Evaluating an improper integral using double integrals [duplicate]












1












$begingroup$



This question already has an answer here:




  • Best way to integrate $ int_0^infty frac{e^{-at} - e^{-bt}}{t} text{d}t $

    2 answers




working on a problem to evaluate



$int_0^infty frac {e^{-x} - e^{-ax}} {x} dx$



the instructions say to first evaluate
$int_1^a e^{-xy} dy$



which comes out to the integrand of the original improper integral.



using this it seems we can rewrite the improper integral as the double integral as follows



$int{_0^infty}int{_1^a} e^{-xy}dydx$



However where I am stuck is changing the order of integration on this double integral in order to evaluate it.










share|cite|improve this question









$endgroup$



marked as duplicate by Zacky, RRL, Lord Shark the Unknown, KReiser, Community Jan 3 at 4:41


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.















  • $begingroup$
    See: en.wikipedia.org/wiki/Frullani_integral or set $a=1$ here:math.stackexchange.com/q/62254/515527
    $endgroup$
    – Zacky
    Jan 3 at 0:01


















1












$begingroup$



This question already has an answer here:




  • Best way to integrate $ int_0^infty frac{e^{-at} - e^{-bt}}{t} text{d}t $

    2 answers




working on a problem to evaluate



$int_0^infty frac {e^{-x} - e^{-ax}} {x} dx$



the instructions say to first evaluate
$int_1^a e^{-xy} dy$



which comes out to the integrand of the original improper integral.



using this it seems we can rewrite the improper integral as the double integral as follows



$int{_0^infty}int{_1^a} e^{-xy}dydx$



However where I am stuck is changing the order of integration on this double integral in order to evaluate it.










share|cite|improve this question









$endgroup$



marked as duplicate by Zacky, RRL, Lord Shark the Unknown, KReiser, Community Jan 3 at 4:41


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.















  • $begingroup$
    See: en.wikipedia.org/wiki/Frullani_integral or set $a=1$ here:math.stackexchange.com/q/62254/515527
    $endgroup$
    – Zacky
    Jan 3 at 0:01
















1












1








1





$begingroup$



This question already has an answer here:




  • Best way to integrate $ int_0^infty frac{e^{-at} - e^{-bt}}{t} text{d}t $

    2 answers




working on a problem to evaluate



$int_0^infty frac {e^{-x} - e^{-ax}} {x} dx$



the instructions say to first evaluate
$int_1^a e^{-xy} dy$



which comes out to the integrand of the original improper integral.



using this it seems we can rewrite the improper integral as the double integral as follows



$int{_0^infty}int{_1^a} e^{-xy}dydx$



However where I am stuck is changing the order of integration on this double integral in order to evaluate it.










share|cite|improve this question









$endgroup$





This question already has an answer here:




  • Best way to integrate $ int_0^infty frac{e^{-at} - e^{-bt}}{t} text{d}t $

    2 answers




working on a problem to evaluate



$int_0^infty frac {e^{-x} - e^{-ax}} {x} dx$



the instructions say to first evaluate
$int_1^a e^{-xy} dy$



which comes out to the integrand of the original improper integral.



using this it seems we can rewrite the improper integral as the double integral as follows



$int{_0^infty}int{_1^a} e^{-xy}dydx$



However where I am stuck is changing the order of integration on this double integral in order to evaluate it.





This question already has an answer here:




  • Best way to integrate $ int_0^infty frac{e^{-at} - e^{-bt}}{t} text{d}t $

    2 answers








integration improper-integrals order-of-integration






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 2 at 23:59









heironymousheironymous

41




41




marked as duplicate by Zacky, RRL, Lord Shark the Unknown, KReiser, Community Jan 3 at 4:41


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.






marked as duplicate by Zacky, RRL, Lord Shark the Unknown, KReiser, Community Jan 3 at 4:41


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • $begingroup$
    See: en.wikipedia.org/wiki/Frullani_integral or set $a=1$ here:math.stackexchange.com/q/62254/515527
    $endgroup$
    – Zacky
    Jan 3 at 0:01




















