Prove that the linear combination $ku + lv$ is also a solution for a system of equations with $u$ and $v$...












0












$begingroup$


Let $u = (u_1,dots,u_n)$ and $v = (v_1,dots,v_n)$ be two solutions to a system of linear equations, and let $k$, $l$ be two real numbers such that $k + l = 1$.



Prove that the linear combination $ku + lv$ is also a solution to the system.



I'm not sure how to begin this proof and any help would be appreciated.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Write the system in matricial form. It's easier to see it.
    $endgroup$
    – Harnak
    Jan 30 at 23:35
















0












$begingroup$


Let $u = (u_1,dots,u_n)$ and $v = (v_1,dots,v_n)$ be two solutions to a system of linear equations, and let $k$, $l$ be two real numbers such that $k + l = 1$.



Prove that the linear combination $ku + lv$ is also a solution to the system.



I'm not sure how to begin this proof and any help would be appreciated.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Write the system in matricial form. It's easier to see it.
    $endgroup$
    – Harnak
    Jan 30 at 23:35














0












0








0





$begingroup$


Let $u = (u_1,dots,u_n)$ and $v = (v_1,dots,v_n)$ be two solutions to a system of linear equations, and let $k$, $l$ be two real numbers such that $k + l = 1$.



Prove that the linear combination $ku + lv$ is also a solution to the system.



I'm not sure how to begin this proof and any help would be appreciated.










share|cite|improve this question











$endgroup$




Let $u = (u_1,dots,u_n)$ and $v = (v_1,dots,v_n)$ be two solutions to a system of linear equations, and let $k$, $l$ be two real numbers such that $k + l = 1$.



Prove that the linear combination $ku + lv$ is also a solution to the system.



I'm not sure how to begin this proof and any help would be appreciated.







linear-algebra






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 30 at 23:44









Iulia

1,025415




1,025415










asked Jan 30 at 23:33









Sofia SivSofia Siv

83




83












  • $begingroup$
    Write the system in matricial form. It's easier to see it.
    $endgroup$
    – Harnak
    Jan 30 at 23:35


















  • $begingroup$
    Write the system in matricial form. It's easier to see it.
    $endgroup$
    – Harnak
    Jan 30 at 23:35
















$begingroup$
Write the system in matricial form. It's easier to see it.
$endgroup$
– Harnak
Jan 30 at 23:35




$begingroup$
Write the system in matricial form. It's easier to see it.
$endgroup$
– Harnak
Jan 30 at 23:35










1 Answer
1






active

oldest

votes


















0












$begingroup$

Consider the system of equations
$$AX^t=b$$ where $Ainmathcal{M}_{ntimes n}(mathbb{R})$, $binmathcal{M}_{ntimes 1}(mathbb{R})$ and the unknown is $Xinmathbb{R}^n$.



Since $u,v$ are solutions, it follows that
$$begin{cases}Au^t=b\Av^t=b
end{cases}Rightarrow begin{cases}kAu^t=kb\lAv^t=lb
end{cases}Rightarrow begin{cases}A(ku)^t=kb\A(lv)^t=lb
end{cases}Rightarrow A(ku+lv)^t=(k+l)bRightarrow A(ku+lv)^t=b.$$



Let us write this in detail for $n=2$.



Let $A=begin{pmatrix} a_{11} & a_{12}\a_{21} & a_{22}end{pmatrix}, b=begin{pmatrix}b_1\b_2end{pmatrix}$.



Our system of equations is
$$begin{cases} a_{11}x_1+a_{12}x_2=b_1\
a_{21}x_1+a_{22}x_2=b_2end{cases}.$$



Writing this equation for $u$ and $v$, we get
$$begin{cases} a_{11}u_1+a_{12}u_2=b_1\
a_{21}u_1+a_{22}u_2=b_2end{cases}Rightarrow begin{cases} a_{11}ku_1+a_{12}ku_2=kb_1\
a_{21}ku_1+a_{22}ku_2=kb_2end{cases}$$



and



$$begin{cases} a_{11}lv_1+a_{12}lv_2=lb_1\
a_{21}lv_1+a_{22}lv_2=lb_2end{cases}.$$



Summing these, we get



$$begin{cases} a_{11}ku_1+a_{12}ku_2+a_{11}lv_1+a_{12}lv_2=kb_1+lb_1\
a_{21}ku_1+a_{22}ku_2+a_{21}lv_1+a_{22}lv_2=kb_2+lb_2end{cases}Rightarrow begin{cases} a_{11}(ku_1+lv_1)+a_{12}(ku_2+lv_2)=(k+l)b_1\
a_{21}(ku_1+lv_1)+a_{22}(ku_2+lv_2)=(k+l)b_2end{cases}Rightarrow begin{cases} a_{11}(ku_1+lv_1)+a_{12}(ku_2+lv_2)=b_1\
a_{21}(ku_1+lv_1)+a_{22}(ku_2+lv_2)=b_2end{cases},$$

which shows that indeed $ku+lv$ is a solution.






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094278%2fprove-that-the-linear-combination-ku-lv-is-also-a-solution-for-a-system-of-e%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0












    $begingroup$

    Consider the system of equations
    $$AX^t=b$$ where $Ainmathcal{M}_{ntimes n}(mathbb{R})$, $binmathcal{M}_{ntimes 1}(mathbb{R})$ and the unknown is $Xinmathbb{R}^n$.



    Since $u,v$ are solutions, it follows that
    $$begin{cases}Au^t=b\Av^t=b
    end{cases}Rightarrow begin{cases}kAu^t=kb\lAv^t=lb
    end{cases}Rightarrow begin{cases}A(ku)^t=kb\A(lv)^t=lb
    end{cases}Rightarrow A(ku+lv)^t=(k+l)bRightarrow A(ku+lv)^t=b.$$



    Let us write this in detail for $n=2$.



    Let $A=begin{pmatrix} a_{11} & a_{12}\a_{21} & a_{22}end{pmatrix}, b=begin{pmatrix}b_1\b_2end{pmatrix}$.



    Our system of equations is
    $$begin{cases} a_{11}x_1+a_{12}x_2=b_1\
    a_{21}x_1+a_{22}x_2=b_2end{cases}.$$



    Writing this equation for $u$ and $v$, we get
    $$begin{cases} a_{11}u_1+a_{12}u_2=b_1\
    a_{21}u_1+a_{22}u_2=b_2end{cases}Rightarrow begin{cases} a_{11}ku_1+a_{12}ku_2=kb_1\
    a_{21}ku_1+a_{22}ku_2=kb_2end{cases}$$



    and



    $$begin{cases} a_{11}lv_1+a_{12}lv_2=lb_1\
    a_{21}lv_1+a_{22}lv_2=lb_2end{cases}.$$



    Summing these, we get



    $$begin{cases} a_{11}ku_1+a_{12}ku_2+a_{11}lv_1+a_{12}lv_2=kb_1+lb_1\
    a_{21}ku_1+a_{22}ku_2+a_{21}lv_1+a_{22}lv_2=kb_2+lb_2end{cases}Rightarrow begin{cases} a_{11}(ku_1+lv_1)+a_{12}(ku_2+lv_2)=(k+l)b_1\
    a_{21}(ku_1+lv_1)+a_{22}(ku_2+lv_2)=(k+l)b_2end{cases}Rightarrow begin{cases} a_{11}(ku_1+lv_1)+a_{12}(ku_2+lv_2)=b_1\
    a_{21}(ku_1+lv_1)+a_{22}(ku_2+lv_2)=b_2end{cases},$$

    which shows that indeed $ku+lv$ is a solution.






    share|cite|improve this answer









    $endgroup$


















      0












      $begingroup$

      Consider the system of equations
      $$AX^t=b$$ where $Ainmathcal{M}_{ntimes n}(mathbb{R})$, $binmathcal{M}_{ntimes 1}(mathbb{R})$ and the unknown is $Xinmathbb{R}^n$.



      Since $u,v$ are solutions, it follows that
      $$begin{cases}Au^t=b\Av^t=b
      end{cases}Rightarrow begin{cases}kAu^t=kb\lAv^t=lb
      end{cases}Rightarrow begin{cases}A(ku)^t=kb\A(lv)^t=lb
      end{cases}Rightarrow A(ku+lv)^t=(k+l)bRightarrow A(ku+lv)^t=b.$$



      Let us write this in detail for $n=2$.



      Let $A=begin{pmatrix} a_{11} & a_{12}\a_{21} & a_{22}end{pmatrix}, b=begin{pmatrix}b_1\b_2end{pmatrix}$.



      Our system of equations is
      $$begin{cases} a_{11}x_1+a_{12}x_2=b_1\
      a_{21}x_1+a_{22}x_2=b_2end{cases}.$$



      Writing this equation for $u$ and $v$, we get
      $$begin{cases} a_{11}u_1+a_{12}u_2=b_1\
      a_{21}u_1+a_{22}u_2=b_2end{cases}Rightarrow begin{cases} a_{11}ku_1+a_{12}ku_2=kb_1\
      a_{21}ku_1+a_{22}ku_2=kb_2end{cases}$$



      and



      $$begin{cases} a_{11}lv_1+a_{12}lv_2=lb_1\
      a_{21}lv_1+a_{22}lv_2=lb_2end{cases}.$$



      Summing these, we get



      $$begin{cases} a_{11}ku_1+a_{12}ku_2+a_{11}lv_1+a_{12}lv_2=kb_1+lb_1\
      a_{21}ku_1+a_{22}ku_2+a_{21}lv_1+a_{22}lv_2=kb_2+lb_2end{cases}Rightarrow begin{cases} a_{11}(ku_1+lv_1)+a_{12}(ku_2+lv_2)=(k+l)b_1\
      a_{21}(ku_1+lv_1)+a_{22}(ku_2+lv_2)=(k+l)b_2end{cases}Rightarrow begin{cases} a_{11}(ku_1+lv_1)+a_{12}(ku_2+lv_2)=b_1\
      a_{21}(ku_1+lv_1)+a_{22}(ku_2+lv_2)=b_2end{cases},$$

      which shows that indeed $ku+lv$ is a solution.






      share|cite|improve this answer









      $endgroup$
















        0












        0








        0





        $begingroup$

        Consider the system of equations
        $$AX^t=b$$ where $Ainmathcal{M}_{ntimes n}(mathbb{R})$, $binmathcal{M}_{ntimes 1}(mathbb{R})$ and the unknown is $Xinmathbb{R}^n$.



        Since $u,v$ are solutions, it follows that
        $$begin{cases}Au^t=b\Av^t=b
        end{cases}Rightarrow begin{cases}kAu^t=kb\lAv^t=lb
        end{cases}Rightarrow begin{cases}A(ku)^t=kb\A(lv)^t=lb
        end{cases}Rightarrow A(ku+lv)^t=(k+l)bRightarrow A(ku+lv)^t=b.$$



        Let us write this in detail for $n=2$.



        Let $A=begin{pmatrix} a_{11} & a_{12}\a_{21} & a_{22}end{pmatrix}, b=begin{pmatrix}b_1\b_2end{pmatrix}$.



        Our system of equations is
        $$begin{cases} a_{11}x_1+a_{12}x_2=b_1\
        a_{21}x_1+a_{22}x_2=b_2end{cases}.$$



        Writing this equation for $u$ and $v$, we get
        $$begin{cases} a_{11}u_1+a_{12}u_2=b_1\
        a_{21}u_1+a_{22}u_2=b_2end{cases}Rightarrow begin{cases} a_{11}ku_1+a_{12}ku_2=kb_1\
        a_{21}ku_1+a_{22}ku_2=kb_2end{cases}$$



        and



        $$begin{cases} a_{11}lv_1+a_{12}lv_2=lb_1\
        a_{21}lv_1+a_{22}lv_2=lb_2end{cases}.$$



        Summing these, we get



        $$begin{cases} a_{11}ku_1+a_{12}ku_2+a_{11}lv_1+a_{12}lv_2=kb_1+lb_1\
        a_{21}ku_1+a_{22}ku_2+a_{21}lv_1+a_{22}lv_2=kb_2+lb_2end{cases}Rightarrow begin{cases} a_{11}(ku_1+lv_1)+a_{12}(ku_2+lv_2)=(k+l)b_1\
        a_{21}(ku_1+lv_1)+a_{22}(ku_2+lv_2)=(k+l)b_2end{cases}Rightarrow begin{cases} a_{11}(ku_1+lv_1)+a_{12}(ku_2+lv_2)=b_1\
        a_{21}(ku_1+lv_1)+a_{22}(ku_2+lv_2)=b_2end{cases},$$

        which shows that indeed $ku+lv$ is a solution.






        share|cite|improve this answer









        $endgroup$



        Consider the system of equations
        $$AX^t=b$$ where $Ainmathcal{M}_{ntimes n}(mathbb{R})$, $binmathcal{M}_{ntimes 1}(mathbb{R})$ and the unknown is $Xinmathbb{R}^n$.



        Since $u,v$ are solutions, it follows that
        $$begin{cases}Au^t=b\Av^t=b
        end{cases}Rightarrow begin{cases}kAu^t=kb\lAv^t=lb
        end{cases}Rightarrow begin{cases}A(ku)^t=kb\A(lv)^t=lb
        end{cases}Rightarrow A(ku+lv)^t=(k+l)bRightarrow A(ku+lv)^t=b.$$



        Let us write this in detail for $n=2$.



        Let $A=begin{pmatrix} a_{11} & a_{12}\a_{21} & a_{22}end{pmatrix}, b=begin{pmatrix}b_1\b_2end{pmatrix}$.



        Our system of equations is
        $$begin{cases} a_{11}x_1+a_{12}x_2=b_1\
        a_{21}x_1+a_{22}x_2=b_2end{cases}.$$



        Writing this equation for $u$ and $v$, we get
        $$begin{cases} a_{11}u_1+a_{12}u_2=b_1\
        a_{21}u_1+a_{22}u_2=b_2end{cases}Rightarrow begin{cases} a_{11}ku_1+a_{12}ku_2=kb_1\
        a_{21}ku_1+a_{22}ku_2=kb_2end{cases}$$



        and



        $$begin{cases} a_{11}lv_1+a_{12}lv_2=lb_1\
        a_{21}lv_1+a_{22}lv_2=lb_2end{cases}.$$



        Summing these, we get



        $$begin{cases} a_{11}ku_1+a_{12}ku_2+a_{11}lv_1+a_{12}lv_2=kb_1+lb_1\
        a_{21}ku_1+a_{22}ku_2+a_{21}lv_1+a_{22}lv_2=kb_2+lb_2end{cases}Rightarrow begin{cases} a_{11}(ku_1+lv_1)+a_{12}(ku_2+lv_2)=(k+l)b_1\
        a_{21}(ku_1+lv_1)+a_{22}(ku_2+lv_2)=(k+l)b_2end{cases}Rightarrow begin{cases} a_{11}(ku_1+lv_1)+a_{12}(ku_2+lv_2)=b_1\
        a_{21}(ku_1+lv_1)+a_{22}(ku_2+lv_2)=b_2end{cases},$$

        which shows that indeed $ku+lv$ is a solution.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 31 at 0:00









        IuliaIulia

        1,025415




        1,025415






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094278%2fprove-that-the-linear-combination-ku-lv-is-also-a-solution-for-a-system-of-e%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

            How to fix TextFormField cause rebuild widget in Flutter