Solve $t^2y''-2ty'+2y=6t^2+4ln(t)$
$begingroup$
I know that I should find a particular solution, but how ?
I used change of variable method, $t=e^u$ but it didn't work
ordinary-differential-equations
$endgroup$
|
show 6 more comments
$begingroup$
I know that I should find a particular solution, but how ?
I used change of variable method, $t=e^u$ but it didn't work
ordinary-differential-equations
$endgroup$
$begingroup$
This is an Euler equation, it's characteristic polynomial is $r(r-1) -2r+2 =0$
$endgroup$
– LordVader007
Jan 31 at 3:15
$begingroup$
See :tutorial.math.lamar.edu/Classes/DE/EulerEquations.aspx
$endgroup$
– LordVader007
Jan 31 at 3:16
$begingroup$
Okay, but we should solve for the homogeneous form of the equation first right ?
$endgroup$
– Pedro Alvarès
Jan 31 at 3:20
$begingroup$
Yes... once you find a fundamental set of solutions, you can use something like Variation of Parameters to solve for the inhomogeneous case.
$endgroup$
– LordVader007
Jan 31 at 3:22
$begingroup$
The fundamental set of solutions should be: $phi_1(t) = t$ and $phi_2(t) = t^2$
$endgroup$
– LordVader007
Jan 31 at 3:27
|
show 6 more comments
$begingroup$
I know that I should find a particular solution, but how ?
I used change of variable method, $t=e^u$ but it didn't work
ordinary-differential-equations
$endgroup$
I know that I should find a particular solution, but how ?
I used change of variable method, $t=e^u$ but it didn't work
ordinary-differential-equations
ordinary-differential-equations
asked Jan 31 at 3:14
Pedro AlvarèsPedro Alvarès
946
946
$begingroup$
This is an Euler equation, it's characteristic polynomial is $r(r-1) -2r+2 =0$
$endgroup$
– LordVader007
Jan 31 at 3:15
$begingroup$
See :tutorial.math.lamar.edu/Classes/DE/EulerEquations.aspx
$endgroup$
– LordVader007
Jan 31 at 3:16
$begingroup$
Okay, but we should solve for the homogeneous form of the equation first right ?
$endgroup$
– Pedro Alvarès
Jan 31 at 3:20
$begingroup$
Yes... once you find a fundamental set of solutions, you can use something like Variation of Parameters to solve for the inhomogeneous case.
$endgroup$
– LordVader007
Jan 31 at 3:22
$begingroup$
The fundamental set of solutions should be: $phi_1(t) = t$ and $phi_2(t) = t^2$
$endgroup$
– LordVader007
Jan 31 at 3:27
|
show 6 more comments
$begingroup$
This is an Euler equation, it's characteristic polynomial is $r(r-1) -2r+2 =0$
$endgroup$
– LordVader007
Jan 31 at 3:15
$begingroup$
See :tutorial.math.lamar.edu/Classes/DE/EulerEquations.aspx
$endgroup$
– LordVader007
Jan 31 at 3:16
$begingroup$
Okay, but we should solve for the homogeneous form of the equation first right ?
$endgroup$
– Pedro Alvarès
Jan 31 at 3:20
$begingroup$
Yes... once you find a fundamental set of solutions, you can use something like Variation of Parameters to solve for the inhomogeneous case.
$endgroup$
– LordVader007
Jan 31 at 3:22
$begingroup$
The fundamental set of solutions should be: $phi_1(t) = t$ and $phi_2(t) = t^2$
$endgroup$
– LordVader007
Jan 31 at 3:27
$begingroup$
This is an Euler equation, it's characteristic polynomial is $r(r-1) -2r+2 =0$
$endgroup$
– LordVader007
Jan 31 at 3:15
$begingroup$
This is an Euler equation, it's characteristic polynomial is $r(r-1) -2r+2 =0$
$endgroup$
– LordVader007
Jan 31 at 3:15
$begingroup$
See :tutorial.math.lamar.edu/Classes/DE/EulerEquations.aspx
$endgroup$
– LordVader007
Jan 31 at 3:16
$begingroup$
See :tutorial.math.lamar.edu/Classes/DE/EulerEquations.aspx
$endgroup$
– LordVader007
Jan 31 at 3:16
$begingroup$
Okay, but we should solve for the homogeneous form of the equation first right ?
$endgroup$
– Pedro Alvarès
Jan 31 at 3:20
$begingroup$
Okay, but we should solve for the homogeneous form of the equation first right ?
$endgroup$
– Pedro Alvarès
Jan 31 at 3:20
$begingroup$
Yes... once you find a fundamental set of solutions, you can use something like Variation of Parameters to solve for the inhomogeneous case.
$endgroup$
– LordVader007
Jan 31 at 3:22
$begingroup$
Yes... once you find a fundamental set of solutions, you can use something like Variation of Parameters to solve for the inhomogeneous case.
$endgroup$
– LordVader007
Jan 31 at 3:22
$begingroup$
The fundamental set of solutions should be: $phi_1(t) = t$ and $phi_2(t) = t^2$
$endgroup$
– LordVader007
Jan 31 at 3:27
$begingroup$
The fundamental set of solutions should be: $phi_1(t) = t$ and $phi_2(t) = t^2$
$endgroup$
– LordVader007
Jan 31 at 3:27
|
show 6 more comments
1 Answer
1
active
oldest
votes
$begingroup$
Solve $$x^2y''-2xy'+2y=6x^2+4ln x.$$
We use change of variable method
$$x=e^t,quad t=ln x,quad frac{dt}{dx}=frac1x=e^{-t},$$
$$y'=frac{dy}{dx}=frac{dy}{dt}frac{dt}{dx}=y_te^{-t},$$
$$y''=frac{dy'}{dx}=frac{dy'}{dt}frac{dt}{dx}=frac{d(y_te^{-t})}{dt}e^{-t}=(y''_{tt}-y'_t)e^{-2t}$$
Then
$$xy'=y'_t,quad x^2y''=y''_{tt}-y'_t.$$
We get linear dif. equation with constants coefficients
$$y''_{tt}-3y'_t+2y=6e^{2t}+4t,$$
$$y=y_h+y_p,$$
$$y_h=c_1e^t+c_2e^{2t}$$
With method of undetermined coefficients we find particular solution
$$y_p=Ate^{2t}+Bt+C,\y_p=6te^{2t}+2t+3.$$
Then general solution is
$$y=c_1e^t+c_2e^{2t}+6te^{2t}+2t+3\
=c_1x+c_2x^2+6x^2ln x+2ln x +3.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094457%2fsolve-t2y-2ty2y-6t24lnt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Solve $$x^2y''-2xy'+2y=6x^2+4ln x.$$
We use change of variable method
$$x=e^t,quad t=ln x,quad frac{dt}{dx}=frac1x=e^{-t},$$
$$y'=frac{dy}{dx}=frac{dy}{dt}frac{dt}{dx}=y_te^{-t},$$
$$y''=frac{dy'}{dx}=frac{dy'}{dt}frac{dt}{dx}=frac{d(y_te^{-t})}{dt}e^{-t}=(y''_{tt}-y'_t)e^{-2t}$$
Then
$$xy'=y'_t,quad x^2y''=y''_{tt}-y'_t.$$
We get linear dif. equation with constants coefficients
$$y''_{tt}-3y'_t+2y=6e^{2t}+4t,$$
$$y=y_h+y_p,$$
$$y_h=c_1e^t+c_2e^{2t}$$
With method of undetermined coefficients we find particular solution
$$y_p=Ate^{2t}+Bt+C,\y_p=6te^{2t}+2t+3.$$
Then general solution is
$$y=c_1e^t+c_2e^{2t}+6te^{2t}+2t+3\
=c_1x+c_2x^2+6x^2ln x+2ln x +3.
$$
$endgroup$
add a comment |
$begingroup$
Solve $$x^2y''-2xy'+2y=6x^2+4ln x.$$
We use change of variable method
$$x=e^t,quad t=ln x,quad frac{dt}{dx}=frac1x=e^{-t},$$
$$y'=frac{dy}{dx}=frac{dy}{dt}frac{dt}{dx}=y_te^{-t},$$
$$y''=frac{dy'}{dx}=frac{dy'}{dt}frac{dt}{dx}=frac{d(y_te^{-t})}{dt}e^{-t}=(y''_{tt}-y'_t)e^{-2t}$$
Then
$$xy'=y'_t,quad x^2y''=y''_{tt}-y'_t.$$
We get linear dif. equation with constants coefficients
$$y''_{tt}-3y'_t+2y=6e^{2t}+4t,$$
$$y=y_h+y_p,$$
$$y_h=c_1e^t+c_2e^{2t}$$
With method of undetermined coefficients we find particular solution
$$y_p=Ate^{2t}+Bt+C,\y_p=6te^{2t}+2t+3.$$
Then general solution is
$$y=c_1e^t+c_2e^{2t}+6te^{2t}+2t+3\
=c_1x+c_2x^2+6x^2ln x+2ln x +3.
$$
$endgroup$
add a comment |
$begingroup$
Solve $$x^2y''-2xy'+2y=6x^2+4ln x.$$
We use change of variable method
$$x=e^t,quad t=ln x,quad frac{dt}{dx}=frac1x=e^{-t},$$
$$y'=frac{dy}{dx}=frac{dy}{dt}frac{dt}{dx}=y_te^{-t},$$
$$y''=frac{dy'}{dx}=frac{dy'}{dt}frac{dt}{dx}=frac{d(y_te^{-t})}{dt}e^{-t}=(y''_{tt}-y'_t)e^{-2t}$$
Then
$$xy'=y'_t,quad x^2y''=y''_{tt}-y'_t.$$
We get linear dif. equation with constants coefficients
$$y''_{tt}-3y'_t+2y=6e^{2t}+4t,$$
$$y=y_h+y_p,$$
$$y_h=c_1e^t+c_2e^{2t}$$
With method of undetermined coefficients we find particular solution
$$y_p=Ate^{2t}+Bt+C,\y_p=6te^{2t}+2t+3.$$
Then general solution is
$$y=c_1e^t+c_2e^{2t}+6te^{2t}+2t+3\
=c_1x+c_2x^2+6x^2ln x+2ln x +3.
$$
$endgroup$
Solve $$x^2y''-2xy'+2y=6x^2+4ln x.$$
We use change of variable method
$$x=e^t,quad t=ln x,quad frac{dt}{dx}=frac1x=e^{-t},$$
$$y'=frac{dy}{dx}=frac{dy}{dt}frac{dt}{dx}=y_te^{-t},$$
$$y''=frac{dy'}{dx}=frac{dy'}{dt}frac{dt}{dx}=frac{d(y_te^{-t})}{dt}e^{-t}=(y''_{tt}-y'_t)e^{-2t}$$
Then
$$xy'=y'_t,quad x^2y''=y''_{tt}-y'_t.$$
We get linear dif. equation with constants coefficients
$$y''_{tt}-3y'_t+2y=6e^{2t}+4t,$$
$$y=y_h+y_p,$$
$$y_h=c_1e^t+c_2e^{2t}$$
With method of undetermined coefficients we find particular solution
$$y_p=Ate^{2t}+Bt+C,\y_p=6te^{2t}+2t+3.$$
Then general solution is
$$y=c_1e^t+c_2e^{2t}+6te^{2t}+2t+3\
=c_1x+c_2x^2+6x^2ln x+2ln x +3.
$$
answered Jan 31 at 9:46
Aleksas DomarkasAleksas Domarkas
1,62317
1,62317
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094457%2fsolve-t2y-2ty2y-6t24lnt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown

$begingroup$
This is an Euler equation, it's characteristic polynomial is $r(r-1) -2r+2 =0$
$endgroup$
– LordVader007
Jan 31 at 3:15
$begingroup$
See :tutorial.math.lamar.edu/Classes/DE/EulerEquations.aspx
$endgroup$
– LordVader007
Jan 31 at 3:16
$begingroup$
Okay, but we should solve for the homogeneous form of the equation first right ?
$endgroup$
– Pedro Alvarès
Jan 31 at 3:20
$begingroup$
Yes... once you find a fundamental set of solutions, you can use something like Variation of Parameters to solve for the inhomogeneous case.
$endgroup$
– LordVader007
Jan 31 at 3:22
$begingroup$
The fundamental set of solutions should be: $phi_1(t) = t$ and $phi_2(t) = t^2$
$endgroup$
– LordVader007
Jan 31 at 3:27