  • $begingroup$
    See: en.wikipedia.org/wiki/Frullani_integral or set $a=1$ here:math.stackexchange.com/q/62254/515527
    $endgroup$
    – Zacky
    Jan 3 at 0:01


















$begingroup$
See: en.wikipedia.org/wiki/Frullani_integral or set $a=1$ here:math.stackexchange.com/q/62254/515527
$endgroup$
– Zacky
Jan 3 at 0:01






$begingroup$
See: en.wikipedia.org/wiki/Frullani_integral or set $a=1$ here:math.stackexchange.com/q/62254/515527
$endgroup$
– Zacky
Jan 3 at 0:01












1 Answer
1






active

oldest

votes


















1












$begingroup$

Let's start$$begin{align*}intlimits_0^{infty}mathrm dx,frac {e^{-x}-e^{-ax}}x & =intlimits_0^{infty}mathrm dx,intlimits_1^amathrm dy, e^{-xy}\ & =intlimits_1^amathrm dy,intlimits_0^{infty}mathrm dx, e^{-xy}end{align*}$$Letting $z=xy$ and evaluating the integral gives that$$intlimits_0^{infty}mathrm dx, e^{-xy}=frac 1y$$Hence$$intlimits_0^{infty}mathrm dx,frac {e^{-x}-e^{-ax}}xcolor{blue}{=log a}$$






share|cite|improve this answer









$endgroup$




















    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Let's start$$begin{align*}intlimits_0^{infty}mathrm dx,frac {e^{-x}-e^{-ax}}x & =intlimits_0^{infty}mathrm dx,intlimits_1^amathrm dy, e^{-xy}\ & =intlimits_1^amathrm dy,intlimits_0^{infty}mathrm dx, e^{-xy}end{align*}$$Letting $z=xy$ and evaluating the integral gives that$$intlimits_0^{infty}mathrm dx, e^{-xy}=frac 1y$$Hence$$intlimits_0^{infty}mathrm dx,frac {e^{-x}-e^{-ax}}xcolor{blue}{=log a}$$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Let's start$$begin{align*}intlimits_0^{infty}mathrm dx,frac {e^{-x}-e^{-ax}}x & =intlimits_0^{infty}mathrm dx,intlimits_1^amathrm dy, e^{-xy}\ & =intlimits_1^amathrm dy,intlimits_0^{infty}mathrm dx, e^{-xy}end{align*}$$Letting $z=xy$ and evaluating the integral gives that$$intlimits_0^{infty}mathrm dx, e^{-xy}=frac 1y$$Hence$$intlimits_0^{infty}mathrm dx,frac {e^{-x}-e^{-ax}}xcolor{blue}{=log a}$$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Let's start$$begin{align*}intlimits_0^{infty}mathrm dx,frac {e^{-x}-e^{-ax}}x & =intlimits_0^{infty}mathrm dx,intlimits_1^amathrm dy, e^{-xy}\ & =intlimits_1^amathrm dy,intlimits_0^{infty}mathrm dx, e^{-xy}end{align*}$$Letting $z=xy$ and evaluating the integral gives that$$intlimits_0^{infty}mathrm dx, e^{-xy}=frac 1y$$Hence$$intlimits_0^{infty}mathrm dx,frac {e^{-x}-e^{-ax}}xcolor{blue}{=log a}$$






        share|cite|improve this answer









        $endgroup$



        Let's start$$begin{align*}intlimits_0^{infty}mathrm dx,frac {e^{-x}-e^{-ax}}x & =intlimits_0^{infty}mathrm dx,intlimits_1^amathrm dy, e^{-xy}\ & =intlimits_1^amathrm dy,intlimits_0^{infty}mathrm dx, e^{-xy}end{align*}$$Letting $z=xy$ and evaluating the integral gives that$$intlimits_0^{infty}mathrm dx, e^{-xy}=frac 1y$$Hence$$intlimits_0^{infty}mathrm dx,frac {e^{-x}-e^{-ax}}xcolor{blue}{=log a}$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 3 at 0:06









        Frank W.Frank W.

        3,3391321




        3,3391321















            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

            How to fix TextFormField cause rebuild widget in Flutter