The complex topological $K$-theory spectrum is not an $Hmathbb{Z}$-module.
$begingroup$
Why is it true that the complex topological $K$-theory spectrum is not an $Hmathbb{Z}$-module? I mean, why the nontriviality of the first $k$-invariant implies the claim above?
algebraic-topology k-theory topological-k-theory
$endgroup$
add a comment |
$begingroup$
Why is it true that the complex topological $K$-theory spectrum is not an $Hmathbb{Z}$-module? I mean, why the nontriviality of the first $k$-invariant implies the claim above?
algebraic-topology k-theory topological-k-theory
$endgroup$
add a comment |
$begingroup$
Why is it true that the complex topological $K$-theory spectrum is not an $Hmathbb{Z}$-module? I mean, why the nontriviality of the first $k$-invariant implies the claim above?
algebraic-topology k-theory topological-k-theory
$endgroup$
Why is it true that the complex topological $K$-theory spectrum is not an $Hmathbb{Z}$-module? I mean, why the nontriviality of the first $k$-invariant implies the claim above?
algebraic-topology k-theory topological-k-theory
algebraic-topology k-theory topological-k-theory
asked Jan 30 at 19:28
user438991user438991
16016
16016
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $E$ be a $Hmathbb{Z}$-module spectrum and consider the smash $Hmathbb{Z}wedge E$. I claim in this case that it is the wedge
$$Hmathbb{Z}wedge Esimeq bigvee_{kinmathbb{Z}} Sigma^kHG_k$$
where $G_k=H_k(E)$. To see this, for each $kinmathbb{Z}$ take the Moore spectrum $Sigma^kMG_k$ and a map $alpha_k:Sigma^kMG_krightarrow Hmathbb{Z}wedge E$ which induces an isomorphism
$$alpha_k:pi_k(HG_k)cong H_k(E)xrightarrowcongpi_k(Hmathbb{Z}wedge E)=H_k(E).$$
It is a standard result that such a map should exist, and it is indeed easy to construct one explicitly starting with a given presentation of $MG_k$ as a cofiber of a map between wedges of spheres.
Now fix $k$ and consider the map
$$beta_k:Hmathbb{Z}wedgeSigma^kMG_kxrightarrow{1wedgealpha_k}Hmathbb{Z}wedge Hmathbb{Z}wedge Exrightarrow{muwedge 1}Hmathbb{Z}wedge E$$
where $mu$ is the ring-spectrum product on $Hmathbb{Z}$. It is clear from the definitions that this map induces an isomorphism on $pi_k$, and the trivial homomorphism on $pi_l$ for $lneq k$. Therefore, when we define
$$bigvee_{kinmathbb{Z}} Sigma^kHG_kxrightarrow{bigveebeta_k}Hmathbb{Z}wedge E$$
we easily see that it is a weak equivalence, and we get our claim.
The point is that an $Hmathbb{Z}$-module spectrum is a GES (generalised Eilenberg-Mac Lane Spectrum, i.e. a wedge of suspensions of EM-spectra) and in particular has no non-trivial Postnikov invariants. On the other hand, the K-theory spectrum $KU$ indeed does have non-trivial Postnikov invariants. Hence it is not a GES, and so not an $Hmathbb{Z}$-module.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093994%2fthe-complex-topological-k-theory-spectrum-is-not-an-h-mathbbz-module%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $E$ be a $Hmathbb{Z}$-module spectrum and consider the smash $Hmathbb{Z}wedge E$. I claim in this case that it is the wedge
$$Hmathbb{Z}wedge Esimeq bigvee_{kinmathbb{Z}} Sigma^kHG_k$$
where $G_k=H_k(E)$. To see this, for each $kinmathbb{Z}$ take the Moore spectrum $Sigma^kMG_k$ and a map $alpha_k:Sigma^kMG_krightarrow Hmathbb{Z}wedge E$ which induces an isomorphism
$$alpha_k:pi_k(HG_k)cong H_k(E)xrightarrowcongpi_k(Hmathbb{Z}wedge E)=H_k(E).$$
It is a standard result that such a map should exist, and it is indeed easy to construct one explicitly starting with a given presentation of $MG_k$ as a cofiber of a map between wedges of spheres.
Now fix $k$ and consider the map
$$beta_k:Hmathbb{Z}wedgeSigma^kMG_kxrightarrow{1wedgealpha_k}Hmathbb{Z}wedge Hmathbb{Z}wedge Exrightarrow{muwedge 1}Hmathbb{Z}wedge E$$
where $mu$ is the ring-spectrum product on $Hmathbb{Z}$. It is clear from the definitions that this map induces an isomorphism on $pi_k$, and the trivial homomorphism on $pi_l$ for $lneq k$. Therefore, when we define
$$bigvee_{kinmathbb{Z}} Sigma^kHG_kxrightarrow{bigveebeta_k}Hmathbb{Z}wedge E$$
we easily see that it is a weak equivalence, and we get our claim.
The point is that an $Hmathbb{Z}$-module spectrum is a GES (generalised Eilenberg-Mac Lane Spectrum, i.e. a wedge of suspensions of EM-spectra) and in particular has no non-trivial Postnikov invariants. On the other hand, the K-theory spectrum $KU$ indeed does have non-trivial Postnikov invariants. Hence it is not a GES, and so not an $Hmathbb{Z}$-module.
$endgroup$
add a comment |
$begingroup$
Let $E$ be a $Hmathbb{Z}$-module spectrum and consider the smash $Hmathbb{Z}wedge E$. I claim in this case that it is the wedge
$$Hmathbb{Z}wedge Esimeq bigvee_{kinmathbb{Z}} Sigma^kHG_k$$
where $G_k=H_k(E)$. To see this, for each $kinmathbb{Z}$ take the Moore spectrum $Sigma^kMG_k$ and a map $alpha_k:Sigma^kMG_krightarrow Hmathbb{Z}wedge E$ which induces an isomorphism
$$alpha_k:pi_k(HG_k)cong H_k(E)xrightarrowcongpi_k(Hmathbb{Z}wedge E)=H_k(E).$$
It is a standard result that such a map should exist, and it is indeed easy to construct one explicitly starting with a given presentation of $MG_k$ as a cofiber of a map between wedges of spheres.
Now fix $k$ and consider the map
$$beta_k:Hmathbb{Z}wedgeSigma^kMG_kxrightarrow{1wedgealpha_k}Hmathbb{Z}wedge Hmathbb{Z}wedge Exrightarrow{muwedge 1}Hmathbb{Z}wedge E$$
where $mu$ is the ring-spectrum product on $Hmathbb{Z}$. It is clear from the definitions that this map induces an isomorphism on $pi_k$, and the trivial homomorphism on $pi_l$ for $lneq k$. Therefore, when we define
$$bigvee_{kinmathbb{Z}} Sigma^kHG_kxrightarrow{bigveebeta_k}Hmathbb{Z}wedge E$$
we easily see that it is a weak equivalence, and we get our claim.
The point is that an $Hmathbb{Z}$-module spectrum is a GES (generalised Eilenberg-Mac Lane Spectrum, i.e. a wedge of suspensions of EM-spectra) and in particular has no non-trivial Postnikov invariants. On the other hand, the K-theory spectrum $KU$ indeed does have non-trivial Postnikov invariants. Hence it is not a GES, and so not an $Hmathbb{Z}$-module.
$endgroup$
add a comment |
$begingroup$
Let $E$ be a $Hmathbb{Z}$-module spectrum and consider the smash $Hmathbb{Z}wedge E$. I claim in this case that it is the wedge
$$Hmathbb{Z}wedge Esimeq bigvee_{kinmathbb{Z}} Sigma^kHG_k$$
where $G_k=H_k(E)$. To see this, for each $kinmathbb{Z}$ take the Moore spectrum $Sigma^kMG_k$ and a map $alpha_k:Sigma^kMG_krightarrow Hmathbb{Z}wedge E$ which induces an isomorphism
$$alpha_k:pi_k(HG_k)cong H_k(E)xrightarrowcongpi_k(Hmathbb{Z}wedge E)=H_k(E).$$
It is a standard result that such a map should exist, and it is indeed easy to construct one explicitly starting with a given presentation of $MG_k$ as a cofiber of a map between wedges of spheres.
Now fix $k$ and consider the map
$$beta_k:Hmathbb{Z}wedgeSigma^kMG_kxrightarrow{1wedgealpha_k}Hmathbb{Z}wedge Hmathbb{Z}wedge Exrightarrow{muwedge 1}Hmathbb{Z}wedge E$$
where $mu$ is the ring-spectrum product on $Hmathbb{Z}$. It is clear from the definitions that this map induces an isomorphism on $pi_k$, and the trivial homomorphism on $pi_l$ for $lneq k$. Therefore, when we define
$$bigvee_{kinmathbb{Z}} Sigma^kHG_kxrightarrow{bigveebeta_k}Hmathbb{Z}wedge E$$
we easily see that it is a weak equivalence, and we get our claim.
The point is that an $Hmathbb{Z}$-module spectrum is a GES (generalised Eilenberg-Mac Lane Spectrum, i.e. a wedge of suspensions of EM-spectra) and in particular has no non-trivial Postnikov invariants. On the other hand, the K-theory spectrum $KU$ indeed does have non-trivial Postnikov invariants. Hence it is not a GES, and so not an $Hmathbb{Z}$-module.
$endgroup$
Let $E$ be a $Hmathbb{Z}$-module spectrum and consider the smash $Hmathbb{Z}wedge E$. I claim in this case that it is the wedge
$$Hmathbb{Z}wedge Esimeq bigvee_{kinmathbb{Z}} Sigma^kHG_k$$
where $G_k=H_k(E)$. To see this, for each $kinmathbb{Z}$ take the Moore spectrum $Sigma^kMG_k$ and a map $alpha_k:Sigma^kMG_krightarrow Hmathbb{Z}wedge E$ which induces an isomorphism
$$alpha_k:pi_k(HG_k)cong H_k(E)xrightarrowcongpi_k(Hmathbb{Z}wedge E)=H_k(E).$$
It is a standard result that such a map should exist, and it is indeed easy to construct one explicitly starting with a given presentation of $MG_k$ as a cofiber of a map between wedges of spheres.
Now fix $k$ and consider the map
$$beta_k:Hmathbb{Z}wedgeSigma^kMG_kxrightarrow{1wedgealpha_k}Hmathbb{Z}wedge Hmathbb{Z}wedge Exrightarrow{muwedge 1}Hmathbb{Z}wedge E$$
where $mu$ is the ring-spectrum product on $Hmathbb{Z}$. It is clear from the definitions that this map induces an isomorphism on $pi_k$, and the trivial homomorphism on $pi_l$ for $lneq k$. Therefore, when we define
$$bigvee_{kinmathbb{Z}} Sigma^kHG_kxrightarrow{bigveebeta_k}Hmathbb{Z}wedge E$$
we easily see that it is a weak equivalence, and we get our claim.
The point is that an $Hmathbb{Z}$-module spectrum is a GES (generalised Eilenberg-Mac Lane Spectrum, i.e. a wedge of suspensions of EM-spectra) and in particular has no non-trivial Postnikov invariants. On the other hand, the K-theory spectrum $KU$ indeed does have non-trivial Postnikov invariants. Hence it is not a GES, and so not an $Hmathbb{Z}$-module.
answered Jan 31 at 11:14
TyroneTyrone
5,31711226
5,31711226
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3093994%2fthe-complex-topological-k-theory-spectrum-is-not-an-h-mathbbz-module%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown