Use the concavity of $log (1-x)+x$ to show that $log (1-x)leq -x$
$begingroup$
I've been reading this post and its accepted answer here. The OP (accepted answer) made a comment that $log(1-x)leq -x$ but I've been having issues proving it.
FULL PROOF (EDIT)
With credits to Kavi Rama Murthy, I provide a full proof.
Let $f: ]0,1[longrightarrow Bbb{R},;x mapsto log (1-x)+x$. Then,
begin{align}f''(x) = -frac{1}{(x-1)^2}leq 0,;forall ;xin ;]0,1[.end{align}
Hence, $f$ is monotone non-increasing and $f(x)leq f(0),forall ;xin ;]0,1[,$ that is
begin{align}log(1-x)leq - x end{align}
real-analysis analysis logarithms
$endgroup$
add a comment |
$begingroup$
I've been reading this post and its accepted answer here. The OP (accepted answer) made a comment that $log(1-x)leq -x$ but I've been having issues proving it.
FULL PROOF (EDIT)
With credits to Kavi Rama Murthy, I provide a full proof.
Let $f: ]0,1[longrightarrow Bbb{R},;x mapsto log (1-x)+x$. Then,
begin{align}f''(x) = -frac{1}{(x-1)^2}leq 0,;forall ;xin ;]0,1[.end{align}
Hence, $f$ is monotone non-increasing and $f(x)leq f(0),forall ;xin ;]0,1[,$ that is
begin{align}log(1-x)leq - x end{align}
real-analysis analysis logarithms
$endgroup$
3
$begingroup$
$log(1-x)$ is not defined for $xgeq 1$
$endgroup$
– Kavi Rama Murthy
Jan 3 at 8:53
$begingroup$
To show that $f(x)leq f(0),forall ;xin ]0,1[,$ i.e. $log(1-x)+xleq 0$
$endgroup$
– Omojola Micheal
Jan 3 at 9:13
add a comment |
$begingroup$
I've been reading this post and its accepted answer here. The OP (accepted answer) made a comment that $log(1-x)leq -x$ but I've been having issues proving it.
FULL PROOF (EDIT)
With credits to Kavi Rama Murthy, I provide a full proof.
Let $f: ]0,1[longrightarrow Bbb{R},;x mapsto log (1-x)+x$. Then,
begin{align}f''(x) = -frac{1}{(x-1)^2}leq 0,;forall ;xin ;]0,1[.end{align}
Hence, $f$ is monotone non-increasing and $f(x)leq f(0),forall ;xin ;]0,1[,$ that is
begin{align}log(1-x)leq - x end{align}
real-analysis analysis logarithms
$endgroup$
I've been reading this post and its accepted answer here. The OP (accepted answer) made a comment that $log(1-x)leq -x$ but I've been having issues proving it.
FULL PROOF (EDIT)
With credits to Kavi Rama Murthy, I provide a full proof.
Let $f: ]0,1[longrightarrow Bbb{R},;x mapsto log (1-x)+x$. Then,
begin{align}f''(x) = -frac{1}{(x-1)^2}leq 0,;forall ;xin ;]0,1[.end{align}
Hence, $f$ is monotone non-increasing and $f(x)leq f(0),forall ;xin ;]0,1[,$ that is
begin{align}log(1-x)leq - x end{align}
real-analysis analysis logarithms
real-analysis analysis logarithms
edited Jan 3 at 9:25
Omojola Micheal
asked Jan 3 at 8:51
Omojola MichealOmojola Micheal
1,809324
1,809324
3
$begingroup$
$log(1-x)$ is not defined for $xgeq 1$
$endgroup$
– Kavi Rama Murthy
Jan 3 at 8:53
$begingroup$
To show that $f(x)leq f(0),forall ;xin ]0,1[,$ i.e. $log(1-x)+xleq 0$
$endgroup$
– Omojola Micheal
Jan 3 at 9:13
add a comment |
3
$begingroup$
$log(1-x)$ is not defined for $xgeq 1$
$endgroup$
– Kavi Rama Murthy
Jan 3 at 8:53
$begingroup$
To show that $f(x)leq f(0),forall ;xin ]0,1[,$ i.e. $log(1-x)+xleq 0$
$endgroup$
– Omojola Micheal
Jan 3 at 9:13
3
3
$begingroup$
$log(1-x)$ is not defined for $xgeq 1$
$endgroup$
– Kavi Rama Murthy
Jan 3 at 8:53
$begingroup$
$log(1-x)$ is not defined for $xgeq 1$
$endgroup$
– Kavi Rama Murthy
Jan 3 at 8:53
$begingroup$
To show that $f(x)leq f(0),forall ;xin ]0,1[,$ i.e. $log(1-x)+xleq 0$
$endgroup$
– Omojola Micheal
Jan 3 at 9:13
$begingroup$
To show that $f(x)leq f(0),forall ;xin ]0,1[,$ i.e. $log(1-x)+xleq 0$
$endgroup$
– Omojola Micheal
Jan 3 at 9:13
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The function is concave on $(0,1)$ because $f''(x)=-frac 1 {(x-1)^{2}} leq 0$. It is not defined for $x geq 1$.
$endgroup$
$begingroup$
(+1) But sorry for the stress!
$endgroup$
– Omojola Micheal
Jan 3 at 9:07
add a comment |
$begingroup$
Another way, is to consider the Maclaurin series expansion
begin{align} log(1-x)=-sum^{infty}_{n=1}dfrac{x^n}{n}=-x-dfrac{x^2}{2}-dfrac{x^3}{3}cdots leq -x,;text{for fixed};xin;]0,1[end{align}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060375%2fuse-the-concavity-of-log-1-xx-to-show-that-log-1-x-leq-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The function is concave on $(0,1)$ because $f''(x)=-frac 1 {(x-1)^{2}} leq 0$. It is not defined for $x geq 1$.
$endgroup$
$begingroup$
(+1) But sorry for the stress!
$endgroup$
– Omojola Micheal
Jan 3 at 9:07
add a comment |
$begingroup$
The function is concave on $(0,1)$ because $f''(x)=-frac 1 {(x-1)^{2}} leq 0$. It is not defined for $x geq 1$.
$endgroup$
$begingroup$
(+1) But sorry for the stress!
$endgroup$
– Omojola Micheal
Jan 3 at 9:07
add a comment |
$begingroup$
The function is concave on $(0,1)$ because $f''(x)=-frac 1 {(x-1)^{2}} leq 0$. It is not defined for $x geq 1$.
$endgroup$
The function is concave on $(0,1)$ because $f''(x)=-frac 1 {(x-1)^{2}} leq 0$. It is not defined for $x geq 1$.
edited Jan 3 at 9:08
answered Jan 3 at 8:56
Kavi Rama MurthyKavi Rama Murthy
53.8k32055
53.8k32055
$begingroup$
(+1) But sorry for the stress!
$endgroup$
– Omojola Micheal
Jan 3 at 9:07
add a comment |
$begingroup$
(+1) But sorry for the stress!
$endgroup$
– Omojola Micheal
Jan 3 at 9:07
$begingroup$
(+1) But sorry for the stress!
$endgroup$
– Omojola Micheal
Jan 3 at 9:07
$begingroup$
(+1) But sorry for the stress!
$endgroup$
– Omojola Micheal
Jan 3 at 9:07
add a comment |
$begingroup$
Another way, is to consider the Maclaurin series expansion
begin{align} log(1-x)=-sum^{infty}_{n=1}dfrac{x^n}{n}=-x-dfrac{x^2}{2}-dfrac{x^3}{3}cdots leq -x,;text{for fixed};xin;]0,1[end{align}
$endgroup$
add a comment |
$begingroup$
Another way, is to consider the Maclaurin series expansion
begin{align} log(1-x)=-sum^{infty}_{n=1}dfrac{x^n}{n}=-x-dfrac{x^2}{2}-dfrac{x^3}{3}cdots leq -x,;text{for fixed};xin;]0,1[end{align}
$endgroup$
add a comment |
$begingroup$
Another way, is to consider the Maclaurin series expansion
begin{align} log(1-x)=-sum^{infty}_{n=1}dfrac{x^n}{n}=-x-dfrac{x^2}{2}-dfrac{x^3}{3}cdots leq -x,;text{for fixed};xin;]0,1[end{align}
$endgroup$
Another way, is to consider the Maclaurin series expansion
begin{align} log(1-x)=-sum^{infty}_{n=1}dfrac{x^n}{n}=-x-dfrac{x^2}{2}-dfrac{x^3}{3}cdots leq -x,;text{for fixed};xin;]0,1[end{align}
answered Jan 3 at 10:29
Omojola MichealOmojola Micheal
1,809324
1,809324
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3060375%2fuse-the-concavity-of-log-1-xx-to-show-that-log-1-x-leq-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
$log(1-x)$ is not defined for $xgeq 1$
$endgroup$
– Kavi Rama Murthy
Jan 3 at 8:53
$begingroup$
To show that $f(x)leq f(0),forall ;xin ]0,1[,$ i.e. $log(1-x)+xleq 0$
$endgroup$
– Omojola Micheal
Jan 3 at 9:13