Solve $t^2y''-2ty'+2y=6t^2+4ln(t)$












0












$begingroup$


I know that I should find a particular solution, but how ?



I used change of variable method, $t=e^u$ but it didn't work










share|cite|improve this question









$endgroup$












  • $begingroup$
    This is an Euler equation, it's characteristic polynomial is $r(r-1) -2r+2 =0$
    $endgroup$
    – LordVader007
    Jan 31 at 3:15










  • $begingroup$
    See :tutorial.math.lamar.edu/Classes/DE/EulerEquations.aspx
    $endgroup$
    – LordVader007
    Jan 31 at 3:16










  • $begingroup$
    Okay, but we should solve for the homogeneous form of the equation first right ?
    $endgroup$
    – Pedro Alvarès
    Jan 31 at 3:20










  • $begingroup$
    Yes... once you find a fundamental set of solutions, you can use something like Variation of Parameters to solve for the inhomogeneous case.
    $endgroup$
    – LordVader007
    Jan 31 at 3:22










  • $begingroup$
    The fundamental set of solutions should be: $phi_1(t) = t$ and $phi_2(t) = t^2$
    $endgroup$
    – LordVader007
    Jan 31 at 3:27


















0












$begingroup$


I know that I should find a particular solution, but how ?



I used change of variable method, $t=e^u$ but it didn't work










share|cite|improve this question









$endgroup$












  • $begingroup$
    This is an Euler equation, it's characteristic polynomial is $r(r-1) -2r+2 =0$
    $endgroup$
    – LordVader007
    Jan 31 at 3:15










  • $begingroup$
    See :tutorial.math.lamar.edu/Classes/DE/EulerEquations.aspx
    $endgroup$
    – LordVader007
    Jan 31 at 3:16










  • $begingroup$
    Okay, but we should solve for the homogeneous form of the equation first right ?
    $endgroup$
    – Pedro Alvarès
    Jan 31 at 3:20










  • $begingroup$
    Yes... once you find a fundamental set of solutions, you can use something like Variation of Parameters to solve for the inhomogeneous case.
    $endgroup$
    – LordVader007
    Jan 31 at 3:22










  • $begingroup$
    The fundamental set of solutions should be: $phi_1(t) = t$ and $phi_2(t) = t^2$
    $endgroup$
    – LordVader007
    Jan 31 at 3:27
















0












0








0





$begingroup$


I know that I should find a particular solution, but how ?



I used change of variable method, $t=e^u$ but it didn't work










share|cite|improve this question









$endgroup$




I know that I should find a particular solution, but how ?



I used change of variable method, $t=e^u$ but it didn't work







ordinary-differential-equations






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 31 at 3:14









Pedro AlvarèsPedro Alvarès

946




946












  • $begingroup$
    This is an Euler equation, it's characteristic polynomial is $r(r-1) -2r+2 =0$
    $endgroup$
    – LordVader007
    Jan 31 at 3:15










  • $begingroup$
    See :tutorial.math.lamar.edu/Classes/DE/EulerEquations.aspx
    $endgroup$
    – LordVader007
    Jan 31 at 3:16










  • $begingroup$
    Okay, but we should solve for the homogeneous form of the equation first right ?
    $endgroup$
    – Pedro Alvarès
    Jan 31 at 3:20










  • $begingroup$
    Yes... once you find a fundamental set of solutions, you can use something like Variation of Parameters to solve for the inhomogeneous case.
    $endgroup$
    – LordVader007
    Jan 31 at 3:22










  • $begingroup$
    The fundamental set of solutions should be: $phi_1(t) = t$ and $phi_2(t) = t^2$
    $endgroup$
    – LordVader007
    Jan 31 at 3:27




















  • $begingroup$
    This is an Euler equation, it's characteristic polynomial is $r(r-1) -2r+2 =0$
    $endgroup$
    – LordVader007
    Jan 31 at 3:15










  • $begingroup$
    See :tutorial.math.lamar.edu/Classes/DE/EulerEquations.aspx
    $endgroup$
    – LordVader007
    Jan 31 at 3:16










  • $begingroup$
    Okay, but we should solve for the homogeneous form of the equation first right ?
    $endgroup$
    – Pedro Alvarès
    Jan 31 at 3:20










  • $begingroup$
    Yes... once you find a fundamental set of solutions, you can use something like Variation of Parameters to solve for the inhomogeneous case.
    $endgroup$
    – LordVader007
    Jan 31 at 3:22










  • $begingroup$
    The fundamental set of solutions should be: $phi_1(t) = t$ and $phi_2(t) = t^2$
    $endgroup$
    – LordVader007
    Jan 31 at 3:27


















$begingroup$
This is an Euler equation, it's characteristic polynomial is $r(r-1) -2r+2 =0$
$endgroup$
– LordVader007
Jan 31 at 3:15




$begingroup$
This is an Euler equation, it's characteristic polynomial is $r(r-1) -2r+2 =0$
$endgroup$
– LordVader007
Jan 31 at 3:15












$begingroup$
See :tutorial.math.lamar.edu/Classes/DE/EulerEquations.aspx
$endgroup$
– LordVader007
Jan 31 at 3:16




$begingroup$
See :tutorial.math.lamar.edu/Classes/DE/EulerEquations.aspx
$endgroup$
– LordVader007
Jan 31 at 3:16












$begingroup$
Okay, but we should solve for the homogeneous form of the equation first right ?
$endgroup$
– Pedro Alvarès
Jan 31 at 3:20




$begingroup$
Okay, but we should solve for the homogeneous form of the equation first right ?
$endgroup$
– Pedro Alvarès
Jan 31 at 3:20












$begingroup$
Yes... once you find a fundamental set of solutions, you can use something like Variation of Parameters to solve for the inhomogeneous case.
$endgroup$
– LordVader007
Jan 31 at 3:22




$begingroup$
Yes... once you find a fundamental set of solutions, you can use something like Variation of Parameters to solve for the inhomogeneous case.
$endgroup$
– LordVader007
Jan 31 at 3:22












$begingroup$
The fundamental set of solutions should be: $phi_1(t) = t$ and $phi_2(t) = t^2$
$endgroup$
– LordVader007
Jan 31 at 3:27






$begingroup$
The fundamental set of solutions should be: $phi_1(t) = t$ and $phi_2(t) = t^2$
$endgroup$
– LordVader007
Jan 31 at 3:27












1 Answer
1






active

oldest

votes


















2












$begingroup$

Solve $$x^2y''-2xy'+2y=6x^2+4ln x.$$



We use change of variable method
$$x=e^t,quad t=ln x,quad frac{dt}{dx}=frac1x=e^{-t},$$
$$y'=frac{dy}{dx}=frac{dy}{dt}frac{dt}{dx}=y_te^{-t},$$
$$y''=frac{dy'}{dx}=frac{dy'}{dt}frac{dt}{dx}=frac{d(y_te^{-t})}{dt}e^{-t}=(y''_{tt}-y'_t)e^{-2t}$$
Then
$$xy'=y'_t,quad x^2y''=y''_{tt}-y'_t.$$
We get linear dif. equation with constants coefficients
$$y''_{tt}-3y'_t+2y=6e^{2t}+4t,$$
$$y=y_h+y_p,$$
$$y_h=c_1e^t+c_2e^{2t}$$
With method of undetermined coefficients we find particular solution
$$y_p=Ate^{2t}+Bt+C,\y_p=6te^{2t}+2t+3.$$
Then general solution is
$$y=c_1e^t+c_2e^{2t}+6te^{2t}+2t+3\
=c_1x+c_2x^2+6x^2ln x+2ln x +3.
$$






share|cite|improve this answer









$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094457%2fsolve-t2y-2ty2y-6t24lnt%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Solve $$x^2y''-2xy'+2y=6x^2+4ln x.$$



    We use change of variable method
    $$x=e^t,quad t=ln x,quad frac{dt}{dx}=frac1x=e^{-t},$$
    $$y'=frac{dy}{dx}=frac{dy}{dt}frac{dt}{dx}=y_te^{-t},$$
    $$y''=frac{dy'}{dx}=frac{dy'}{dt}frac{dt}{dx}=frac{d(y_te^{-t})}{dt}e^{-t}=(y''_{tt}-y'_t)e^{-2t}$$
    Then
    $$xy'=y'_t,quad x^2y''=y''_{tt}-y'_t.$$
    We get linear dif. equation with constants coefficients
    $$y''_{tt}-3y'_t+2y=6e^{2t}+4t,$$
    $$y=y_h+y_p,$$
    $$y_h=c_1e^t+c_2e^{2t}$$
    With method of undetermined coefficients we find particular solution
    $$y_p=Ate^{2t}+Bt+C,\y_p=6te^{2t}+2t+3.$$
    Then general solution is
    $$y=c_1e^t+c_2e^{2t}+6te^{2t}+2t+3\
    =c_1x+c_2x^2+6x^2ln x+2ln x +3.
    $$






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      Solve $$x^2y''-2xy'+2y=6x^2+4ln x.$$



      We use change of variable method
      $$x=e^t,quad t=ln x,quad frac{dt}{dx}=frac1x=e^{-t},$$
      $$y'=frac{dy}{dx}=frac{dy}{dt}frac{dt}{dx}=y_te^{-t},$$
      $$y''=frac{dy'}{dx}=frac{dy'}{dt}frac{dt}{dx}=frac{d(y_te^{-t})}{dt}e^{-t}=(y''_{tt}-y'_t)e^{-2t}$$
      Then
      $$xy'=y'_t,quad x^2y''=y''_{tt}-y'_t.$$
      We get linear dif. equation with constants coefficients
      $$y''_{tt}-3y'_t+2y=6e^{2t}+4t,$$
      $$y=y_h+y_p,$$
      $$y_h=c_1e^t+c_2e^{2t}$$
      With method of undetermined coefficients we find particular solution
      $$y_p=Ate^{2t}+Bt+C,\y_p=6te^{2t}+2t+3.$$
      Then general solution is
      $$y=c_1e^t+c_2e^{2t}+6te^{2t}+2t+3\
      =c_1x+c_2x^2+6x^2ln x+2ln x +3.
      $$






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        Solve $$x^2y''-2xy'+2y=6x^2+4ln x.$$



        We use change of variable method
        $$x=e^t,quad t=ln x,quad frac{dt}{dx}=frac1x=e^{-t},$$
        $$y'=frac{dy}{dx}=frac{dy}{dt}frac{dt}{dx}=y_te^{-t},$$
        $$y''=frac{dy'}{dx}=frac{dy'}{dt}frac{dt}{dx}=frac{d(y_te^{-t})}{dt}e^{-t}=(y''_{tt}-y'_t)e^{-2t}$$
        Then
        $$xy'=y'_t,quad x^2y''=y''_{tt}-y'_t.$$
        We get linear dif. equation with constants coefficients
        $$y''_{tt}-3y'_t+2y=6e^{2t}+4t,$$
        $$y=y_h+y_p,$$
        $$y_h=c_1e^t+c_2e^{2t}$$
        With method of undetermined coefficients we find particular solution
        $$y_p=Ate^{2t}+Bt+C,\y_p=6te^{2t}+2t+3.$$
        Then general solution is
        $$y=c_1e^t+c_2e^{2t}+6te^{2t}+2t+3\
        =c_1x+c_2x^2+6x^2ln x+2ln x +3.
        $$






        share|cite|improve this answer









        $endgroup$



        Solve $$x^2y''-2xy'+2y=6x^2+4ln x.$$



        We use change of variable method
        $$x=e^t,quad t=ln x,quad frac{dt}{dx}=frac1x=e^{-t},$$
        $$y'=frac{dy}{dx}=frac{dy}{dt}frac{dt}{dx}=y_te^{-t},$$
        $$y''=frac{dy'}{dx}=frac{dy'}{dt}frac{dt}{dx}=frac{d(y_te^{-t})}{dt}e^{-t}=(y''_{tt}-y'_t)e^{-2t}$$
        Then
        $$xy'=y'_t,quad x^2y''=y''_{tt}-y'_t.$$
        We get linear dif. equation with constants coefficients
        $$y''_{tt}-3y'_t+2y=6e^{2t}+4t,$$
        $$y=y_h+y_p,$$
        $$y_h=c_1e^t+c_2e^{2t}$$
        With method of undetermined coefficients we find particular solution
        $$y_p=Ate^{2t}+Bt+C,\y_p=6te^{2t}+2t+3.$$
        Then general solution is
        $$y=c_1e^t+c_2e^{2t}+6te^{2t}+2t+3\
        =c_1x+c_2x^2+6x^2ln x+2ln x +3.
        $$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 31 at 9:46









        Aleksas DomarkasAleksas Domarkas

        1,62317




        1,62317






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3094457%2fsolve-t2y-2ty2y-6t24lnt%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith