Rotate points from one plane to another
$begingroup$
I'm trying to create a algorithm that will rotate points given on plane 1 to plane 2.
I have found two different ways of doing this.
My question is ...
Why are the transformation matrices different for solution 1 solution 2?
What am i Missing?
Solution 1
Plane 1
X Y Z
Pt A' 0.000 0.000 0.000
Pt B' 0.000 1.000 0.000
Pt C' 1.000 0.000 0.000
Va 1.000 0.000 0.000
Vb 0.000 1.000 0.000
X Axis = YxZ
Y Axis = Vb
Z Axis = Plane Normal
X Axis = 1.000 0.000 0.000
Y Axis = 0.000 1.000 0.000
Z Axis = 0.000 0.000 1.000
Plane 2
X' Y' Z'
Pt A' 814925.0 818261.8 20.8
Pt B' 814926.9 818258.6 20.8
Pt C' 814920.9 818259.3 20.4
Va -4.077 -2.439 -0.395
Vb 1.907 -3.194 0.032
X' Axis = YxZ
Y' Axis = Vb
Z' Axis = Plane Normal
X' Axis = -56.417 -33.753 -5.461
Y' Axis = 1.907 -3.194 0.032
Z' Axis = -1.339 -0.621 17.672
Transformation Matrix
Fx1 Fy1 Fz1
Fx'1 X.X' Y.X' Y.X'
Fy'1 X.Y' Y.Y' Y.Y'
Fz'1 X.Z' Y.Z' Y.Z'
Fx1 Fy1 Fz1
Fx'1 -0.855 -0.512 -0.083
Fy'1 0.513 -0.858 0.009
Fz'1 -0.075 -0.035 0.997
Final Transformation Matrix (Transpose of the one above)
Fx1 Fy1 Fz1
Fx'1 -0.855 0.513 -0.075
Fy'1 -0.512 -0.858 -0.035
Fz'1 -0.083 0.009 0.997
Solution 2
Plane 1 Normal = 0x + 0y + 1z
Plane 2 Normal = -1.339x + -0.621y + 17.672z
Rotation Axis = |N1| x |N2|
Rotation Axis = -0.421x + 0.907y + 0.000z
Cos Theta = A.B/|A|*|B|
Cos Theta = 0.99653
c = costheta = 0.9965
s = sqrt(1-c*c) = 0.0832
T = 1-c = 0.0035
Rotation Matrix (Right Handed)
xxT+c xyT-zs xzT+ys
yxT+zs yyT+c yzT-xs
zxT-ys zyT+xs zzT+c
0.997 -0.001 0.075
-0.001 0.999 0.035
-0.075 -0.035 0.997
Rotation Matrix (Left Handed)
xxT+c xyT+zs xzT-ys
yxT-zs yyT+c yzT+xs
zxT+ys zyT-xs zzT+c
0.997 -0.001 -0.075
-0.001 0.999 -0.035
0.075 0.035 0.997
Point Check (Graphical)
Original
X (ft) Y (ft) Z (ft)
0.00 0.00 1.00
0.00 1.00 1.00
1.00 1.00 1.00
1.00 0.00 1.00
Solution 1
X (ft) Y (ft) Z (ft)
-0.075 -0.035 0.997
0.437 -0.894 1.005
-0.418 -1.405 0.922
-0.931 -0.547 0.914
Solution 2 Left
X (ft) Y (ft) Z (ft)
-0.08 -0.04 1.00
-0.08 0.96 1.03
0.92 0.96 1.11
0.92 -0.04 1.07
transformation 3d rotations plane-geometry
$endgroup$
add a comment |
$begingroup$
I'm trying to create a algorithm that will rotate points given on plane 1 to plane 2.
I have found two different ways of doing this.
My question is ...
Why are the transformation matrices different for solution 1 solution 2?
What am i Missing?
Solution 1
Plane 1
X Y Z
Pt A' 0.000 0.000 0.000
Pt B' 0.000 1.000 0.000
Pt C' 1.000 0.000 0.000
Va 1.000 0.000 0.000
Vb 0.000 1.000 0.000
X Axis = YxZ
Y Axis = Vb
Z Axis = Plane Normal
X Axis = 1.000 0.000 0.000
Y Axis = 0.000 1.000 0.000
Z Axis = 0.000 0.000 1.000
Plane 2
X' Y' Z'
Pt A' 814925.0 818261.8 20.8
Pt B' 814926.9 818258.6 20.8
Pt C' 814920.9 818259.3 20.4
Va -4.077 -2.439 -0.395
Vb 1.907 -3.194 0.032
X' Axis = YxZ
Y' Axis = Vb
Z' Axis = Plane Normal
X' Axis = -56.417 -33.753 -5.461
Y' Axis = 1.907 -3.194 0.032
Z' Axis = -1.339 -0.621 17.672
Transformation Matrix
Fx1 Fy1 Fz1
Fx'1 X.X' Y.X' Y.X'
Fy'1 X.Y' Y.Y' Y.Y'
Fz'1 X.Z' Y.Z' Y.Z'
Fx1 Fy1 Fz1
Fx'1 -0.855 -0.512 -0.083
Fy'1 0.513 -0.858 0.009
Fz'1 -0.075 -0.035 0.997
Final Transformation Matrix (Transpose of the one above)
Fx1 Fy1 Fz1
Fx'1 -0.855 0.513 -0.075
Fy'1 -0.512 -0.858 -0.035
Fz'1 -0.083 0.009 0.997
Solution 2
Plane 1 Normal = 0x + 0y + 1z
Plane 2 Normal = -1.339x + -0.621y + 17.672z
Rotation Axis = |N1| x |N2|
Rotation Axis = -0.421x + 0.907y + 0.000z
Cos Theta = A.B/|A|*|B|
Cos Theta = 0.99653
c = costheta = 0.9965
s = sqrt(1-c*c) = 0.0832
T = 1-c = 0.0035
Rotation Matrix (Right Handed)
xxT+c xyT-zs xzT+ys
yxT+zs yyT+c yzT-xs
zxT-ys zyT+xs zzT+c
0.997 -0.001 0.075
-0.001 0.999 0.035
-0.075 -0.035 0.997
Rotation Matrix (Left Handed)
xxT+c xyT+zs xzT-ys
yxT-zs yyT+c yzT+xs
zxT+ys zyT-xs zzT+c
0.997 -0.001 -0.075
-0.001 0.999 -0.035
0.075 0.035 0.997
Point Check (Graphical)
Original
X (ft) Y (ft) Z (ft)
0.00 0.00 1.00
0.00 1.00 1.00
1.00 1.00 1.00
1.00 0.00 1.00
Solution 1
X (ft) Y (ft) Z (ft)
-0.075 -0.035 0.997
0.437 -0.894 1.005
-0.418 -1.405 0.922
-0.931 -0.547 0.914
Solution 2 Left
X (ft) Y (ft) Z (ft)
-0.08 -0.04 1.00
-0.08 0.96 1.03
0.92 0.96 1.11
0.92 -0.04 1.07
transformation 3d rotations plane-geometry
$endgroup$
add a comment |
$begingroup$
I'm trying to create a algorithm that will rotate points given on plane 1 to plane 2.
I have found two different ways of doing this.
My question is ...
Why are the transformation matrices different for solution 1 solution 2?
What am i Missing?
Solution 1
Plane 1
X Y Z
Pt A' 0.000 0.000 0.000
Pt B' 0.000 1.000 0.000
Pt C' 1.000 0.000 0.000
Va 1.000 0.000 0.000
Vb 0.000 1.000 0.000
X Axis = YxZ
Y Axis = Vb
Z Axis = Plane Normal
X Axis = 1.000 0.000 0.000
Y Axis = 0.000 1.000 0.000
Z Axis = 0.000 0.000 1.000
Plane 2
X' Y' Z'
Pt A' 814925.0 818261.8 20.8
Pt B' 814926.9 818258.6 20.8
Pt C' 814920.9 818259.3 20.4
Va -4.077 -2.439 -0.395
Vb 1.907 -3.194 0.032
X' Axis = YxZ
Y' Axis = Vb
Z' Axis = Plane Normal
X' Axis = -56.417 -33.753 -5.461
Y' Axis = 1.907 -3.194 0.032
Z' Axis = -1.339 -0.621 17.672
Transformation Matrix
Fx1 Fy1 Fz1
Fx'1 X.X' Y.X' Y.X'
Fy'1 X.Y' Y.Y' Y.Y'
Fz'1 X.Z' Y.Z' Y.Z'
Fx1 Fy1 Fz1
Fx'1 -0.855 -0.512 -0.083
Fy'1 0.513 -0.858 0.009
Fz'1 -0.075 -0.035 0.997
Final Transformation Matrix (Transpose of the one above)
Fx1 Fy1 Fz1
Fx'1 -0.855 0.513 -0.075
Fy'1 -0.512 -0.858 -0.035
Fz'1 -0.083 0.009 0.997
Solution 2
Plane 1 Normal = 0x + 0y + 1z
Plane 2 Normal = -1.339x + -0.621y + 17.672z
Rotation Axis = |N1| x |N2|
Rotation Axis = -0.421x + 0.907y + 0.000z
Cos Theta = A.B/|A|*|B|
Cos Theta = 0.99653
c = costheta = 0.9965
s = sqrt(1-c*c) = 0.0832
T = 1-c = 0.0035
Rotation Matrix (Right Handed)
xxT+c xyT-zs xzT+ys
yxT+zs yyT+c yzT-xs
zxT-ys zyT+xs zzT+c
0.997 -0.001 0.075
-0.001 0.999 0.035
-0.075 -0.035 0.997
Rotation Matrix (Left Handed)
xxT+c xyT+zs xzT-ys
yxT-zs yyT+c yzT+xs
zxT+ys zyT-xs zzT+c
0.997 -0.001 -0.075
-0.001 0.999 -0.035
0.075 0.035 0.997
Point Check (Graphical)
Original
X (ft) Y (ft) Z (ft)
0.00 0.00 1.00
0.00 1.00 1.00
1.00 1.00 1.00
1.00 0.00 1.00
Solution 1
X (ft) Y (ft) Z (ft)
-0.075 -0.035 0.997
0.437 -0.894 1.005
-0.418 -1.405 0.922
-0.931 -0.547 0.914
Solution 2 Left
X (ft) Y (ft) Z (ft)
-0.08 -0.04 1.00
-0.08 0.96 1.03
0.92 0.96 1.11
0.92 -0.04 1.07
transformation 3d rotations plane-geometry
$endgroup$
I'm trying to create a algorithm that will rotate points given on plane 1 to plane 2.
I have found two different ways of doing this.
My question is ...
Why are the transformation matrices different for solution 1 solution 2?
What am i Missing?
Solution 1
Plane 1
X Y Z
Pt A' 0.000 0.000 0.000
Pt B' 0.000 1.000 0.000
Pt C' 1.000 0.000 0.000
Va 1.000 0.000 0.000
Vb 0.000 1.000 0.000
X Axis = YxZ
Y Axis = Vb
Z Axis = Plane Normal
X Axis = 1.000 0.000 0.000
Y Axis = 0.000 1.000 0.000
Z Axis = 0.000 0.000 1.000
Plane 2
X' Y' Z'
Pt A' 814925.0 818261.8 20.8
Pt B' 814926.9 818258.6 20.8
Pt C' 814920.9 818259.3 20.4
Va -4.077 -2.439 -0.395
Vb 1.907 -3.194 0.032
X' Axis = YxZ
Y' Axis = Vb
Z' Axis = Plane Normal
X' Axis = -56.417 -33.753 -5.461
Y' Axis = 1.907 -3.194 0.032
Z' Axis = -1.339 -0.621 17.672
Transformation Matrix
Fx1 Fy1 Fz1
Fx'1 X.X' Y.X' Y.X'
Fy'1 X.Y' Y.Y' Y.Y'
Fz'1 X.Z' Y.Z' Y.Z'
Fx1 Fy1 Fz1
Fx'1 -0.855 -0.512 -0.083
Fy'1 0.513 -0.858 0.009
Fz'1 -0.075 -0.035 0.997
Final Transformation Matrix (Transpose of the one above)
Fx1 Fy1 Fz1
Fx'1 -0.855 0.513 -0.075
Fy'1 -0.512 -0.858 -0.035
Fz'1 -0.083 0.009 0.997
Solution 2
Plane 1 Normal = 0x + 0y + 1z
Plane 2 Normal = -1.339x + -0.621y + 17.672z
Rotation Axis = |N1| x |N2|
Rotation Axis = -0.421x + 0.907y + 0.000z
Cos Theta = A.B/|A|*|B|
Cos Theta = 0.99653
c = costheta = 0.9965
s = sqrt(1-c*c) = 0.0832
T = 1-c = 0.0035
Rotation Matrix (Right Handed)
xxT+c xyT-zs xzT+ys
yxT+zs yyT+c yzT-xs
zxT-ys zyT+xs zzT+c
0.997 -0.001 0.075
-0.001 0.999 0.035
-0.075 -0.035 0.997
Rotation Matrix (Left Handed)
xxT+c xyT+zs xzT-ys
yxT-zs yyT+c yzT+xs
zxT+ys zyT-xs zzT+c
0.997 -0.001 -0.075
-0.001 0.999 -0.035
0.075 0.035 0.997
Point Check (Graphical)
Original
X (ft) Y (ft) Z (ft)
0.00 0.00 1.00
0.00 1.00 1.00
1.00 1.00 1.00
1.00 0.00 1.00
Solution 1
X (ft) Y (ft) Z (ft)
-0.075 -0.035 0.997
0.437 -0.894 1.005
-0.418 -1.405 0.922
-0.931 -0.547 0.914
Solution 2 Left
X (ft) Y (ft) Z (ft)
-0.08 -0.04 1.00
-0.08 0.96 1.03
0.92 0.96 1.11
0.92 -0.04 1.07
transformation 3d rotations plane-geometry
transformation 3d rotations plane-geometry
asked Nov 30 '15 at 16:07


T ChaT Cha
1
1
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Essentially, you’re looking for a $3times3$ matrix $A$ with $det A=1$ that maps a given line to another given line (the normals to the source and destination plane). There are many such matrices: given such a matrix, composing it with a rotation about the destination plane’s normal gives another. If you want a unique solution, you’ll have to add other conditions to the problem.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1553365%2frotate-points-from-one-plane-to-another%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Essentially, you’re looking for a $3times3$ matrix $A$ with $det A=1$ that maps a given line to another given line (the normals to the source and destination plane). There are many such matrices: given such a matrix, composing it with a rotation about the destination plane’s normal gives another. If you want a unique solution, you’ll have to add other conditions to the problem.
$endgroup$
add a comment |
$begingroup$
Essentially, you’re looking for a $3times3$ matrix $A$ with $det A=1$ that maps a given line to another given line (the normals to the source and destination plane). There are many such matrices: given such a matrix, composing it with a rotation about the destination plane’s normal gives another. If you want a unique solution, you’ll have to add other conditions to the problem.
$endgroup$
add a comment |
$begingroup$
Essentially, you’re looking for a $3times3$ matrix $A$ with $det A=1$ that maps a given line to another given line (the normals to the source and destination plane). There are many such matrices: given such a matrix, composing it with a rotation about the destination plane’s normal gives another. If you want a unique solution, you’ll have to add other conditions to the problem.
$endgroup$
Essentially, you’re looking for a $3times3$ matrix $A$ with $det A=1$ that maps a given line to another given line (the normals to the source and destination plane). There are many such matrices: given such a matrix, composing it with a rotation about the destination plane’s normal gives another. If you want a unique solution, you’ll have to add other conditions to the problem.
answered Nov 30 '15 at 18:16
amdamd
31.7k21052
31.7k21052
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1553365%2frotate-points-from-one-plane-to-another%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown