Reduced homology group $H_k(S^4 - N^4, mathbb Z)=H^{4-k}(S^4 - N^4,mathbb Z)=H_{k-1}(N^4, mathbb Z)=mathbb...
$begingroup$
Let $N^4$ be a 4-dimensional $D^2 times T^2 = D^2 times S^1 times S^1$.
(let us denote $tilde H$ as the reduced homology or homology group)
I know that
$$
tilde H_0(N^4,mathbb{Z})=0,
$$
$$
H_1(N^4,mathbb Z)=mathbb Z^2,
$$
$$
H_2(N^4,mathbb Z)=mathbb Z,
$$
$$
H_3(N^4,mathbb Z)=0
$$
Am I correct that:
$$
tilde H_0(S^4 - N^4,mathbb Z)=0,
$$
$$
H_1(S^4 - N^4, mathbb Z)=mathbb Z,
$$
$$
H_2(S^4 - N^4,mathbb Z)=H^2(S^4 - N^4,mathbb Z)=H_1(N^4,mathbb Z)=mathbb Z^2,
$$
$$
H_3(S^4 - N^4,mathbb Z)=0,
$$
However, I obtained that
$$
H_1(S^4 - N^4,mathbb Z)=H^3(S^4 - N^4,mathbb Z)= tilde H_0(N^4, mathbb Z)=0
$$ via Alexander
duality and Poincare duality.
$$
H_3(S^4 - N^4,mathbb Z)=H^1(S^4 - N^4,mathbb Z)= H_2(N^4, mathbb Z)=mathbb Z$$
via Alexander duality
and Poincare duality.
Something is wrong? Could you correct my mistakes? Which part leads to the contradiction of my results?
Thank you!
general-topology algebraic-topology homology-cohomology geometric-topology surgery-theory
$endgroup$
add a comment |
$begingroup$
Let $N^4$ be a 4-dimensional $D^2 times T^2 = D^2 times S^1 times S^1$.
(let us denote $tilde H$ as the reduced homology or homology group)
I know that
$$
tilde H_0(N^4,mathbb{Z})=0,
$$
$$
H_1(N^4,mathbb Z)=mathbb Z^2,
$$
$$
H_2(N^4,mathbb Z)=mathbb Z,
$$
$$
H_3(N^4,mathbb Z)=0
$$
Am I correct that:
$$
tilde H_0(S^4 - N^4,mathbb Z)=0,
$$
$$
H_1(S^4 - N^4, mathbb Z)=mathbb Z,
$$
$$
H_2(S^4 - N^4,mathbb Z)=H^2(S^4 - N^4,mathbb Z)=H_1(N^4,mathbb Z)=mathbb Z^2,
$$
$$
H_3(S^4 - N^4,mathbb Z)=0,
$$
However, I obtained that
$$
H_1(S^4 - N^4,mathbb Z)=H^3(S^4 - N^4,mathbb Z)= tilde H_0(N^4, mathbb Z)=0
$$ via Alexander
duality and Poincare duality.
$$
H_3(S^4 - N^4,mathbb Z)=H^1(S^4 - N^4,mathbb Z)= H_2(N^4, mathbb Z)=mathbb Z$$
via Alexander duality
and Poincare duality.
Something is wrong? Could you correct my mistakes? Which part leads to the contradiction of my results?
Thank you!
general-topology algebraic-topology homology-cohomology geometric-topology surgery-theory
$endgroup$
2
$begingroup$
Poincare duality only works on closed manifolds.
$endgroup$
– Cheerful Parsnip
Jan 30 at 4:25
$begingroup$
So how should I derive the above?
$endgroup$
– annie heart
Jan 30 at 4:27
$begingroup$
Have you looked at Hatcher's Corollary 3.45 on pg 255 of Algebraic Toplogy? It is the statement of Alexander duality.
$endgroup$
– Tyrone
Jan 30 at 10:16
add a comment |
$begingroup$
Let $N^4$ be a 4-dimensional $D^2 times T^2 = D^2 times S^1 times S^1$.
(let us denote $tilde H$ as the reduced homology or homology group)
I know that
$$
tilde H_0(N^4,mathbb{Z})=0,
$$
$$
H_1(N^4,mathbb Z)=mathbb Z^2,
$$
$$
H_2(N^4,mathbb Z)=mathbb Z,
$$
$$
H_3(N^4,mathbb Z)=0
$$
Am I correct that:
$$
tilde H_0(S^4 - N^4,mathbb Z)=0,
$$
$$
H_1(S^4 - N^4, mathbb Z)=mathbb Z,
$$
$$
H_2(S^4 - N^4,mathbb Z)=H^2(S^4 - N^4,mathbb Z)=H_1(N^4,mathbb Z)=mathbb Z^2,
$$
$$
H_3(S^4 - N^4,mathbb Z)=0,
$$
However, I obtained that
$$
H_1(S^4 - N^4,mathbb Z)=H^3(S^4 - N^4,mathbb Z)= tilde H_0(N^4, mathbb Z)=0
$$ via Alexander
duality and Poincare duality.
$$
H_3(S^4 - N^4,mathbb Z)=H^1(S^4 - N^4,mathbb Z)= H_2(N^4, mathbb Z)=mathbb Z$$
via Alexander duality
and Poincare duality.
Something is wrong? Could you correct my mistakes? Which part leads to the contradiction of my results?
Thank you!
general-topology algebraic-topology homology-cohomology geometric-topology surgery-theory
$endgroup$
Let $N^4$ be a 4-dimensional $D^2 times T^2 = D^2 times S^1 times S^1$.
(let us denote $tilde H$ as the reduced homology or homology group)
I know that
$$
tilde H_0(N^4,mathbb{Z})=0,
$$
$$
H_1(N^4,mathbb Z)=mathbb Z^2,
$$
$$
H_2(N^4,mathbb Z)=mathbb Z,
$$
$$
H_3(N^4,mathbb Z)=0
$$
Am I correct that:
$$
tilde H_0(S^4 - N^4,mathbb Z)=0,
$$
$$
H_1(S^4 - N^4, mathbb Z)=mathbb Z,
$$
$$
H_2(S^4 - N^4,mathbb Z)=H^2(S^4 - N^4,mathbb Z)=H_1(N^4,mathbb Z)=mathbb Z^2,
$$
$$
H_3(S^4 - N^4,mathbb Z)=0,
$$
However, I obtained that
$$
H_1(S^4 - N^4,mathbb Z)=H^3(S^4 - N^4,mathbb Z)= tilde H_0(N^4, mathbb Z)=0
$$ via Alexander
duality and Poincare duality.
$$
H_3(S^4 - N^4,mathbb Z)=H^1(S^4 - N^4,mathbb Z)= H_2(N^4, mathbb Z)=mathbb Z$$
via Alexander duality
and Poincare duality.
Something is wrong? Could you correct my mistakes? Which part leads to the contradiction of my results?
Thank you!
general-topology algebraic-topology homology-cohomology geometric-topology surgery-theory
general-topology algebraic-topology homology-cohomology geometric-topology surgery-theory
edited Jan 30 at 4:21
annie heart
asked Jan 30 at 4:11
annie heartannie heart
668721
668721
2
$begingroup$
Poincare duality only works on closed manifolds.
$endgroup$
– Cheerful Parsnip
Jan 30 at 4:25
$begingroup$
So how should I derive the above?
$endgroup$
– annie heart
Jan 30 at 4:27
$begingroup$
Have you looked at Hatcher's Corollary 3.45 on pg 255 of Algebraic Toplogy? It is the statement of Alexander duality.
$endgroup$
– Tyrone
Jan 30 at 10:16
add a comment |
2
$begingroup$
Poincare duality only works on closed manifolds.
$endgroup$
– Cheerful Parsnip
Jan 30 at 4:25
$begingroup$
So how should I derive the above?
$endgroup$
– annie heart
Jan 30 at 4:27
$begingroup$
Have you looked at Hatcher's Corollary 3.45 on pg 255 of Algebraic Toplogy? It is the statement of Alexander duality.
$endgroup$
– Tyrone
Jan 30 at 10:16
2
2
$begingroup$
Poincare duality only works on closed manifolds.
$endgroup$
– Cheerful Parsnip
Jan 30 at 4:25
$begingroup$
Poincare duality only works on closed manifolds.
$endgroup$
– Cheerful Parsnip
Jan 30 at 4:25
$begingroup$
So how should I derive the above?
$endgroup$
– annie heart
Jan 30 at 4:27
$begingroup$
So how should I derive the above?
$endgroup$
– annie heart
Jan 30 at 4:27
$begingroup$
Have you looked at Hatcher's Corollary 3.45 on pg 255 of Algebraic Toplogy? It is the statement of Alexander duality.
$endgroup$
– Tyrone
Jan 30 at 10:16
$begingroup$
Have you looked at Hatcher's Corollary 3.45 on pg 255 of Algebraic Toplogy? It is the statement of Alexander duality.
$endgroup$
– Tyrone
Jan 30 at 10:16
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093093%2freduced-homology-group-h-ks4-n4-mathbb-z-h4-ks4-n4-mathbb-z-h%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093093%2freduced-homology-group-h-ks4-n4-mathbb-z-h4-ks4-n4-mathbb-z-h%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Poincare duality only works on closed manifolds.
$endgroup$
– Cheerful Parsnip
Jan 30 at 4:25
$begingroup$
So how should I derive the above?
$endgroup$
– annie heart
Jan 30 at 4:27
$begingroup$
Have you looked at Hatcher's Corollary 3.45 on pg 255 of Algebraic Toplogy? It is the statement of Alexander duality.
$endgroup$
– Tyrone
Jan 30 at 10:16