Evaluating an improper integral using double integrals [duplicate]
$begingroup$
This question already has an answer here:
Best way to integrate $ int_0^infty frac{e^{-at} - e^{-bt}}{t} text{d}t $
2 answers
working on a problem to evaluate
$int_0^infty frac {e^{-x} - e^{-ax}} {x} dx$
the instructions say to first evaluate
$int_1^a e^{-xy} dy$
which comes out to the integrand of the original improper integral.
using this it seems we can rewrite the improper integral as the double integral as follows
$int{_0^infty}int{_1^a} e^{-xy}dydx$
However where I am stuck is changing the order of integration on this double integral in order to evaluate it.
integration improper-integrals order-of-integration
$endgroup$
marked as duplicate by Zacky, RRL, Lord Shark the Unknown, KReiser, Community♦ Jan 3 at 4:41
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
Best way to integrate $ int_0^infty frac{e^{-at} - e^{-bt}}{t} text{d}t $
2 answers
working on a problem to evaluate
$int_0^infty frac {e^{-x} - e^{-ax}} {x} dx$
the instructions say to first evaluate
$int_1^a e^{-xy} dy$
which comes out to the integrand of the original improper integral.
using this it seems we can rewrite the improper integral as the double integral as follows
$int{_0^infty}int{_1^a} e^{-xy}dydx$
However where I am stuck is changing the order of integration on this double integral in order to evaluate it.
integration improper-integrals order-of-integration
$endgroup$
marked as duplicate by Zacky, RRL, Lord Shark the Unknown, KReiser, Community♦ Jan 3 at 4:41
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
$begingroup$
See: en.wikipedia.org/wiki/Frullani_integral or set $a=1$ here:math.stackexchange.com/q/62254/515527
$endgroup$
– Zacky
Jan 3 at 0:01
add a comment |
$begingroup$
This question already has an answer here:
Best way to integrate $ int_0^infty frac{e^{-at} - e^{-bt}}{t} text{d}t $
2 answers
working on a problem to evaluate
$int_0^infty frac {e^{-x} - e^{-ax}} {x} dx$
the instructions say to first evaluate
$int_1^a e^{-xy} dy$
which comes out to the integrand of the original improper integral.
using this it seems we can rewrite the improper integral as the double integral as follows
$int{_0^infty}int{_1^a} e^{-xy}dydx$
However where I am stuck is changing the order of integration on this double integral in order to evaluate it.
integration improper-integrals order-of-integration
$endgroup$
This question already has an answer here:
Best way to integrate $ int_0^infty frac{e^{-at} - e^{-bt}}{t} text{d}t $
2 answers
working on a problem to evaluate
$int_0^infty frac {e^{-x} - e^{-ax}} {x} dx$
the instructions say to first evaluate
$int_1^a e^{-xy} dy$
which comes out to the integrand of the original improper integral.
using this it seems we can rewrite the improper integral as the double integral as follows
$int{_0^infty}int{_1^a} e^{-xy}dydx$
However where I am stuck is changing the order of integration on this double integral in order to evaluate it.
This question already has an answer here:
Best way to integrate $ int_0^infty frac{e^{-at} - e^{-bt}}{t} text{d}t $
2 answers
integration improper-integrals order-of-integration
integration improper-integrals order-of-integration
asked Jan 2 at 23:59
heironymousheironymous
41
41
marked as duplicate by Zacky, RRL, Lord Shark the Unknown, KReiser, Community♦ Jan 3 at 4:41
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by Zacky, RRL, Lord Shark the Unknown, KReiser, Community♦ Jan 3 at 4:41
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
$begingroup$
See: en.wikipedia.org/wiki/Frullani_integral or set $a=1$ here:math.stackexchange.com/q/62254/515527
$endgroup$
– Zacky
Jan 3 at 0:01
add a comment |
$begingroup$
See: en.wikipedia.org/wiki/Frullani_integral or set $a=1$ here:math.stackexchange.com/q/62254/515527
$endgroup$
– Zacky
Jan 3 at 0:01
$begingroup$
See: en.wikipedia.org/wiki/Frullani_integral or set $a=1$ here:math.stackexchange.com/q/62254/515527
$endgroup$
– Zacky
Jan 3 at 0:01
$begingroup$
See: en.wikipedia.org/wiki/Frullani_integral or set $a=1$ here:math.stackexchange.com/q/62254/515527
$endgroup$
– Zacky
Jan 3 at 0:01
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let's start$$begin{align*}intlimits_0^{infty}mathrm dx,frac {e^{-x}-e^{-ax}}x & =intlimits_0^{infty}mathrm dx,intlimits_1^amathrm dy, e^{-xy}\ & =intlimits_1^amathrm dy,intlimits_0^{infty}mathrm dx, e^{-xy}end{align*}$$Letting $z=xy$ and evaluating the integral gives that$$intlimits_0^{infty}mathrm dx, e^{-xy}=frac 1y$$Hence$$intlimits_0^{infty}mathrm dx,frac {e^{-x}-e^{-ax}}xcolor{blue}{=log a}$$
$endgroup$
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let's start$$begin{align*}intlimits_0^{infty}mathrm dx,frac {e^{-x}-e^{-ax}}x & =intlimits_0^{infty}mathrm dx,intlimits_1^amathrm dy, e^{-xy}\ & =intlimits_1^amathrm dy,intlimits_0^{infty}mathrm dx, e^{-xy}end{align*}$$Letting $z=xy$ and evaluating the integral gives that$$intlimits_0^{infty}mathrm dx, e^{-xy}=frac 1y$$Hence$$intlimits_0^{infty}mathrm dx,frac {e^{-x}-e^{-ax}}xcolor{blue}{=log a}$$
$endgroup$
add a comment |
$begingroup$
Let's start$$begin{align*}intlimits_0^{infty}mathrm dx,frac {e^{-x}-e^{-ax}}x & =intlimits_0^{infty}mathrm dx,intlimits_1^amathrm dy, e^{-xy}\ & =intlimits_1^amathrm dy,intlimits_0^{infty}mathrm dx, e^{-xy}end{align*}$$Letting $z=xy$ and evaluating the integral gives that$$intlimits_0^{infty}mathrm dx, e^{-xy}=frac 1y$$Hence$$intlimits_0^{infty}mathrm dx,frac {e^{-x}-e^{-ax}}xcolor{blue}{=log a}$$
$endgroup$
add a comment |
$begingroup$
Let's start$$begin{align*}intlimits_0^{infty}mathrm dx,frac {e^{-x}-e^{-ax}}x & =intlimits_0^{infty}mathrm dx,intlimits_1^amathrm dy, e^{-xy}\ & =intlimits_1^amathrm dy,intlimits_0^{infty}mathrm dx, e^{-xy}end{align*}$$Letting $z=xy$ and evaluating the integral gives that$$intlimits_0^{infty}mathrm dx, e^{-xy}=frac 1y$$Hence$$intlimits_0^{infty}mathrm dx,frac {e^{-x}-e^{-ax}}xcolor{blue}{=log a}$$
$endgroup$
Let's start$$begin{align*}intlimits_0^{infty}mathrm dx,frac {e^{-x}-e^{-ax}}x & =intlimits_0^{infty}mathrm dx,intlimits_1^amathrm dy, e^{-xy}\ & =intlimits_1^amathrm dy,intlimits_0^{infty}mathrm dx, e^{-xy}end{align*}$$Letting $z=xy$ and evaluating the integral gives that$$intlimits_0^{infty}mathrm dx, e^{-xy}=frac 1y$$Hence$$intlimits_0^{infty}mathrm dx,frac {e^{-x}-e^{-ax}}xcolor{blue}{=log a}$$
answered Jan 3 at 0:06
Frank W.Frank W.
3,3391321
3,3391321
add a comment |
add a comment |
$begingroup$
See: en.wikipedia.org/wiki/Frullani_integral or set $a=1$ here:math.stackexchange.com/q/62254/515527
$endgroup$
– Zacky
Jan 3 at 0:01