Reduced homology group $H_k(S^4 - N^4, mathbb Z)=H^{4-k}(S^4 - N^4,mathbb Z)=H_{k-1}(N^4, mathbb Z)=mathbb...












1












$begingroup$


Let $N^4$ be a 4-dimensional $D^2 times T^2 = D^2 times S^1 times S^1$.



(let us denote $tilde H$ as the reduced homology or homology group)





I know that
$$
tilde H_0(N^4,mathbb{Z})=0,
$$

$$
H_1(N^4,mathbb Z)=mathbb Z^2,
$$

$$
H_2(N^4,mathbb Z)=mathbb Z,
$$

$$
H_3(N^4,mathbb Z)=0
$$





Am I correct that:
$$
tilde H_0(S^4 - N^4,mathbb Z)=0,
$$

$$
H_1(S^4 - N^4, mathbb Z)=mathbb Z,
$$

$$
H_2(S^4 - N^4,mathbb Z)=H^2(S^4 - N^4,mathbb Z)=H_1(N^4,mathbb Z)=mathbb Z^2,
$$

$$
H_3(S^4 - N^4,mathbb Z)=0,
$$





However, I obtained that



$$
H_1(S^4 - N^4,mathbb Z)=H^3(S^4 - N^4,mathbb Z)= tilde H_0(N^4, mathbb Z)=0
$$
via Alexander
duality and Poincare duality.



$$
H_3(S^4 - N^4,mathbb Z)=H^1(S^4 - N^4,mathbb Z)= H_2(N^4, mathbb Z)=mathbb Z$$

via Alexander duality
and Poincare duality.




Something is wrong? Could you correct my mistakes? Which part leads to the contradiction of my results?




Thank you!










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Poincare duality only works on closed manifolds.
    $endgroup$
    – Cheerful Parsnip
    Jan 30 at 4:25










  • $begingroup$
    So how should I derive the above?
    $endgroup$
    – annie heart
    Jan 30 at 4:27










  • $begingroup$
    Have you looked at Hatcher's Corollary 3.45 on pg 255 of Algebraic Toplogy? It is the statement of Alexander duality.
    $endgroup$
    – Tyrone
    Jan 30 at 10:16


















1












$begingroup$


Let $N^4$ be a 4-dimensional $D^2 times T^2 = D^2 times S^1 times S^1$.



(let us denote $tilde H$ as the reduced homology or homology group)





I know that
$$
tilde H_0(N^4,mathbb{Z})=0,
$$

$$
H_1(N^4,mathbb Z)=mathbb Z^2,
$$

$$
H_2(N^4,mathbb Z)=mathbb Z,
$$

$$
H_3(N^4,mathbb Z)=0
$$





Am I correct that:
$$
tilde H_0(S^4 - N^4,mathbb Z)=0,
$$

$$
H_1(S^4 - N^4, mathbb Z)=mathbb Z,
$$

$$
H_2(S^4 - N^4,mathbb Z)=H^2(S^4 - N^4,mathbb Z)=H_1(N^4,mathbb Z)=mathbb Z^2,
$$

$$
H_3(S^4 - N^4,mathbb Z)=0,
$$





However, I obtained that



$$
H_1(S^4 - N^4,mathbb Z)=H^3(S^4 - N^4,mathbb Z)= tilde H_0(N^4, mathbb Z)=0
$$
via Alexander
duality and Poincare duality.



$$
H_3(S^4 - N^4,mathbb Z)=H^1(S^4 - N^4,mathbb Z)= H_2(N^4, mathbb Z)=mathbb Z$$

via Alexander duality
and Poincare duality.




Something is wrong? Could you correct my mistakes? Which part leads to the contradiction of my results?




Thank you!










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Poincare duality only works on closed manifolds.
    $endgroup$
    – Cheerful Parsnip
    Jan 30 at 4:25










  • $begingroup$
    So how should I derive the above?
    $endgroup$
    – annie heart
    Jan 30 at 4:27










  • $begingroup$
    Have you looked at Hatcher's Corollary 3.45 on pg 255 of Algebraic Toplogy? It is the statement of Alexander duality.
    $endgroup$
    – Tyrone
    Jan 30 at 10:16
















1












1








1


2



$begingroup$


Let $N^4$ be a 4-dimensional $D^2 times T^2 = D^2 times S^1 times S^1$.



