                                                        $$
                                                        sqrt{n^2 + n} - n = sqrt{n(n+1)} - n = sqrt{(n+0)(n+1)} - n
                                                        $$

                                                        Which gives $a_1 = 0$ and $a_2 = 1$ and the highest power is $2$ meaning $n = 2$ in $(3)$. Thus we get:
                                                        $$
                                                        boxed{lim_{ntoinfty}x_n = frac{a_1 + a_2}{2} = frac{0 + 1}{2} = {1over 2}}
                                                        $$



                                                        As desired.






                                                        share|cite|improve this answer











                                                        $endgroup$


















                                                          0












                                                          $begingroup$

                                                          Since this post became active after a long period of time and there are many linked questions, here is a generalization for such kinds of limits. Consider the set of functions in the following form:
                                                          $$
                                                          f(x) = sqrt[n]{(x + a_1)(x+a_2)cdots (x+a_n)} - x
                                                          $$

                                                          where
                                                          $$
                                                          n,k in Bbb N \
                                                          a_k in Bbb R
                                                          $$



                                                          Consider the following expansion:
                                                          $$
                                                          a^n – b^n = (a – b)left(a^{n – 1} + a^{n – 2}b + a^{n – 3}b^2 +
                                                          cdots + ab^{n – 2} + b^{n – 1}right) tag1
                                                          $$



                                                          Define a function in the form:
                                                          $$
                                                          g(x) = sqrt[n]{(x + a_1)(x+a_2)cdots (x+a_n)}
                                                          $$



                                                          Thus $f(x)$ may be rewritten as:



                                                          $$
                                                          f(x) = g(x) - x
                                                          $$



                                                          Now using $(1)$ we may rewrite $f(x)$ as:
                                                          $$
                                                          f(x) = frac{(g(x))^n-x^n}{sqrt[n]{(g(x))^{n-1}} +sqrt[n]{(g(x))^{n-2}}x + sqrt[n]{(g(x))^{n-3}}x^2 + cdots + sqrt[n]{g(x)}x^{n-2} +x^{n-1}} tag2
                                                          $$



                                                          Now taking the limit of $(2)$ one may obtain:
                                                          $$
                                                          begin{align*}
                                                          &lim_{xtoinfty}frac{x^{n-1}a_1 + x^{n-1}a_2+ cdots + x^{n-1}a_n }{x^{n-1}left(sqrt[n]{1+oleft({1over x}right)+cdots} + sqrt[n]{1+oleft({1over x}right) +cdots} +cdots + 1right)} \
                                                          = &lim_{xtoinfty}frac{a_1 + a_2+ cdots + a_n}{sqrt[n]{1+oleft({1over x}right)+cdots} + sqrt[n]{1+oleft({1over x}right) +cdots} +cdots + 1} \
                                                          = &frac{a_1 + a_2 + cdots + a_n}{n} tag3
                                                          end{align*}
                                                          $$



                                                          Or summarizing:
                                                          $$
                                                          boxed{lim_{xtoinfty}f(x) = frac{a_1 + a_2 + cdots + a_n}{n}}
                                                          $$





                                                          Lets now use that result in your limit:
                                                          $$
                                                          sqrt{n^2 + n} - n = sqrt{n(n+1)} - n = sqrt{(n+0)(n+1)} - n
                                                          $$

                                                          Which gives $a_1 = 0$ and $a_2 = 1$ and the highest power is $2$ meaning $n = 2$ in $(3)$. Thus we get:
                                                          $$
                                                          boxed{lim_{ntoinfty}x_n = frac{a_1 + a_2}{2} = frac{0 + 1}{2} = {1over 2}}
                                                          $$



                                                          As desired.






                                                          share|cite|improve this answer











                                                          $endgroup$
















                                                            0












                                                            0








                                                            0





                                                            $begingroup$

                                                            Since this post became active after a long period of time and there are many linked questions, here is a generalization for such kinds of limits. Consider the set of functions in the following form:
                                                            $$
                                                            f(x) = sqrt[n]{(x + a_1)(x+a_2)cdots (x+a_n)} - x
                                                            $$

                                                            where
                                                            $$
                                                            n,k in Bbb N \
                                                            a_k in Bbb R
                                                            $$



                                                            Consider the following expansion:
                                                            $$
                                                            a^n – b^n = (a – b)left(a^{n – 1} + a^{n – 2}b + a^{n – 3}b^2 +
                                                            cdots + ab^{n – 2} + b^{n – 1}right) tag1
                                                            $$



                                                            Define a function in the form:
                                                            $$
                                                            g(x) = sqrt[n]{(x + a_1)(x+a_2)cdots (x+a_n)}
                                                            $$



                                                            Thus $f(x)$ may be rewritten as:



                                                            $$
                                                            f(x) = g(x) - x
                                                            $$



                                                            Now using $(1)$ we may rewrite $f(x)$ as:
                                                            $$
                                                            f(x) = frac{(g(x))^n-x^n}{sqrt[n]{(g(x))^{n-1}} +sqrt[n]{(g(x))^{n-2}}x + sqrt[n]{(g(x))^{n-3}}x^2 + cdots + sqrt[n]{g(x)}x^{n-2} +x^{n-1}} tag2
                                                            $$



                                                            Now taking the limit of $(2)$ one may obtain:
                                                            $$
                                                            begin{align*}
                                                            &lim_{xtoinfty}frac{x^{n-1}a_1 + x^{n-1}a_2+ cdots + x^{n-1}a_n }{x^{n-1}left(sqrt[n]{1+oleft({1over x}right)+cdots} + sqrt[n]{1+oleft({1over x}right) +cdots} +cdots + 1right)} \
                                                            = &lim_{xtoinfty}frac{a_1 + a_2+ cdots + a_n}{sqrt[n]{1+oleft({1over x}right)+cdots} + sqrt[n]{1+oleft({1over x}right) +cdots} +cdots + 1} \
                                                            = &frac{a_1 + a_2 + cdots + a_n}{n} tag3
                                                            end{align*}
                                                            $$



                                                            Or summarizing:
                                                            $$
                                                            boxed{lim_{xtoinfty}f(x) = frac{a_1 + a_2 + cdots + a_n}{n}}
                                                            $$





                                                            Lets now use that result in your limit:
                                                            $$
                                                            sqrt{n^2 + n} - n = sqrt{n(n+1)} - n = sqrt{(n+0)(n+1)} - n
                                                            $$

                                                            Which gives $a_1 = 0$ and $a_2 = 1$ and the highest power is $2$ meaning $n = 2$ in $(3)$. Thus we get:
                                                            $$
                                                            boxed{lim_{ntoinfty}x_n = frac{a_1 + a_2}{2} = frac{0 + 1}{2} = {1over 2}}
                                                            $$



                                                            As desired.






                                                            share|cite|improve this answer











                                                            $endgroup$



                                                            Since this post became active after a long period of time and there are many linked questions, here is a generalization for such kinds of limits. Consider the set of functions in the following form:
                                                            $$
                                                            f(x) = sqrt[n]{(x + a_1)(x+a_2)cdots (x+a_n)} - x
                                                            $$

                                                            where
                                                            $$
                                                            n,k in Bbb N \
                                                            a_k in Bbb R
                                                            $$



                                                            Consider the following expansion:
                                                            $$
                                                            a^n – b^n = (a – b)left(a^{n – 1} + a^{n – 2}b + a^{n – 3}b^2 +
                                                            cdots + ab^{n – 2} + b^{n – 1}right) tag1
                                                            $$



                                                            Define a function in the form:
                                                            $$
                                                            g(x) = sqrt[n]{(x + a_1)(x+a_2)cdots (x+a_n)}
                                                            $$



                                                            Thus $f(x)$ may be rewritten as:



                                                            $$
                                                            f(x) = g(x) - x
                                                            $$



                                                            Now using $(1)$ we may rewrite $f(x)$ as:
                                                            $$
                                                            f(x) = frac{(g(x))^n-x^n}{sqrt[n]{(g(x))^{n-1}} +sqrt[n]{(g(x))^{n-2}}x + sqrt[n]{(g(x))^{n-3}}x^2 + cdots + sqrt[n]{g(x)}x^{n-2} +x^{n-1}} tag2
                                                            $$



                                                            Now taking the limit of $(2)$ one may obtain:
                                                            $$
                                                            begin{align*}
                                                            &lim_{xtoinfty}frac{x^{n-1}a_1 + x^{n-1}a_2+ cdots + x^{n-1}a_n }{x^{n-1}left(sqrt[n]{1+oleft({1over x}right)+cdots} + sqrt[n]{1+oleft({1over x}right) +cdots} +cdots + 1right)} \
                                                            = &lim_{xtoinfty}frac{a_1 + a_2+ cdots + a_n}{sqrt[n]{1+oleft({1over x}right)+cdots} + sqrt[n]{1+oleft({1over x}right) +cdots} +cdots + 1} \
                                                            = &frac{a_1 + a_2 + cdots + a_n}{n} tag3
                                                            end{align*}
                                                            $$



                                                            Or summarizing:
                                                            $$
                                                            boxed{lim_{xtoinfty}f(x) = frac{a_1 + a_2 + cdots + a_n}{n}}
                                                            $$





                                                            Lets now use that result in your limit:
                                                            $$
                                                            sqrt{n^2 + n} - n = sqrt{n(n+1)} - n = sqrt{(n+0)(n+1)} - n
                                                            $$

                                                            Which gives $a_1 = 0$ and $a_2 = 1$ and the highest power is $2$ meaning $n = 2$ in $(3)$. Thus we get:
                                                            $$
                                                            boxed{lim_{ntoinfty}x_n = frac{a_1 + a_2}{2} = frac{0 + 1}{2} = {1over 2}}
                                                            $$



                                                            As desired.







                                                            share|cite|improve this answer














                                                            share|cite|improve this answer



                                                            share|cite|improve this answer








                                                            edited Feb 1 at 13:22

























                                                            answered Feb 1 at 13:15









                                                            romanroman

                                                            2,50521226




                                                            2,50521226























                                                                0












                                                                $begingroup$

                                                                (Yet another solution - sorry!)
                                                                $$
                                                                left(1 + frac1{2n}right)^2 = 1 + frac1n + frac1{4n^2} > 1 + frac1n,
                                                                $$

                                                                therefore
                                                                $$
                                                                sqrt{1 + frac1n} < 1 + frac1{2n},
                                                                $$

                                                                therefore
                                                                $$
                                                                sqrt{n^2 + n} - n = nleft(sqrt{1 + frac1n} - 1right) < frac12,
                                                                $$

                                                                but also
                                                                $$
                                                                sqrt{n^2 + n} - n = frac1{sqrt{1 + frac1n} + 1} > frac1{2left(1 + frac1{4n}right)}
                                                                > frac{1 - frac1{4n}}{2} = frac12 - frac1{8n},
                                                                $$

                                                                therefore
                                                                $$
                                                                frac12 - epsilon < sqrt{n^2 + n} - n < frac12
                                                                quad left(epsilon > 0, n geqslant frac1{8epsilon}right).
                                                                $$






                                                                share|cite|improve this answer









                                                                $endgroup$


















                                                                  0












                                                                  $begingroup$

                                                                  (Yet another solution - sorry!)
                                                                  $$
                                                                  left(1 + frac1{2n}right)^2 = 1 + frac1n + frac1{4n^2} > 1 + frac1n,
                                                                  $$

                                                                  therefore
                                                                  $$
                                                                  sqrt{1 + frac1n} < 1 + frac1{2n},
                                                                  $$

                                                                  therefore
                                                                  $$
                                                                  sqrt{n^2 + n} - n = nleft(sqrt{1 + frac1n} - 1right) < frac12,
                                                                  $$

                                                                  but also
                                                                  $$
                                                                  sqrt{n^2 + n} - n = frac1{sqrt{1 + frac1n} + 1} > frac1{2left(1 + frac1{4n}right)}
                                                                  > frac{1 - frac1{4n}}{2} = frac12 - frac1{8n},
                                                                  $$

                                                                  therefore
                                                                  $$
                                                                  frac12 - epsilon < sqrt{n^2 + n} - n < frac12
                                                                  quad left(epsilon > 0, n geqslant frac1{8epsilon}right).
                                                                  $$






                                                                  share|cite|improve this answer









                                                                  $endgroup$
















                                                                    0












                                                                    0








                                                                    0





                                                                    $begingroup$

                                                                    (Yet another solution - sorry!)
                                                                    $$
                                                                    left(1 + frac1{2n}right)^2 = 1 + frac1n + frac1{4n^2} > 1 + frac1n,
                                                                    $$

                                                                    therefore
                                                                    $$
                                                                    sqrt{1 + frac1n} < 1 + frac1{2n},
                                                                    $$

                                                                    therefore
                                                                    $$
                                                                    sqrt{n^2 + n} - n = nleft(sqrt{1 + frac1n} - 1right) < frac12,
                                                                    $$

                                                                    but also
                                                                    $$
                                                                    sqrt{n^2 + n} - n = frac1{sqrt{1 + frac1n} + 1} > frac1{2left(1 + frac1{4n}right)}
                                                                    > frac{1 - frac1{4n}}{2} = frac12 - frac1{8n},
                                                                    $$

                                                                    therefore
                                                                    $$
                                                                    frac12 - epsilon < sqrt{n^2 + n} - n < frac12
                                                                    quad left(epsilon > 0, n geqslant frac1{8epsilon}right).
                                                                    $$






                                                                    share|cite|improve this answer









                                                                    $endgroup$



                                                                    (Yet another solution - sorry!)
                                                                    $$
                                                                    left(1 + frac1{2n}right)^2 = 1 + frac1n + frac1{4n^2} > 1 + frac1n,
                                                                    $$

                                                                    therefore
                                                                    $$
                                                                    sqrt{1 + frac1n} < 1 + frac1{2n},
                                                                    $$

                                                                    therefore
                                                                    $$
                                                                    sqrt{n^2 + n} - n = nleft(sqrt{1 + frac1n} - 1right) < frac12,
                                                                    $$

                                                                    but also
                                                                    $$
                                                                    sqrt{n^2 + n} - n = frac1{sqrt{1 + frac1n} + 1} > frac1{2left(1 + frac1{4n}right)}
                                                                    > frac{1 - frac1{4n}}{2} = frac12 - frac1{8n},
                                                                    $$

                                                                    therefore
                                                                    $$
                                                                    frac12 - epsilon < sqrt{n^2 + n} - n < frac12
                                                                    quad left(epsilon > 0, n geqslant frac1{8epsilon}right).
                                                                    $$







                                                                    share|cite|improve this answer












                                                                    share|cite|improve this answer



                                                                    share|cite|improve this answer










                                                                    answered Feb 1 at 14:06









                                                                    Calum GilhooleyCalum Gilhooley

                                                                    5,119730




                                                                    5,119730






























                                                                        draft saved

                                                                        draft discarded




















































                                                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                                                        • Please be sure to answer the question. Provide details and share your research!

                                                                        But avoid



                                                                        • Asking for help, clarification, or responding to other answers.

                                                                        • Making statements based on opinion; back them up with references or personal experience.


                                                                        Use MathJax to format equations. MathJax reference.


                                                                        To learn more, see our tips on writing great answers.




                                                                        draft saved


                                                                        draft discarded














                                                                        StackExchange.ready(
                                                                        function () {
                                                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f783536%2fprove-that-lim-sqrtn2n-n-frac12%23new-answer', 'question_page');
                                                                        }
                                                                        );

                                                                        Post as a guest















                                                                        Required, but never shown





















































                                                                        Required, but never shown














                                                                        Required, but never shown












                                                                        Required, but never shown







                                                                        Required, but never shown

































                                                                        Required, but never shown














                                                                        Required, but never shown












                                                                        Required, but never shown







                                                                        Required, but never shown







                                                                        Popular posts from this blog

                                                                        MongoDB - Not Authorized To Execute Command

                                                                        How to fix TextFormField cause rebuild widget in Flutter

                                                                        in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith