Prove that the linear combination $ku + lv$ is also a solution for a system of equations with $u$ and $v$...
$begingroup$
Let $u = (u_1,dots,u_n)$ and $v = (v_1,dots,v_n)$ be two solutions to a system of linear equations, and let $k$, $l$ be two real numbers such that $k + l = 1$.
Prove that the linear combination $ku + lv$ is also a solution to the system.
I'm not sure how to begin this proof and any help would be appreciated.
linear-algebra
$endgroup$
add a comment |
$begingroup$
Let $u = (u_1,dots,u_n)$ and $v = (v_1,dots,v_n)$ be two solutions to a system of linear equations, and let $k$, $l$ be two real numbers such that $k + l = 1$.
Prove that the linear combination $ku + lv$ is also a solution to the system.
I'm not sure how to begin this proof and any help would be appreciated.
linear-algebra
$endgroup$
$begingroup$
Write the system in matricial form. It's easier to see it.
$endgroup$
– Harnak
Jan 30 at 23:35
add a comment |
$begingroup$
Let $u = (u_1,dots,u_n)$ and $v = (v_1,dots,v_n)$ be two solutions to a system of linear equations, and let $k$, $l$ be two real numbers such that $k + l = 1$.
Prove that the linear combination $ku + lv$ is also a solution to the system.
I'm not sure how to begin this proof and any help would be appreciated.
linear-algebra
$endgroup$
Let $u = (u_1,dots,u_n)$ and $v = (v_1,dots,v_n)$ be two solutions to a system of linear equations, and let $k$, $l$ be two real numbers such that $k + l = 1$.
Prove that the linear combination $ku + lv$ is also a solution to the system.
I'm not sure how to begin this proof and any help would be appreciated.
linear-algebra
linear-algebra
edited Jan 30 at 23:44
Iulia
1,025415
1,025415
asked Jan 30 at 23:33


Sofia SivSofia Siv
83
83
$begingroup$
Write the system in matricial form. It's easier to see it.
$endgroup$
– Harnak
Jan 30 at 23:35
add a comment |
$begingroup$
Write the system in matricial form. It's easier to see it.
$endgroup$
– Harnak
Jan 30 at 23:35
$begingroup$
Write the system in matricial form. It's easier to see it.
$endgroup$
– Harnak
Jan 30 at 23:35
$begingroup$
Write the system in matricial form. It's easier to see it.
$endgroup$
– Harnak
Jan 30 at 23:35
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Consider the system of equations
$$AX^t=b$$ where $Ainmathcal{M}_{ntimes n}(mathbb{R})$, $binmathcal{M}_{ntimes 1}(mathbb{R})$ and the unknown is $Xinmathbb{R}^n$.
Since $u,v$ are solutions, it follows that
$$begin{cases}Au^t=b\Av^t=b
end{cases}Rightarrow begin{cases}kAu^t=kb\lAv^t=lb
end{cases}Rightarrow begin{cases}A(ku)^t=kb\A(lv)^t=lb
end{cases}Rightarrow A(ku+lv)^t=(k+l)bRightarrow A(ku+lv)^t=b.$$
Let us write this in detail for $n=2$.
Let $A=begin{pmatrix} a_{11} & a_{12}\a_{21} & a_{22}end{pmatrix}, b=begin{pmatrix}b_1\b_2end{pmatrix}$.
Our system of equations is
$$begin{cases} a_{11}x_1+a_{12}x_2=b_1\
a_{21}x_1+a_{22}x_2=b_2end{cases}.$$
Writing this equation for $u$ and $v$, we get
$$begin{cases} a_{11}u_1+a_{12}u_2=b_1\
a_{21}u_1+a_{22}u_2=b_2end{cases}Rightarrow begin{cases} a_{11}ku_1+a_{12}ku_2=kb_1\
a_{21}ku_1+a_{22}ku_2=kb_2end{cases}$$
and
$$begin{cases} a_{11}lv_1+a_{12}lv_2=lb_1\
a_{21}lv_1+a_{22}lv_2=lb_2end{cases}.$$
Summing these, we get
$$begin{cases} a_{11}ku_1+a_{12}ku_2+a_{11}lv_1+a_{12}lv_2=kb_1+lb_1\
a_{21}ku_1+a_{22}ku_2+a_{21}lv_1+a_{22}lv_2=kb_2+lb_2end{cases}Rightarrow begin{cases} a_{11}(ku_1+lv_1)+a_{12}(ku_2+lv_2)=(k+l)b_1\
a_{21}(ku_1+lv_1)+a_{22}(ku_2+lv_2)=(k+l)b_2end{cases}Rightarrow begin{cases} a_{11}(ku_1+lv_1)+a_{12}(ku_2+lv_2)=b_1\
a_{21}(ku_1+lv_1)+a_{22}(ku_2+lv_2)=b_2end{cases},$$
which shows that indeed $ku+lv$ is a solution.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094278%2fprove-that-the-linear-combination-ku-lv-is-also-a-solution-for-a-system-of-e%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Consider the system of equations
$$AX^t=b$$ where $Ainmathcal{M}_{ntimes n}(mathbb{R})$, $binmathcal{M}_{ntimes 1}(mathbb{R})$ and the unknown is $Xinmathbb{R}^n$.
Since $u,v$ are solutions, it follows that
$$begin{cases}Au^t=b\Av^t=b
end{cases}Rightarrow begin{cases}kAu^t=kb\lAv^t=lb
end{cases}Rightarrow begin{cases}A(ku)^t=kb\A(lv)^t=lb
end{cases}Rightarrow A(ku+lv)^t=(k+l)bRightarrow A(ku+lv)^t=b.$$
Let us write this in detail for $n=2$.
Let $A=begin{pmatrix} a_{11} & a_{12}\a_{21} & a_{22}end{pmatrix}, b=begin{pmatrix}b_1\b_2end{pmatrix}$.
Our system of equations is
$$begin{cases} a_{11}x_1+a_{12}x_2=b_1\
a_{21}x_1+a_{22}x_2=b_2end{cases}.$$
Writing this equation for $u$ and $v$, we get
$$begin{cases} a_{11}u_1+a_{12}u_2=b_1\
a_{21}u_1+a_{22}u_2=b_2end{cases}Rightarrow begin{cases} a_{11}ku_1+a_{12}ku_2=kb_1\
a_{21}ku_1+a_{22}ku_2=kb_2end{cases}$$
and
$$begin{cases} a_{11}lv_1+a_{12}lv_2=lb_1\
a_{21}lv_1+a_{22}lv_2=lb_2end{cases}.$$
Summing these, we get
$$begin{cases} a_{11}ku_1+a_{12}ku_2+a_{11}lv_1+a_{12}lv_2=kb_1+lb_1\
a_{21}ku_1+a_{22}ku_2+a_{21}lv_1+a_{22}lv_2=kb_2+lb_2end{cases}Rightarrow begin{cases} a_{11}(ku_1+lv_1)+a_{12}(ku_2+lv_2)=(k+l)b_1\
a_{21}(ku_1+lv_1)+a_{22}(ku_2+lv_2)=(k+l)b_2end{cases}Rightarrow begin{cases} a_{11}(ku_1+lv_1)+a_{12}(ku_2+lv_2)=b_1\
a_{21}(ku_1+lv_1)+a_{22}(ku_2+lv_2)=b_2end{cases},$$
which shows that indeed $ku+lv$ is a solution.
$endgroup$
add a comment |
$begingroup$
Consider the system of equations
$$AX^t=b$$ where $Ainmathcal{M}_{ntimes n}(mathbb{R})$, $binmathcal{M}_{ntimes 1}(mathbb{R})$ and the unknown is $Xinmathbb{R}^n$.
Since $u,v$ are solutions, it follows that
$$begin{cases}Au^t=b\Av^t=b
end{cases}Rightarrow begin{cases}kAu^t=kb\lAv^t=lb
end{cases}Rightarrow begin{cases}A(ku)^t=kb\A(lv)^t=lb
end{cases}Rightarrow A(ku+lv)^t=(k+l)bRightarrow A(ku+lv)^t=b.$$
Let us write this in detail for $n=2$.
Let $A=begin{pmatrix} a_{11} & a_{12}\a_{21} & a_{22}end{pmatrix}, b=begin{pmatrix}b_1\b_2end{pmatrix}$.
Our system of equations is
$$begin{cases} a_{11}x_1+a_{12}x_2=b_1\
a_{21}x_1+a_{22}x_2=b_2end{cases}.$$
Writing this equation for $u$ and $v$, we get
$$begin{cases} a_{11}u_1+a_{12}u_2=b_1\
a_{21}u_1+a_{22}u_2=b_2end{cases}Rightarrow begin{cases} a_{11}ku_1+a_{12}ku_2=kb_1\
a_{21}ku_1+a_{22}ku_2=kb_2end{cases}$$
and
$$begin{cases} a_{11}lv_1+a_{12}lv_2=lb_1\
a_{21}lv_1+a_{22}lv_2=lb_2end{cases}.$$
Summing these, we get
$$begin{cases} a_{11}ku_1+a_{12}ku_2+a_{11}lv_1+a_{12}lv_2=kb_1+lb_1\
a_{21}ku_1+a_{22}ku_2+a_{21}lv_1+a_{22}lv_2=kb_2+lb_2end{cases}Rightarrow begin{cases} a_{11}(ku_1+lv_1)+a_{12}(ku_2+lv_2)=(k+l)b_1\
a_{21}(ku_1+lv_1)+a_{22}(ku_2+lv_2)=(k+l)b_2end{cases}Rightarrow begin{cases} a_{11}(ku_1+lv_1)+a_{12}(ku_2+lv_2)=b_1\
a_{21}(ku_1+lv_1)+a_{22}(ku_2+lv_2)=b_2end{cases},$$
which shows that indeed $ku+lv$ is a solution.
$endgroup$
add a comment |
$begingroup$
Consider the system of equations
$$AX^t=b$$ where $Ainmathcal{M}_{ntimes n}(mathbb{R})$, $binmathcal{M}_{ntimes 1}(mathbb{R})$ and the unknown is $Xinmathbb{R}^n$.
Since $u,v$ are solutions, it follows that
$$begin{cases}Au^t=b\Av^t=b
end{cases}Rightarrow begin{cases}kAu^t=kb\lAv^t=lb
end{cases}Rightarrow begin{cases}A(ku)^t=kb\A(lv)^t=lb
end{cases}Rightarrow A(ku+lv)^t=(k+l)bRightarrow A(ku+lv)^t=b.$$
Let us write this in detail for $n=2$.
Let $A=begin{pmatrix} a_{11} & a_{12}\a_{21} & a_{22}end{pmatrix}, b=begin{pmatrix}b_1\b_2end{pmatrix}$.
Our system of equations is
$$begin{cases} a_{11}x_1+a_{12}x_2=b_1\
a_{21}x_1+a_{22}x_2=b_2end{cases}.$$
Writing this equation for $u$ and $v$, we get
$$begin{cases} a_{11}u_1+a_{12}u_2=b_1\
a_{21}u_1+a_{22}u_2=b_2end{cases}Rightarrow begin{cases} a_{11}ku_1+a_{12}ku_2=kb_1\
a_{21}ku_1+a_{22}ku_2=kb_2end{cases}$$
and
$$begin{cases} a_{11}lv_1+a_{12}lv_2=lb_1\
a_{21}lv_1+a_{22}lv_2=lb_2end{cases}.$$
Summing these, we get
$$begin{cases} a_{11}ku_1+a_{12}ku_2+a_{11}lv_1+a_{12}lv_2=kb_1+lb_1\
a_{21}ku_1+a_{22}ku_2+a_{21}lv_1+a_{22}lv_2=kb_2+lb_2end{cases}Rightarrow begin{cases} a_{11}(ku_1+lv_1)+a_{12}(ku_2+lv_2)=(k+l)b_1\
a_{21}(ku_1+lv_1)+a_{22}(ku_2+lv_2)=(k+l)b_2end{cases}Rightarrow begin{cases} a_{11}(ku_1+lv_1)+a_{12}(ku_2+lv_2)=b_1\
a_{21}(ku_1+lv_1)+a_{22}(ku_2+lv_2)=b_2end{cases},$$
which shows that indeed $ku+lv$ is a solution.
$endgroup$
Consider the system of equations
$$AX^t=b$$ where $Ainmathcal{M}_{ntimes n}(mathbb{R})$, $binmathcal{M}_{ntimes 1}(mathbb{R})$ and the unknown is $Xinmathbb{R}^n$.
Since $u,v$ are solutions, it follows that
$$begin{cases}Au^t=b\Av^t=b
end{cases}Rightarrow begin{cases}kAu^t=kb\lAv^t=lb
end{cases}Rightarrow begin{cases}A(ku)^t=kb\A(lv)^t=lb
end{cases}Rightarrow A(ku+lv)^t=(k+l)bRightarrow A(ku+lv)^t=b.$$
Let us write this in detail for $n=2$.
Let $A=begin{pmatrix} a_{11} & a_{12}\a_{21} & a_{22}end{pmatrix}, b=begin{pmatrix}b_1\b_2end{pmatrix}$.
Our system of equations is
$$begin{cases} a_{11}x_1+a_{12}x_2=b_1\
a_{21}x_1+a_{22}x_2=b_2end{cases}.$$
Writing this equation for $u$ and $v$, we get
$$begin{cases} a_{11}u_1+a_{12}u_2=b_1\
a_{21}u_1+a_{22}u_2=b_2end{cases}Rightarrow begin{cases} a_{11}ku_1+a_{12}ku_2=kb_1\
a_{21}ku_1+a_{22}ku_2=kb_2end{cases}$$
and
$$begin{cases} a_{11}lv_1+a_{12}lv_2=lb_1\
a_{21}lv_1+a_{22}lv_2=lb_2end{cases}.$$
Summing these, we get
$$begin{cases} a_{11}ku_1+a_{12}ku_2+a_{11}lv_1+a_{12}lv_2=kb_1+lb_1\
a_{21}ku_1+a_{22}ku_2+a_{21}lv_1+a_{22}lv_2=kb_2+lb_2end{cases}Rightarrow begin{cases} a_{11}(ku_1+lv_1)+a_{12}(ku_2+lv_2)=(k+l)b_1\
a_{21}(ku_1+lv_1)+a_{22}(ku_2+lv_2)=(k+l)b_2end{cases}Rightarrow begin{cases} a_{11}(ku_1+lv_1)+a_{12}(ku_2+lv_2)=b_1\
a_{21}(ku_1+lv_1)+a_{22}(ku_2+lv_2)=b_2end{cases},$$
which shows that indeed $ku+lv$ is a solution.
answered Jan 31 at 0:00
IuliaIulia
1,025415
1,025415
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094278%2fprove-that-the-linear-combination-ku-lv-is-also-a-solution-for-a-system-of-e%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Write the system in matricial form. It's easier to see it.
$endgroup$
– Harnak
Jan 30 at 23:35