(let us denote $tilde H$ as the reduced homology or homology group)





I know that
$$
tilde H_0(N^4,mathbb{Z})=0,
$$

$$
H_1(N^4,mathbb Z)=mathbb Z^2,
$$

$$
H_2(N^4,mathbb Z)=mathbb Z,
$$

$$
H_3(N^4,mathbb Z)=0
$$





Am I correct that:
$$
tilde H_0(S^4 - N^4,mathbb Z)=0,
$$

$$
H_1(S^4 - N^4, mathbb Z)=mathbb Z,
$$

$$
H_2(S^4 - N^4,mathbb Z)=H^2(S^4 - N^4,mathbb Z)=H_1(N^4,mathbb Z)=mathbb Z^2,
$$

$$
H_3(S^4 - N^4,mathbb Z)=0,
$$





However, I obtained that



$$
H_1(S^4 - N^4,mathbb Z)=H^3(S^4 - N^4,mathbb Z)= tilde H_0(N^4, mathbb Z)=0
$$
via Alexander
duality and Poincare duality.



$$
H_3(S^4 - N^4,mathbb Z)=H^1(S^4 - N^4,mathbb Z)= H_2(N^4, mathbb Z)=mathbb Z$$

via Alexander duality
and Poincare duality.




Something is wrong? Could you correct my mistakes? Which part leads to the contradiction of my results?




Thank you!










share|cite|improve this question











$endgroup$




Let $N^4$ be a 4-dimensional $D^2 times T^2 = D^2 times S^1 times S^1$.



(let us denote $tilde H$ as the reduced homology or homology group)





I know that
$$
tilde H_0(N^4,mathbb{Z})=0,
$$

$$
H_1(N^4,mathbb Z)=mathbb Z^2,
$$

$$
H_2(N^4,mathbb Z)=mathbb Z,
$$

$$
H_3(N^4,mathbb Z)=0
$$





Am I correct that:
$$
tilde H_0(S^4 - N^4,mathbb Z)=0,
$$

$$
H_1(S^4 - N^4, mathbb Z)=mathbb Z,
$$

$$
H_2(S^4 - N^4,mathbb Z)=H^2(S^4 - N^4,mathbb Z)=H_1(N^4,mathbb Z)=mathbb Z^2,
$$

$$
H_3(S^4 - N^4,mathbb Z)=0,
$$





However, I obtained that



$$
H_1(S^4 - N^4,mathbb Z)=H^3(S^4 - N^4,mathbb Z)= tilde H_0(N^4, mathbb Z)=0
$$
via Alexander
duality and Poincare duality.



$$
H_3(S^4 - N^4,mathbb Z)=H^1(S^4 - N^4,mathbb Z)= H_2(N^4, mathbb Z)=mathbb Z$$

via Alexander duality
and Poincare duality.




Something is wrong? Could you correct my mistakes? Which part leads to the contradiction of my results?




Thank you!







general-topology algebraic-topology homology-cohomology geometric-topology surgery-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 30 at 4:21







annie heart

















asked Jan 30 at 4:11









annie heartannie heart

668721




668721








  • 2




    $begingroup$
    Poincare duality only works on closed manifolds.
    $endgroup$
    – Cheerful Parsnip
    Jan 30 at 4:25










  • $begingroup$
    So how should I derive the above?
    $endgroup$
    – annie heart
    Jan 30 at 4:27










  • $begingroup$
    Have you looked at Hatcher's Corollary 3.45 on pg 255 of Algebraic Toplogy? It is the statement of Alexander duality.
    $endgroup$
    – Tyrone
    Jan 30 at 10:16
















  • 2




    $begingroup$
    Poincare duality only works on closed manifolds.
    $endgroup$
    – Cheerful Parsnip
    Jan 30 at 4:25










  • $begingroup$
    So how should I derive the above?
    $endgroup$
    – annie heart
    Jan 30 at 4:27










  • $begingroup$
    Have you looked at Hatcher's Corollary 3.45 on pg 255 of Algebraic Toplogy? It is the statement of Alexander duality.
    $endgroup$
    – Tyrone
    Jan 30 at 10:16










2




2




$begingroup$
Poincare duality only works on closed manifolds.
$endgroup$
– Cheerful Parsnip
Jan 30 at 4:25




$begingroup$
Poincare duality only works on closed manifolds.
$endgroup$
– Cheerful Parsnip
Jan 30 at 4:25












$begingroup$
So how should I derive the above?
$endgroup$
– annie heart
Jan 30 at 4:27




$begingroup$
So how should I derive the above?
$endgroup$
– annie heart
Jan 30 at 4:27












$begingroup$
Have you looked at Hatcher's Corollary 3.45 on pg 255 of Algebraic Toplogy? It is the statement of Alexander duality.
$endgroup$
– Tyrone
Jan 30 at 10:16






$begingroup$
Have you looked at Hatcher's Corollary 3.45 on pg 255 of Algebraic Toplogy? It is the statement of Alexander duality.
$endgroup$
– Tyrone
Jan 30 at 10:16












0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093093%2freduced-homology-group-h-ks4-n4-mathbb-z-h4-ks4-n4-mathbb-z-h%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093093%2freduced-homology-group-h-ks4-n4-mathbb-z-h4-ks4-n4-mathbb-z-h%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith