What is the value of $1+frac{1}{2^2}+ frac{1}{4^2}+ frac{1}{8^2}+… $?












1












$begingroup$


I need to find the value of the following series:



$$ 1+frac{1}{2^2}+ frac{1}{4^2}+ frac{1}{8^2}+cdots $$



That is
$$
1+ frac{1}{2^2}+ frac{1}{(2^2)^2} +frac {1}{(2^3)^2}+ cdots$$



It is the summation of a geometric progression where all the terms are squared. I am unable to go further with it.










share|cite|improve this question











$endgroup$












  • $begingroup$
    That's a geometric series...
    $endgroup$
    – Yanko
    Feb 1 at 16:12












  • $begingroup$
    What is a "G.P."?
    $endgroup$
    – user587192
    Feb 1 at 16:18










  • $begingroup$
    @user587192 Simply Geometric Progression
    $endgroup$
    – user638473
    Feb 1 at 16:19










  • $begingroup$
    If you didn't spot the identity $1+x+x^2+cdots=frac{1}{1-x}$ for $|x|<1$ implies $1+y^2+y^4+cdots=frac{1}{1-y^2}$ from $x=y^2$, another option would be $(1+y)(1+y^2+y^4+cdots)=1+y+y^2+cdots=frac{1}{1-y}$.
    $endgroup$
    – J.G.
    Feb 1 at 16:55
















1












$begingroup$


I need to find the value of the following series:



$$ 1+frac{1}{2^2}+ frac{1}{4^2}+ frac{1}{8^2}+cdots $$



That is
$$
1+ frac{1}{2^2}+ frac{1}{(2^2)^2} +frac {1}{(2^3)^2}+ cdots$$



It is the summation of a geometric progression where all the terms are squared. I am unable to go further with it.










share|cite|improve this question











$endgroup$












  • $begingroup$
    That's a geometric series...
    $endgroup$
    – Yanko
    Feb 1 at 16:12












  • $begingroup$
    What is a "G.P."?
    $endgroup$
    – user587192
    Feb 1 at 16:18










  • $begingroup$
    @user587192 Simply Geometric Progression
    $endgroup$
    – user638473
    Feb 1 at 16:19










  • $begingroup$
    If you didn't spot the identity $1+x+x^2+cdots=frac{1}{1-x}$ for $|x|<1$ implies $1+y^2+y^4+cdots=frac{1}{1-y^2}$ from $x=y^2$, another option would be $(1+y)(1+y^2+y^4+cdots)=1+y+y^2+cdots=frac{1}{1-y}$.
    $endgroup$
    – J.G.
    Feb 1 at 16:55














1












1








1


0



$begingroup$


I need to find the value of the following series:



$$ 1+frac{1}{2^2}+ frac{1}{4^2}+ frac{1}{8^2}+cdots $$



That is
$$
1+ frac{1}{2^2}+ frac{1}{(2^2)^2} +frac {1}{(2^3)^2}+ cdots$$



It is the summation of a geometric progression where all the terms are squared. I am unable to go further with it.










share|cite|improve this question











$endgroup$




I need to find the value of the following series:



$$ 1+frac{1}{2^2}+ frac{1}{4^2}+ frac{1}{8^2}+cdots $$



That is
$$
1+ frac{1}{2^2}+ frac{1}{(2^2)^2} +frac {1}{(2^3)^2}+ cdots$$



It is the summation of a geometric progression where all the terms are squared. I am unable to go further with it.







calculus sequences-and-series summation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 1 at 16:20







user587192

















asked Feb 1 at 16:09









user638473user638473

505




505












  • $begingroup$
    That's a geometric series...
    $endgroup$
    – Yanko
    Feb 1 at 16:12












  • $begingroup$
    What is a "G.P."?
    $endgroup$
    – user587192
    Feb 1 at 16:18










  • $begingroup$
    @user587192 Simply Geometric Progression
    $endgroup$
    – user638473
    Feb 1 at 16:19










  • $begingroup$
    If you didn't spot the identity $1+x+x^2+cdots=frac{1}{1-x}$ for $|x|<1$ implies $1+y^2+y^4+cdots=frac{1}{1-y^2}$ from $x=y^2$, another option would be $(1+y)(1+y^2+y^4+cdots)=1+y+y^2+cdots=frac{1}{1-y}$.
    $endgroup$
    – J.G.
    Feb 1 at 16:55


















  • $begingroup$
    That's a geometric series...
    $endgroup$
    – Yanko
    Feb 1 at 16:12












  • $begingroup$
    What is a "G.P."?
    $endgroup$
    – user587192
    Feb 1 at 16:18










  • $begingroup$
    @user587192 Simply Geometric Progression
    $endgroup$
    – user638473
    Feb 1 at 16:19










  • $begingroup$
    If you didn't spot the identity $1+x+x^2+cdots=frac{1}{1-x}$ for $|x|<1$ implies $1+y^2+y^4+cdots=frac{1}{1-y^2}$ from $x=y^2$, another option would be $(1+y)(1+y^2+y^4+cdots)=1+y+y^2+cdots=frac{1}{1-y}$.
    $endgroup$
    – J.G.
    Feb 1 at 16:55
















$begingroup$
That's a geometric series...
$endgroup$
– Yanko
Feb 1 at 16:12






$begingroup$
That's a geometric series...
$endgroup$
– Yanko
Feb 1 at 16:12














$begingroup$
What is a "G.P."?
$endgroup$
– user587192
Feb 1 at 16:18




$begingroup$
What is a "G.P."?
$endgroup$
– user587192
Feb 1 at 16:18












$begingroup$
@user587192 Simply Geometric Progression
$endgroup$
– user638473
Feb 1 at 16:19




$begingroup$
@user587192 Simply Geometric Progression
$endgroup$
– user638473
Feb 1 at 16:19












$begingroup$
If you didn't spot the identity $1+x+x^2+cdots=frac{1}{1-x}$ for $|x|<1$ implies $1+y^2+y^4+cdots=frac{1}{1-y^2}$ from $x=y^2$, another option would be $(1+y)(1+y^2+y^4+cdots)=1+y+y^2+cdots=frac{1}{1-y}$.
$endgroup$
– J.G.
Feb 1 at 16:55




$begingroup$
If you didn't spot the identity $1+x+x^2+cdots=frac{1}{1-x}$ for $|x|<1$ implies $1+y^2+y^4+cdots=frac{1}{1-y^2}$ from $x=y^2$, another option would be $(1+y)(1+y^2+y^4+cdots)=1+y+y^2+cdots=frac{1}{1-y}$.
$endgroup$
– J.G.
Feb 1 at 16:55










3 Answers
3






active

oldest

votes


















5












$begingroup$

You're right. You're summing:



$$sum_{n=0}^infty{bigg[color{green}1cdotcolor{red}{bigg(frac14bigg)}^nbigg]}=frac{color{green}1}{1-color{red}{frac14}}=frac43$$






share|cite|improve this answer











$endgroup$





















    8












    $begingroup$

    Why is it that the squares give you trouble? Your series is simply$$1+frac1{2^2}+frac1{(2^2)^2}+frac1{(2^2)^3}+cdots$$and therefore its sum is$$frac1{1-frac1{2^2}}=frac43.$$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Oh my! Of course. I totally missed out on that
      $endgroup$
      – user638473
      Feb 1 at 16:13



















    4












    $begingroup$

    $$
    begin{align}
    1+frac{1}{2^2}+ frac{1}{4^2}+ frac{1}{8^2}+cdots
    &=frac{1}{(2^0)^2}+frac{1}{(2^1)^2}+ frac{1}{(2^2)^2}+ frac{1}{(2^3)^2}+cdots\
    &=frac{1}{(2^2)^0}+frac{1}{(2^2)^1}+ frac{1}{(2^2)^2}+ frac{1}{(2^2)^3}+cdots\
    &=sumlimits_{n=0}^{infty}frac{1}{left(2^2right)^n}\
    &=sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n.
    end{align}
    $$



    $sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n$ is a geometric series because it's an expression of the form $sumlimits_{n=0}^{infty}ar^n$ where $a=1$ and $r=frac{1}{4}$. We also know that if $|r|<1$, a geometric series converges (otherwise it diverges which means that the sum does not approach a finite number, in other words, it blows up to either positive or negative infinity) and we can even find what it converges to using the formula $sumlimits_{n=0}^{infty}ar^n=frac{a}{1-r}$. In our case, $left|frac{1}{4}right|<1$. So, we know that our series converges and we can find what it converges to:



    $$
    sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n=frac{1}{1-frac{1}{4}}=frac{4}{3}=1frac{1}{3}.
    $$






    share|cite|improve this answer











    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096423%2fwhat-is-the-value-of-1-frac122-frac142-frac182%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      5












      $begingroup$

      You're right. You're summing:



      $$sum_{n=0}^infty{bigg[color{green}1cdotcolor{red}{bigg(frac14bigg)}^nbigg]}=frac{color{green}1}{1-color{red}{frac14}}=frac43$$






      share|cite|improve this answer











      $endgroup$


















        5












        $begingroup$

        You're right. You're summing:



        $$sum_{n=0}^infty{bigg[color{green}1cdotcolor{red}{bigg(frac14bigg)}^nbigg]}=frac{color{green}1}{1-color{red}{frac14}}=frac43$$






        share|cite|improve this answer











        $endgroup$
















          5












          5








          5





          $begingroup$

          You're right. You're summing:



          $$sum_{n=0}^infty{bigg[color{green}1cdotcolor{red}{bigg(frac14bigg)}^nbigg]}=frac{color{green}1}{1-color{red}{frac14}}=frac43$$






          share|cite|improve this answer











          $endgroup$



          You're right. You're summing:



          $$sum_{n=0}^infty{bigg[color{green}1cdotcolor{red}{bigg(frac14bigg)}^nbigg]}=frac{color{green}1}{1-color{red}{frac14}}=frac43$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Feb 1 at 16:47

























          answered Feb 1 at 16:14









          Rhys HughesRhys Hughes

          7,0501630




          7,0501630























              8












              $begingroup$

              Why is it that the squares give you trouble? Your series is simply$$1+frac1{2^2}+frac1{(2^2)^2}+frac1{(2^2)^3}+cdots$$and therefore its sum is$$frac1{1-frac1{2^2}}=frac43.$$






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                Oh my! Of course. I totally missed out on that
                $endgroup$
                – user638473
                Feb 1 at 16:13
















              8












              $begingroup$

              Why is it that the squares give you trouble? Your series is simply$$1+frac1{2^2}+frac1{(2^2)^2}+frac1{(2^2)^3}+cdots$$and therefore its sum is$$frac1{1-frac1{2^2}}=frac43.$$






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                Oh my! Of course. I totally missed out on that
                $endgroup$
                – user638473
                Feb 1 at 16:13














              8












              8








              8





              $begingroup$

              Why is it that the squares give you trouble? Your series is simply$$1+frac1{2^2}+frac1{(2^2)^2}+frac1{(2^2)^3}+cdots$$and therefore its sum is$$frac1{1-frac1{2^2}}=frac43.$$






              share|cite|improve this answer









              $endgroup$



              Why is it that the squares give you trouble? Your series is simply$$1+frac1{2^2}+frac1{(2^2)^2}+frac1{(2^2)^3}+cdots$$and therefore its sum is$$frac1{1-frac1{2^2}}=frac43.$$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Feb 1 at 16:12









              José Carlos SantosJosé Carlos Santos

              174k23133242




              174k23133242












              • $begingroup$
                Oh my! Of course. I totally missed out on that
                $endgroup$
                – user638473
                Feb 1 at 16:13


















              • $begingroup$
                Oh my! Of course. I totally missed out on that
                $endgroup$
                – user638473
                Feb 1 at 16:13
















              $begingroup$
              Oh my! Of course. I totally missed out on that
              $endgroup$
              – user638473
              Feb 1 at 16:13




              $begingroup$
              Oh my! Of course. I totally missed out on that
              $endgroup$
              – user638473
              Feb 1 at 16:13











              4












              $begingroup$

              $$
              begin{align}
              1+frac{1}{2^2}+ frac{1}{4^2}+ frac{1}{8^2}+cdots
              &=frac{1}{(2^0)^2}+frac{1}{(2^1)^2}+ frac{1}{(2^2)^2}+ frac{1}{(2^3)^2}+cdots\
              &=frac{1}{(2^2)^0}+frac{1}{(2^2)^1}+ frac{1}{(2^2)^2}+ frac{1}{(2^2)^3}+cdots\
              &=sumlimits_{n=0}^{infty}frac{1}{left(2^2right)^n}\
              &=sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n.
              end{align}
              $$



              $sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n$ is a geometric series because it's an expression of the form $sumlimits_{n=0}^{infty}ar^n$ where $a=1$ and $r=frac{1}{4}$. We also know that if $|r|<1$, a geometric series converges (otherwise it diverges which means that the sum does not approach a finite number, in other words, it blows up to either positive or negative infinity) and we can even find what it converges to using the formula $sumlimits_{n=0}^{infty}ar^n=frac{a}{1-r}$. In our case, $left|frac{1}{4}right|<1$. So, we know that our series converges and we can find what it converges to:



              $$
              sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n=frac{1}{1-frac{1}{4}}=frac{4}{3}=1frac{1}{3}.
              $$






              share|cite|improve this answer











              $endgroup$


















                4












                $begingroup$

                $$
                begin{align}
                1+frac{1}{2^2}+ frac{1}{4^2}+ frac{1}{8^2}+cdots
                &=frac{1}{(2^0)^2}+frac{1}{(2^1)^2}+ frac{1}{(2^2)^2}+ frac{1}{(2^3)^2}+cdots\
                &=frac{1}{(2^2)^0}+frac{1}{(2^2)^1}+ frac{1}{(2^2)^2}+ frac{1}{(2^2)^3}+cdots\
                &=sumlimits_{n=0}^{infty}frac{1}{left(2^2right)^n}\
                &=sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n.
                end{align}
                $$



                $sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n$ is a geometric series because it's an expression of the form $sumlimits_{n=0}^{infty}ar^n$ where $a=1$ and $r=frac{1}{4}$. We also know that if $|r|<1$, a geometric series converges (otherwise it diverges which means that the sum does not approach a finite number, in other words, it blows up to either positive or negative infinity) and we can even find what it converges to using the formula $sumlimits_{n=0}^{infty}ar^n=frac{a}{1-r}$. In our case, $left|frac{1}{4}right|<1$. So, we know that our series converges and we can find what it converges to:



                $$
                sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n=frac{1}{1-frac{1}{4}}=frac{4}{3}=1frac{1}{3}.
                $$






                share|cite|improve this answer











                $endgroup$
















                  4












                  4








                  4





                  $begingroup$

                  $$
                  begin{align}
                  1+frac{1}{2^2}+ frac{1}{4^2}+ frac{1}{8^2}+cdots
                  &=frac{1}{(2^0)^2}+frac{1}{(2^1)^2}+ frac{1}{(2^2)^2}+ frac{1}{(2^3)^2}+cdots\
                  &=frac{1}{(2^2)^0}+frac{1}{(2^2)^1}+ frac{1}{(2^2)^2}+ frac{1}{(2^2)^3}+cdots\
                  &=sumlimits_{n=0}^{infty}frac{1}{left(2^2right)^n}\
                  &=sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n.
                  end{align}
                  $$



                  $sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n$ is a geometric series because it's an expression of the form $sumlimits_{n=0}^{infty}ar^n$ where $a=1$ and $r=frac{1}{4}$. We also know that if $|r|<1$, a geometric series converges (otherwise it diverges which means that the sum does not approach a finite number, in other words, it blows up to either positive or negative infinity) and we can even find what it converges to using the formula $sumlimits_{n=0}^{infty}ar^n=frac{a}{1-r}$. In our case, $left|frac{1}{4}right|<1$. So, we know that our series converges and we can find what it converges to:



                  $$
                  sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n=frac{1}{1-frac{1}{4}}=frac{4}{3}=1frac{1}{3}.
                  $$






                  share|cite|improve this answer











                  $endgroup$



                  $$
                  begin{align}
                  1+frac{1}{2^2}+ frac{1}{4^2}+ frac{1}{8^2}+cdots
                  &=frac{1}{(2^0)^2}+frac{1}{(2^1)^2}+ frac{1}{(2^2)^2}+ frac{1}{(2^3)^2}+cdots\
                  &=frac{1}{(2^2)^0}+frac{1}{(2^2)^1}+ frac{1}{(2^2)^2}+ frac{1}{(2^2)^3}+cdots\
                  &=sumlimits_{n=0}^{infty}frac{1}{left(2^2right)^n}\
                  &=sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n.
                  end{align}
                  $$



                  $sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n$ is a geometric series because it's an expression of the form $sumlimits_{n=0}^{infty}ar^n$ where $a=1$ and $r=frac{1}{4}$. We also know that if $|r|<1$, a geometric series converges (otherwise it diverges which means that the sum does not approach a finite number, in other words, it blows up to either positive or negative infinity) and we can even find what it converges to using the formula $sumlimits_{n=0}^{infty}ar^n=frac{a}{1-r}$. In our case, $left|frac{1}{4}right|<1$. So, we know that our series converges and we can find what it converges to:



                  $$
                  sumlimits_{n=0}^{infty}left(frac{1}{4}right)^n=frac{1}{1-frac{1}{4}}=frac{4}{3}=1frac{1}{3}.
                  $$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Feb 1 at 17:22

























                  answered Feb 1 at 16:35









                  Michael RybkinMichael Rybkin

                  4,264422




                  4,264422






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3096423%2fwhat-is-the-value-of-1-frac122-frac142-frac182%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith