What is the value of $1+frac{1}{2^2}+ frac{1}{4^2}+ frac{1}{8^2}+… $?
$begingroup$
I need to find the value of the following series:
$$ 1+frac{1}{2^2}+ frac{1}{4^2}+ frac{1}{8^2}+cdots $$
That is
$$
1+ frac{1}{2^2}+ frac{1}{(2^2)^2} +frac {1}{(2^3)^2}+ cdots$$
It is the summation of a geometric progression where all the terms are squared. I am unable to go further with it.
calculus sequences-and-series summation
$endgroup$
add a comment |
$begingroup$
I need to find the value of the following series:
$$ 1+frac{1}{2^2}+ frac{1}{4^2}+ frac{1}{8^2}+cdots $$
That is
$$
1+ frac{1}{2^2}+ frac{1}{(2^2)^2} +frac {1}{(2^3)^2}+ cdots$$
It is the summation of a geometric progression where all the terms are squared. I am unable to go further with it.
calculus sequences-and-series summation
$endgroup$
$begingroup$
That's a geometric series...
$endgroup$
– Yanko
Feb 1 at 16:12
$begingroup$
What is a "G.P."?
$endgroup$
– user587192
Feb 1 at 16:18
$begingroup$
@user587192 Simply Geometric Progression
$endgroup$
– user638473
Feb 1 at 16:19
$begingroup$
If you didn't spot the identity $1+x+x^2+cdots=frac{1}{1-x}$ for $|x|<1$ implies $1+y^2+y^4+cdots=frac{1}{1-y^2}$ from $x=y^2$, another option would be $(1+y)(1+y^2+y^4+cdots)=1+y+y^2+cdots=frac{1}{1-y}$.
$endgroup$
– J.G.
Feb 1 at 16:55
add a comment |
$begingroup$
I need to find the value of the following series:
$$ 1+frac{1}{2^2}+ frac{1}{4^2}+ frac{1}{8^2}+cdots $$
That is
$$
1+ frac{1}{2^2}+ frac{1}{(2^2)^2} +frac {1}{(2^3)^2}+ cdots$$
It is the summation of a geometric progression where all the terms are squared. I am unable to go further with it.
calculus sequences-and-series summation
$endgroup$
I need to find the value of the following series:
$$ 1+frac{1}{2^2}+ frac{1}{4^2}+ frac{1}{8^2}+cdots $$
That is
$$
1+ frac{1}{2^2}+ frac{1}{(2^2)^2} +frac {1}{(2^3)^2}+ cdots$$
It is the summation of a geometric progression where all the terms are squared. I am unable to go further with it.
calculus sequences-and-series summation
calculus sequences-and-series summation
edited Feb 1 at 16:20
user587192
asked Feb 1 at 16:09
user638473user638473
505
505
$begingroup$
That's a geometric series...
$endgroup$
– Yanko
Feb 1 at 16:12
$begingroup$
What is a "G.P."?
$endgroup$
– user587192
Feb 1 at 16:18
$begingroup$
@user587192 Simply Geometric Progression
$endgroup$
– user638473
Feb 1 at 16:19
$begingroup$
If you didn't spot the identity $1+x+x^2+cdots=frac{1}{1-x}$ for $|x|<1$ implies $1+y^2+y^4+cdots=frac{1}{1-y^2}$ from $x=y^2$, another option would be $(1+y)(1+y^2+y^4+cdots)=1+y+y^2+cdots=frac{1}{1-y}$.
$endgroup$
– J.G.
Feb 1 at 16:55
add a comment |
$begingroup$
That's a geometric series...
$endgroup$
– Yanko
Feb 1 at 16:12
$begingroup$
What is a "G.P."?
$endgroup$
– user587192
Feb 1 at 16:18
$begingroup$
@user587192 Simply Geometric Progression
$endgroup$
– user638473
Feb 1 at 16:19
$begingroup$
If you didn't spot the identity $1+x+x^2+cdots=frac{1}{1-x}$ for $|x|<1$ implies $1+y^2+y^4+cdots=frac{1}{1-y^2}$ from $x=y^2$, another option would be $(1+y)(1+y^2+y^4+cdots)=1+y+y^2+cdots=frac{1}{1-y}$.
$endgroup$
– J.G.
Feb 1 at 16:55
$begingroup$
That's a geometric series...
$endgroup$
– Yanko
Feb 1 at 16:12
$begingroup$
That's a geometric series...
$endgroup$
– Yanko
Feb 1 at 16:12
$begingroup$
What is a "G.P."?
$endgroup$
– user587192
Feb 1 at 16:18
$begingroup$
What is a "G.P."?
$endgroup$
– user587192
Feb 1 at 16:18
$begingroup$
@user587192 Simply Geometric Progression
$endgroup$
– user638473
Feb 1 at 16:19
$begingroup$
@user587192 Simply Geometric Progression
$endgroup$
– user638473
Feb 1 at 16:19
$begingroup$
If you didn't spot the identity $1+x+x^2+cdots=frac{1}{1-x}$ for $|x|<1$ implies $1+y^2+y^4+cdots=frac{1}{1-y^2}$ from $x=y^2$, another option would be $(1+y)(1+y^2+y^4+cdots)=1+y+y^2+cdots=frac{1}{1-y}$.
$endgroup$
– J.G.
Feb 1 at 16:55
$begingroup$
If you didn't spot the identity $1+x+x^2+cdots=frac{1}{1-x}$ for $|x|<1$ implies $1+y^2+y^4+cdots=frac{1}{1-y^2}$ from $x=y^2$, another option would be $(1+y)(1+y^2+y^4+cdots)=1+y+y^2+cdots=frac{1}{1-y}$.
$endgroup$
– J.G.
Feb 1 at 16:55
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
You're right. You're summing:
$$sum_{n=0}^infty{bigg[color{green}1cdotcolor{red}{bigg(frac14bigg)}^nbigg]}=frac{color{green}1}{1-color{red}{frac14}}=frac43$$
$endgroup$
add a comment |
$begingroup$
Why is it that the squares give you trouble? Your series is simply$$1+frac1{2^2}+frac1{(2^2)^2}+frac1{(2^2)^3}+cdots$$and therefore its sum is$$frac1{1-frac1{2^2}}=frac43.$$
$endgroup$
$begingroup$
Oh my! Of course. I totally missed out on that
$endgroup$
– user638473
Feb 1 at 16:13
add a comment |
$begingroup$
$$
begin{align}
1+frac{1}{2^2}+ frac{1}{4^2}+ frac{1}{8^2}+cdots
&=frac{1}{(2^0)^2}+frac{1}{(2^1)^2}+ frac{1}{(2^2)^2}+ frac{1}{(2^3)^2}+cdots\
&=frac{1}{(2^2)^0}+frac{1}{(2^2)^1}+ frac{1}{(2^2)^2}+ frac{1}{(2^2)^3}+cdots\
&=sumlimits_{n=0}^{infty}frac{1}{left(2^2right)^n}\
&=sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n.
end{align}
$$
$sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n$ is a geometric series because it's an expression of the form $sumlimits_{n=0}^{infty}ar^n$ where $a=1$ and $r=frac{1}{4}$. We also know that if $|r|<1$, a geometric series converges (otherwise it diverges which means that the sum does not approach a finite number, in other words, it blows up to either positive or negative infinity) and we can even find what it converges to using the formula $sumlimits_{n=0}^{infty}ar^n=frac{a}{1-r}$. In our case, $left|frac{1}{4}right|<1$. So, we know that our series converges and we can find what it converges to:
$$
sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n=frac{1}{1-frac{1}{4}}=frac{4}{3}=1frac{1}{3}.
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096423%2fwhat-is-the-value-of-1-frac122-frac142-frac182%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You're right. You're summing:
$$sum_{n=0}^infty{bigg[color{green}1cdotcolor{red}{bigg(frac14bigg)}^nbigg]}=frac{color{green}1}{1-color{red}{frac14}}=frac43$$
$endgroup$
add a comment |
$begingroup$
You're right. You're summing:
$$sum_{n=0}^infty{bigg[color{green}1cdotcolor{red}{bigg(frac14bigg)}^nbigg]}=frac{color{green}1}{1-color{red}{frac14}}=frac43$$
$endgroup$
add a comment |
$begingroup$
You're right. You're summing:
$$sum_{n=0}^infty{bigg[color{green}1cdotcolor{red}{bigg(frac14bigg)}^nbigg]}=frac{color{green}1}{1-color{red}{frac14}}=frac43$$
$endgroup$
You're right. You're summing:
$$sum_{n=0}^infty{bigg[color{green}1cdotcolor{red}{bigg(frac14bigg)}^nbigg]}=frac{color{green}1}{1-color{red}{frac14}}=frac43$$
edited Feb 1 at 16:47
answered Feb 1 at 16:14


Rhys HughesRhys Hughes
7,0501630
7,0501630
add a comment |
add a comment |
$begingroup$
Why is it that the squares give you trouble? Your series is simply$$1+frac1{2^2}+frac1{(2^2)^2}+frac1{(2^2)^3}+cdots$$and therefore its sum is$$frac1{1-frac1{2^2}}=frac43.$$
$endgroup$
$begingroup$
Oh my! Of course. I totally missed out on that
$endgroup$
– user638473
Feb 1 at 16:13
add a comment |
$begingroup$
Why is it that the squares give you trouble? Your series is simply$$1+frac1{2^2}+frac1{(2^2)^2}+frac1{(2^2)^3}+cdots$$and therefore its sum is$$frac1{1-frac1{2^2}}=frac43.$$
$endgroup$
$begingroup$
Oh my! Of course. I totally missed out on that
$endgroup$
– user638473
Feb 1 at 16:13
add a comment |
$begingroup$
Why is it that the squares give you trouble? Your series is simply$$1+frac1{2^2}+frac1{(2^2)^2}+frac1{(2^2)^3}+cdots$$and therefore its sum is$$frac1{1-frac1{2^2}}=frac43.$$
$endgroup$
Why is it that the squares give you trouble? Your series is simply$$1+frac1{2^2}+frac1{(2^2)^2}+frac1{(2^2)^3}+cdots$$and therefore its sum is$$frac1{1-frac1{2^2}}=frac43.$$
answered Feb 1 at 16:12


José Carlos SantosJosé Carlos Santos
174k23133242
174k23133242
$begingroup$
Oh my! Of course. I totally missed out on that
$endgroup$
– user638473
Feb 1 at 16:13
add a comment |
$begingroup$
Oh my! Of course. I totally missed out on that
$endgroup$
– user638473
Feb 1 at 16:13
$begingroup$
Oh my! Of course. I totally missed out on that
$endgroup$
– user638473
Feb 1 at 16:13
$begingroup$
Oh my! Of course. I totally missed out on that
$endgroup$
– user638473
Feb 1 at 16:13
add a comment |
$begingroup$
$$
begin{align}
1+frac{1}{2^2}+ frac{1}{4^2}+ frac{1}{8^2}+cdots
&=frac{1}{(2^0)^2}+frac{1}{(2^1)^2}+ frac{1}{(2^2)^2}+ frac{1}{(2^3)^2}+cdots\
&=frac{1}{(2^2)^0}+frac{1}{(2^2)^1}+ frac{1}{(2^2)^2}+ frac{1}{(2^2)^3}+cdots\
&=sumlimits_{n=0}^{infty}frac{1}{left(2^2right)^n}\
&=sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n.
end{align}
$$
$sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n$ is a geometric series because it's an expression of the form $sumlimits_{n=0}^{infty}ar^n$ where $a=1$ and $r=frac{1}{4}$. We also know that if $|r|<1$, a geometric series converges (otherwise it diverges which means that the sum does not approach a finite number, in other words, it blows up to either positive or negative infinity) and we can even find what it converges to using the formula $sumlimits_{n=0}^{infty}ar^n=frac{a}{1-r}$. In our case, $left|frac{1}{4}right|<1$. So, we know that our series converges and we can find what it converges to:
$$
sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n=frac{1}{1-frac{1}{4}}=frac{4}{3}=1frac{1}{3}.
$$
$endgroup$
add a comment |
$begingroup$
$$
begin{align}
1+frac{1}{2^2}+ frac{1}{4^2}+ frac{1}{8^2}+cdots
&=frac{1}{(2^0)^2}+frac{1}{(2^1)^2}+ frac{1}{(2^2)^2}+ frac{1}{(2^3)^2}+cdots\
&=frac{1}{(2^2)^0}+frac{1}{(2^2)^1}+ frac{1}{(2^2)^2}+ frac{1}{(2^2)^3}+cdots\
&=sumlimits_{n=0}^{infty}frac{1}{left(2^2right)^n}\
&=sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n.
end{align}
$$
$sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n$ is a geometric series because it's an expression of the form $sumlimits_{n=0}^{infty}ar^n$ where $a=1$ and $r=frac{1}{4}$. We also know that if $|r|<1$, a geometric series converges (otherwise it diverges which means that the sum does not approach a finite number, in other words, it blows up to either positive or negative infinity) and we can even find what it converges to using the formula $sumlimits_{n=0}^{infty}ar^n=frac{a}{1-r}$. In our case, $left|frac{1}{4}right|<1$. So, we know that our series converges and we can find what it converges to:
$$
sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n=frac{1}{1-frac{1}{4}}=frac{4}{3}=1frac{1}{3}.
$$
$endgroup$
add a comment |
$begingroup$
$$
begin{align}
1+frac{1}{2^2}+ frac{1}{4^2}+ frac{1}{8^2}+cdots
&=frac{1}{(2^0)^2}+frac{1}{(2^1)^2}+ frac{1}{(2^2)^2}+ frac{1}{(2^3)^2}+cdots\
&=frac{1}{(2^2)^0}+frac{1}{(2^2)^1}+ frac{1}{(2^2)^2}+ frac{1}{(2^2)^3}+cdots\
&=sumlimits_{n=0}^{infty}frac{1}{left(2^2right)^n}\
&=sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n.
end{align}
$$
$sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n$ is a geometric series because it's an expression of the form $sumlimits_{n=0}^{infty}ar^n$ where $a=1$ and $r=frac{1}{4}$. We also know that if $|r|<1$, a geometric series converges (otherwise it diverges which means that the sum does not approach a finite number, in other words, it blows up to either positive or negative infinity) and we can even find what it converges to using the formula $sumlimits_{n=0}^{infty}ar^n=frac{a}{1-r}$. In our case, $left|frac{1}{4}right|<1$. So, we know that our series converges and we can find what it converges to:
$$
sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n=frac{1}{1-frac{1}{4}}=frac{4}{3}=1frac{1}{3}.
$$
$endgroup$
$$
begin{align}
1+frac{1}{2^2}+ frac{1}{4^2}+ frac{1}{8^2}+cdots
&=frac{1}{(2^0)^2}+frac{1}{(2^1)^2}+ frac{1}{(2^2)^2}+ frac{1}{(2^3)^2}+cdots\
&=frac{1}{(2^2)^0}+frac{1}{(2^2)^1}+ frac{1}{(2^2)^2}+ frac{1}{(2^2)^3}+cdots\
&=sumlimits_{n=0}^{infty}frac{1}{left(2^2right)^n}\
&=sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n.
end{align}
$$
$sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n$ is a geometric series because it's an expression of the form $sumlimits_{n=0}^{infty}ar^n$ where $a=1$ and $r=frac{1}{4}$. We also know that if $|r|<1$, a geometric series converges (otherwise it diverges which means that the sum does not approach a finite number, in other words, it blows up to either positive or negative infinity) and we can even find what it converges to using the formula $sumlimits_{n=0}^{infty}ar^n=frac{a}{1-r}$. In our case, $left|frac{1}{4}right|<1$. So, we know that our series converges and we can find what it converges to:
$$
sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n=frac{1}{1-frac{1}{4}}=frac{4}{3}=1frac{1}{3}.
$$
edited Feb 1 at 17:22
answered Feb 1 at 16:35
Michael RybkinMichael Rybkin
4,264422
4,264422
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096423%2fwhat-is-the-value-of-1-frac122-frac142-frac182%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
That's a geometric series...
$endgroup$
– Yanko
Feb 1 at 16:12
$begingroup$
What is a "G.P."?
$endgroup$
– user587192
Feb 1 at 16:18
$begingroup$
@user587192 Simply Geometric Progression
$endgroup$
– user638473
Feb 1 at 16:19
$begingroup$
If you didn't spot the identity $1+x+x^2+cdots=frac{1}{1-x}$ for $|x|<1$ implies $1+y^2+y^4+cdots=frac{1}{1-y^2}$ from $x=y^2$, another option would be $(1+y)(1+y^2+y^4+cdots)=1+y+y^2+cdots=frac{1}{1-y}$.
$endgroup$
– J.G.
Feb 1 at 16:55