Rank of real/imaginary part of a complex matrix of rank 1
$begingroup$
$newcommand{rank}{operatorname{rank}}$
Given a complex matrix $M in mathbb{C}^{p times q}$ of rank $1$.
It appears that $rank Re ( M ) leq 2$ and $rank Im ( M ) leq 2$. If this is true, how to actually prove that?
linear-algebra matrices complex-numbers
$endgroup$
add a comment |
$begingroup$
$newcommand{rank}{operatorname{rank}}$
Given a complex matrix $M in mathbb{C}^{p times q}$ of rank $1$.
It appears that $rank Re ( M ) leq 2$ and $rank Im ( M ) leq 2$. If this is true, how to actually prove that?
linear-algebra matrices complex-numbers
$endgroup$
add a comment |
$begingroup$
$newcommand{rank}{operatorname{rank}}$
Given a complex matrix $M in mathbb{C}^{p times q}$ of rank $1$.
It appears that $rank Re ( M ) leq 2$ and $rank Im ( M ) leq 2$. If this is true, how to actually prove that?
linear-algebra matrices complex-numbers
$endgroup$
$newcommand{rank}{operatorname{rank}}$
Given a complex matrix $M in mathbb{C}^{p times q}$ of rank $1$.
It appears that $rank Re ( M ) leq 2$ and $rank Im ( M ) leq 2$. If this is true, how to actually prove that?
linear-algebra matrices complex-numbers
linear-algebra matrices complex-numbers
edited Mar 13 '18 at 12:36


Henrik
6,04592030
6,04592030
asked Mar 8 '18 at 9:43
pumanpuman
21
21
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Let $A:= Re ( M )$ and $B:= Im ( M )$, hence $M=A+iB$. We define$newcommand{rank}{operatorname{rank}}$
$overline{M}:= A-iB$. Then $rank(overline{M})=1$. Thus
$rank(2A)= rank(M+overline{M}) le 1+1=2$. Hence $rank(A) le 2$.
Similar: $rank(B) le 2$
$endgroup$
add a comment |
$begingroup$
Hint : Prove that $overline{M}$ also has rank $1$, and then use the fact that $Re ( M )=frac{M+overline{M}}{2}$ and $Im( M )=frac{M-overline{M}}{2i}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2682131%2frank-of-real-imaginary-part-of-a-complex-matrix-of-rank-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $A:= Re ( M )$ and $B:= Im ( M )$, hence $M=A+iB$. We define$newcommand{rank}{operatorname{rank}}$
$overline{M}:= A-iB$. Then $rank(overline{M})=1$. Thus
$rank(2A)= rank(M+overline{M}) le 1+1=2$. Hence $rank(A) le 2$.
Similar: $rank(B) le 2$
$endgroup$
add a comment |
$begingroup$
Let $A:= Re ( M )$ and $B:= Im ( M )$, hence $M=A+iB$. We define$newcommand{rank}{operatorname{rank}}$
$overline{M}:= A-iB$. Then $rank(overline{M})=1$. Thus
$rank(2A)= rank(M+overline{M}) le 1+1=2$. Hence $rank(A) le 2$.
Similar: $rank(B) le 2$
$endgroup$
add a comment |
$begingroup$
Let $A:= Re ( M )$ and $B:= Im ( M )$, hence $M=A+iB$. We define$newcommand{rank}{operatorname{rank}}$
$overline{M}:= A-iB$. Then $rank(overline{M})=1$. Thus
$rank(2A)= rank(M+overline{M}) le 1+1=2$. Hence $rank(A) le 2$.
Similar: $rank(B) le 2$
$endgroup$
Let $A:= Re ( M )$ and $B:= Im ( M )$, hence $M=A+iB$. We define$newcommand{rank}{operatorname{rank}}$
$overline{M}:= A-iB$. Then $rank(overline{M})=1$. Thus
$rank(2A)= rank(M+overline{M}) le 1+1=2$. Hence $rank(A) le 2$.
Similar: $rank(B) le 2$
edited Jan 30 at 17:47


Martin Sleziak
44.9k10122277
44.9k10122277
answered Mar 8 '18 at 10:16


FredFred
48.6k11849
48.6k11849
add a comment |
add a comment |
$begingroup$
Hint : Prove that $overline{M}$ also has rank $1$, and then use the fact that $Re ( M )=frac{M+overline{M}}{2}$ and $Im( M )=frac{M-overline{M}}{2i}$.
$endgroup$
add a comment |
$begingroup$
Hint : Prove that $overline{M}$ also has rank $1$, and then use the fact that $Re ( M )=frac{M+overline{M}}{2}$ and $Im( M )=frac{M-overline{M}}{2i}$.
$endgroup$
add a comment |
$begingroup$
Hint : Prove that $overline{M}$ also has rank $1$, and then use the fact that $Re ( M )=frac{M+overline{M}}{2}$ and $Im( M )=frac{M-overline{M}}{2i}$.
$endgroup$
Hint : Prove that $overline{M}$ also has rank $1$, and then use the fact that $Re ( M )=frac{M+overline{M}}{2}$ and $Im( M )=frac{M-overline{M}}{2i}$.
answered Mar 8 '18 at 10:12
Arnaud D.Arnaud D.
16.2k52445
16.2k52445
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2682131%2frank-of-real-imaginary-part-of-a-complex-matrix-of-rank-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown