Rank of real/imaginary part of a complex matrix of rank 1












-2












$begingroup$


$newcommand{rank}{operatorname{rank}}$



Given a complex matrix $M in mathbb{C}^{p times q}$ of rank $1$.



It appears that $rank Re ( M ) leq 2$ and $rank Im ( M ) leq 2$. If this is true, how to actually prove that?










share|cite|improve this question











$endgroup$

















    -2












    $begingroup$


    $newcommand{rank}{operatorname{rank}}$



    Given a complex matrix $M in mathbb{C}^{p times q}$ of rank $1$.



    It appears that $rank Re ( M ) leq 2$ and $rank Im ( M ) leq 2$. If this is true, how to actually prove that?










    share|cite|improve this question











    $endgroup$















      -2












      -2








      -2





      $begingroup$


      $newcommand{rank}{operatorname{rank}}$



      Given a complex matrix $M in mathbb{C}^{p times q}$ of rank $1$.



      It appears that $rank Re ( M ) leq 2$ and $rank Im ( M ) leq 2$. If this is true, how to actually prove that?










      share|cite|improve this question











      $endgroup$




      $newcommand{rank}{operatorname{rank}}$



      Given a complex matrix $M in mathbb{C}^{p times q}$ of rank $1$.



      It appears that $rank Re ( M ) leq 2$ and $rank Im ( M ) leq 2$. If this is true, how to actually prove that?







      linear-algebra matrices complex-numbers






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Mar 13 '18 at 12:36









      Henrik

      6,04592030




      6,04592030










      asked Mar 8 '18 at 9:43









      pumanpuman

      21




      21






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Let $A:= Re ( M )$ and $B:= Im ( M )$, hence $M=A+iB$. We define$newcommand{rank}{operatorname{rank}}$



          $overline{M}:= A-iB$. Then $rank(overline{M})=1$. Thus



          $rank(2A)= rank(M+overline{M}) le 1+1=2$. Hence $rank(A) le 2$.



          Similar: $rank(B) le 2$






          share|cite|improve this answer











          $endgroup$





















            0












            $begingroup$

            Hint : Prove that $overline{M}$ also has rank $1$, and then use the fact that $Re ( M )=frac{M+overline{M}}{2}$ and $Im( M )=frac{M-overline{M}}{2i}$.






            share|cite|improve this answer









            $endgroup$














              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2682131%2frank-of-real-imaginary-part-of-a-complex-matrix-of-rank-1%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              Let $A:= Re ( M )$ and $B:= Im ( M )$, hence $M=A+iB$. We define$newcommand{rank}{operatorname{rank}}$



              $overline{M}:= A-iB$. Then $rank(overline{M})=1$. Thus



              $rank(2A)= rank(M+overline{M}) le 1+1=2$. Hence $rank(A) le 2$.



              Similar: $rank(B) le 2$






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                Let $A:= Re ( M )$ and $B:= Im ( M )$, hence $M=A+iB$. We define$newcommand{rank}{operatorname{rank}}$



                $overline{M}:= A-iB$. Then $rank(overline{M})=1$. Thus



                $rank(2A)= rank(M+overline{M}) le 1+1=2$. Hence $rank(A) le 2$.



                Similar: $rank(B) le 2$






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Let $A:= Re ( M )$ and $B:= Im ( M )$, hence $M=A+iB$. We define$newcommand{rank}{operatorname{rank}}$



                  $overline{M}:= A-iB$. Then $rank(overline{M})=1$. Thus



                  $rank(2A)= rank(M+overline{M}) le 1+1=2$. Hence $rank(A) le 2$.



                  Similar: $rank(B) le 2$






                  share|cite|improve this answer











                  $endgroup$



                  Let $A:= Re ( M )$ and $B:= Im ( M )$, hence $M=A+iB$. We define$newcommand{rank}{operatorname{rank}}$



                  $overline{M}:= A-iB$. Then $rank(overline{M})=1$. Thus



                  $rank(2A)= rank(M+overline{M}) le 1+1=2$. Hence $rank(A) le 2$.



                  Similar: $rank(B) le 2$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 30 at 17:47









                  Martin Sleziak

                  44.9k10122277




                  44.9k10122277










                  answered Mar 8 '18 at 10:16









                  FredFred

                  48.6k11849




                  48.6k11849























                      0












                      $begingroup$

                      Hint : Prove that $overline{M}$ also has rank $1$, and then use the fact that $Re ( M )=frac{M+overline{M}}{2}$ and $Im( M )=frac{M-overline{M}}{2i}$.






                      share|cite|improve this answer









                      $endgroup$


















                        0












                        $begingroup$

                        Hint : Prove that $overline{M}$ also has rank $1$, and then use the fact that $Re ( M )=frac{M+overline{M}}{2}$ and $Im( M )=frac{M-overline{M}}{2i}$.






                        share|cite|improve this answer









                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          Hint : Prove that $overline{M}$ also has rank $1$, and then use the fact that $Re ( M )=frac{M+overline{M}}{2}$ and $Im( M )=frac{M-overline{M}}{2i}$.






                          share|cite|improve this answer









                          $endgroup$



                          Hint : Prove that $overline{M}$ also has rank $1$, and then use the fact that $Re ( M )=frac{M+overline{M}}{2}$ and $Im( M )=frac{M-overline{M}}{2i}$.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Mar 8 '18 at 10:12









                          Arnaud D.Arnaud D.

                          16.2k52445




                          16.2k52445






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2682131%2frank-of-real-imaginary-part-of-a-complex-matrix-of-rank-1%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              MongoDB - Not Authorized To Execute Command

                              How to fix TextFormField cause rebuild widget in Flutter

                              in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith